

Lecture Notes in Computer Science 4808
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Tei-Wei Kuo Edwin Sha Minyi Guo
Laurence T. Yang Zili Shao (Eds.)

Embedded and
Ubiquitous Computing

International Conference, EUC 2007
Taipei, Taiwan, December 17-20, 2007
Proceedings

13

Volume Editors

Tei-Wei Kuo
National Taiwan University
Taiwan 106, Republic of China
E-mail: ktw@csie.ntu.edu.tw

Edwin Sha
University of Texas at Dallas
Richardson, TX 75083-0688, USA
E-mail: edsha@utdallas.edu

Minyi Guo
The University of Aizu
Aizu-Wakamatsu City, Japan
E-mail: minyi@u-aizu.ac.jp

Laurence T. Yang
St Francis Xavier University
Antigonish, NS, B2G 2W5, Canada
E-mail: ltyang@gmail.com

Zili Shao
The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong
E-mail: cszlshao@comp.polyu.edu.hk

Library of Congress Control Number: 2007940386

CR Subject Classification (1998): C.2, C.3, D.4, D.2, H.4, H.3, H.5, K.4

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

ISSN 0302-9743
ISBN-10 3-540-77091-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77091-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12199662 06/3180 5 4 3 2 1 0

Preface

It has been widely recognized that embedded and ubiquitous computing will
have tremendous impacts on many aspects of our daily life. Innovation and
close collaboration between academia and industry are the keys to guaranteeing
success in the development and deployment of the technology in embedded and
ubiquitous computing.

The IFIP International Conference on Embedded and Ubiquitous Computing
(EUC) provides a forum for engineers and scientists in academia, industry, and
government to address challenges and to present and discuss their ideas, results,
work in progress and experience. The Technical Program Committee (TPC) of
EUC 2007 was lead by the TPC Chair, Tei-Wei Kuo, and TPC Vice Chairs. A
strong international TPC was formed to review and evaluate the submissions.
Each paper was reviewed carefully by at least three TPC members or external
reviewers. It was extremely difficult for the TPC to select the presentations
because there were so many excellent and interesting submissions. There were
217 submissions from all over the world, and only 65 papers are published in
this proceedings volume.

We wish to thank the PC members for the time and thought that they gave
in creating the excellent program. We also want to thank all of the authors who
submitted their papers and made this conference a success. We are also grateful
to the Organizing Committee in organizing the conference, and to the keynote
speakers who agreed to give exciting speeches. Special thanks also go to Edwin
Sha, the General Chair, for his excellent leadership, Zili Shao, Chi-Sheng Shih,
Mieso Denko, Shih-Hao Hung, Chia-Lin Yang, Tai-Yi Huang, Chih-wen Hseuh,
Morris Chang, Zhen Liu, Agustinus Borgy Waluyo, and Shi-Wu Lo for all the
excellent work in the conference organization.

September 2007 Tei-Wei Kuo
Edwin Sha

Laurence T. Yang
Minyi Guo

Zili Shao

Organization

EUC 2007 was organized and supported by the International Federation for
Information Processing (IFIP). It was held in cooperation with the National
Taiwan University and Lecture Notes in Computer Science (LNCS) of Springer.

Orgnizing Committee

Honoraray Chair Si-Chen Lee, National Taiwan University, Taiwan
General Chair Edwin Sha, University of Texas at Dallas, USA
Program Chair Tei-Wei Kuo, National Taiwan University, Taiwan
Program Vice Chairs Li-Pin Chang, National Chiao-Tung University,

Taiwan
X. Sharon Hu, University of Notre Dame, USA
Jinsoo Kim, KAIST, Korea
Dongsheng Wang, Tsinghua University, China
Hiroyuki Tomiyama, Nagoya University, Japan
Samarjit Chakraborty, National University of

Singapore, Singapore
Yu-Chee Tseng, National Chiao-Tung University,

Taiwan
Nicolas Navet, INRIA Lorraine, France
I-Ling Yen, University of Texas at Dallas, USA
Cho-Li Wang, University of Hong Kong, Hong Kong
Mohan Kumar, University of Texas at Arlington,

USA
Ai-Chung Pang, National Taiwan University, Taiwan
Joseph Ng, Hong Kong Baptist University, Hong Kong
Jiman Hong, Soongsil University, Korea

Steering Committee
Chairs Minyi Guo, University of Aizu, Japan

Laurence Yang, St. Francis Xavier University, Canada
Jane Liu, National Taiwan University and Academia

Sinica, Taiwan
Local Organizing

Chairs Chia-Lin Yang, National Taiwan University, Taiwan
Chih-Wen Hsueh, National Taiwan University, Taiwan

Registration and
Finance Chairs Tai-Yi Huang, National Tsing Hua University, Taiwan

Shih-Hao Hung, National Taiwan University, Taiwan
Shi-Wu Lo, National Chung-Cheng University,Taiwan

VIII Organization

Workshop Chairs Mieso Denko, University of Guelph, Canada
Chi-Sheng Shih, National Taiwan University, Taiwan

Panel Chair Ted Chang, Quanta Computer Inc., Taiwan
Publicity Chairs Morris Chang, Iowa State University, USA

Zhen Liu, Nagasaki Institute of Applied Science,
Japan

Agustinus Borgy Waluyo, Monash University,
Australia

Publication Chairs Zili Shao, Hong Kong Polytech University, Hong Kong
Chi-Sheng Shih, National Taiwan University, Taiwan

Keynote Dr. L.G. Chen, National Taiwan University, Taiwan
Dr. Wei Zhao, Rensselaer Polytechnic Institute, USA

Technical Committee

Real-Time/Embedded Li-Pin Chang, National Chiao-Tung University,
Operating Systems Taiwan

Tien-Fu Chen, National Chung Cheng University,
Taiwan

Jihong Kim, Seoul National University, Korea
Kyu Ho Park, Korea Advanced Institute of Science

and Technology, Korea
Guohui Li, Huazhong University of Science and

Technology, China
Sam Hyuk Noh, Hong-Ik University, Korea
Stephen A. Edwards, Columbia University, USA
Sree. Rajan, Fujitsu Laboratories of America, USA
Tai-Yi Huang, National Tsing Hua University, Taiwan
Ying-Dar Lin, National Chiao-Tung University,

Taiwan

Power-Aware X. Sharon Hu, University of Notre Dame, USA
Computing Chris Poellabauer, University of Notre Dame, USA

Chi-Ying Tsui, Hong Kong University of Science and
Technology, Hong Kong

Tianzhou Chen, Zhejiang University, China
Gang Quan, University of South Carolina, USA
Joerg Henkel, Univeristy of Karlsruhe, Germany
Kanishka Lahiri, NEC Laboratories America, USA
Luca Benini, University of Bologna, Italy
Pai Chou, University of California, Irvine, USA
Vijaykrishnan Narayanan,Penn State University, USA
Yung-Hsiang Lu, Purdue University, USA

Organization IX

HW/SW Co-design Samarjit Chakraborty, National University of
and Design Singapore, Singapore
Automation Twan Basten, Eindhoven University of Technology,

Nethelands
Andy Pimentel, University of Amsterdam,

Netherlands
Aviral Shrivastava, Arizona State University, USA
Chi-Ying Tsui, Hong Kong University of Science

and Technology, Hong Kong
Karam S. Chatha, Arizona State University, USA
Mathias Gries, Intel Corp., Germany
M. Balakrishnan, IIT Delhi, India
Miguel Miranda, IMEC, Belgium
Naehyuck Chang, Seoul National University, Korea
Soumitra K. Nandy, Indian Institute of Science, India
Marco Platzner, University of Paderborn, Germany
Christian Plessl, ETH Zurich, Switzerland
Prabhat Mishra, University of Florida, USA
Sri Parameswaran, University of New

South Wales, Australia
Hiroto Yasuura, Kyushu University, Japan
Zonghua Gu, Hong Kong University of Science and

Technology, Hong Kong

Network Protocol Ai-Chung Pang, National Taiwan University, Taiwan
Jelena Misic, University of Manitoba, Canada
Masayuki Murata, Osaka University, Japan
Noel Crespi, GET-INT, France
Shun-Ren Yang, National Tsing-Hua University,

Taiwan
Andreas Terzis, Johns Hopkins University, USA
Yang Xiao, University of Alabama, USA

Embedded and Hiroyuki Tomiyama, Nagoya University, Japan
Reconfigurable Hardware Adam Donlin, Xilinx, USA

Chia-Tien Dan Lo, University of Texas at San
Antonio, USA

Elaheh Bozorgzadeh, University of California,
Irvine, USA

Shinya Honda, Nagoya University, Japan
Yin-Tsung Hwang, National Yunlin University of

Science and Technology, Taiwan
Ing-Jer Haung, National Sun Yat-Sen

University, Taiwan
Koji Inoue, Kyushu University, Japan

X Organization

Ki-Seok Chung, Hanyang University, Korea
Yuichiro Shibata, Nagasaki University, Japan

Embedded System Jinsoo Kim, Korea Advanced Institute of Science and
Software and Technology, Korea
Optimization Pete Beckman, Argonne National Laboratory, USA

Francois Bodin, IRISA, France
Jinsung Cho, Kyung Hee University, Korea
Chanik Park, Samsung, Electronics, Korea
Hwansoo Han, Korea Advanced Institute of Science

and Technology, Korea
Jenq-Kuen Lee, National Tsing-Hua University,

Taiwan
Rong-Guey Chang, National Chung-Cheng

University, Taiwan
Stephen A. Edwards, Columbia University, USA
Sungsoo Lim, Kookmin University, Korea
Yeh-Ching Chung, National Tsing-Hua

University, Taiwan

Sensor Networks Yu-Chee Tseng, National Chiao-Tung
University, Taiwan

Chih-Min Chao, National Taiwan Ocean
University, Taiwan

Chien-Chung Shen, University of Delaware, USA
Hsi-Lu Chao, Naitonal Chiao-Tung

University, Taiwan
Hyuncheol Park, Information and Communication

University, Korea
Chung-Ta King, National Tsing Hua

University, Taiwan
Loren Schwiebert, Wayne State University, USA
Mario Cagalj, University of Split, Croatia
Ming-Hour Yang, Chung Yuan University, Taiwan
Sameer S. Tilak, University of California,

San Diego
Sandeep Gupta, Arizona State University, USA
Jang-Ping Sheu, National Central University, Taiwan
Silvia Giordano, University of Applied

Science - SUPSI, Switzerland
Shih-Lin Wu, Chang Gung University, Taiwan
Wang-Chien Lee, Penn State University, USA
Yang Yang, University College London, Taiwan
Yuh-Shyan Chen, National Taipei University, Taiwan

Organization XI

Mobile Computing Nicolas Navet, INRIA Lorraine, France
Ben A. Abderazek, National University of

Electro-communications, Japan
Jiannong Cao, Hong Kong Polytechnic University,

Hong Kong
Eric Fleury, INRIA-INSA Lyon, France
Guoliang Xing, City University of Hong Kong,

Hong Kong
Jean-Dominique Decotignie, Centre

Suisse d’Electronique et de Microtechnique,
Switzerland

Jiman Hong, Soongsil University, Korea
Luis Almeida, University of Aveiro, Portugal
Lucia Lo Bello, University of Catania, Italy
Neil Audsley, University of York, UK
Simonot-Lion Francoise, LORIA-INPL, France

Agent and Distributed I-Ling Yen, University of Texas at Dallas, USA
Computing Alessio Bechini, University of Pisa, Italy

Ann T. Tai, IA Tech., Inc., USA
Ing-Ray Chen, Virginia Tech., USA
Kane Kim, UC, Irvin, USA
Insup Lee, University of Pennsylvania, USA
Yunhao Liu, Hong Kong University of Science and

Technology, Hong Kong
Neeraj Mittal, The University of Texas at Dallas,

USA
Shangping Ren, Illinois Institute of Technology, USA
Jeffrey Tsai, University of Illinois at Chicago, USA
Dongfeng Wang, Wind River, USA

Security and Fault Jiman Hong, Soongsil University, Korea
Tolerance Jean-Philippe Martin, Microsoft Research, UK

Andres Marin, University Carlos III of Madrid, Spain
Roberto Di Pietro, University of Rome

La Sapienza, Italy
Zhenhai Duan, Florida State University, USA
Geyong Min, University of Bradford, UK
Gwangil Jeon, Korea Polytechnic University, Korea
Haklin Kimm, East Stroudsburg University of

Pennsylvania, USA
Hung-Chang Hsiao, National Tsing-Hua

University, Taiwan
Heejun Ahn, Seoul National University of

Technology, Korea
Jordi Forne, Technical University of Catalonia, Spain

XII Organization

Junghoon Lee, Cheju National University, Korea
Klaus Kursawe, Katholieke Universiteit

Leuven, Belgium
Madjid Merabti, Liverpool John Moores University,

UK
Marc Lacoste, France Telecom Division R&D, France
Emilia Rosti, University of Milan, Italy
Sangjun Lee, Soongsil University, Korea
Willy Susilo, University of Wollongong, Australia
Yi Mu, University of Wollongong, Australia
Yunghsiang S. Han, National Taipei

University, Taiwan
Zhaoyu Liu, University of North Carolina at

Charlotte, USA
Yingwu Zhu, Seattle University, USA

Embedded System Dongsheng Wang, Tsinghua University, China
Architectures Achim Rettberg, University of Paderborn, Germany

Guangzuo Cui, Peking University, China
Franz Rammig, University of Paderborn, Germany
Yunde Jia, Beijing Institute of Technology, China
Junzhao Sun, University of Oulu, Finland
Mingyu Lu, Dalian Maritime University, China
Huadong Ma, Beijing University of Posts and

Telecommunications, China
Neil Bergmann, The University of Queensland,

Australia
Roger Woods, Queen’s University of Belfast, UK
Rajesh Gupta, University of California, USA
Ming Xu, National University of Defense

Technology, China
Xiao Zong Yang, Harbin Institute of

Technology, China
Yingfei Dong, University of Hawaii, USA
Zoran Salcic, University of Auckland, New Zealand
Zhimin Zhang, Chinese Academy of Sciences, China

Middleware and P2P Cho-Li Wang, University of Hong Kong, Hong Kong
Bo Hong, Drexel University, USA
Ching-Hsien Hsu, Chung Hua University, Taiwan
Bin Xiao, Hong Kong Polytechnic University,

Hong Kong
Jemal Abbawajy, Deakin University, Australia
Kuan-Ching Li, Providence University, Taiwan
Zhiling Lan, Illinois Institute of Technology, USA

Organization XIII

Yunhao Liu, Hong Kong University of Science and
Technology, Hong Kong

Yuanchun Shi, Tsinghua University, China
Young-Sik Jeong, Wonkwang University, Korea
Weisong Shi, Wayne State University, USA
Zhaohui Wu, Zhejiang University, China

Multimedia, Human- Joseph Ng, Hong Kong Baptist University,
Computer Interface Hong Kong
and Data Management Leonard Barolli, Fukuoka Institute of Technology,

Japan
Jong Hyuk Park, R&D Institute in Hanwha S&C

Co., Ltd., Korea
Clement Leung, Victoria University, Australia
Reynold Cheng, Hong Kong Polytechnic

University, Hong Kong
Victor Lee, City University of Hong Kong,

Hong Kong
David Tanier, Monash University, Australia
Kazunori Takashio, Keio University, Japan
Hidenori Nakazato, Waseda University, Japan
Seongsoo Hong, Seoul National University, Korea
Tatsuo Nakajima, Waseda University, Japan
Timothy Shih, Tamkang University, Taiwan
Jianliang Xu, Hong-Kong Baptist University,

Hong Kong

Wireless Networks Mohan Kumar, University of Texas at Arlington,
USA

Giusseppe Anastasi, University of Pisa, Italy
Manimaran Govindarasu, Iowa State University,

USA
Kwan-Wu Chin, Wollongong University, Australia
Mijeom Kim, Korea Telecom, Korea
Nallasamy Mani, Monash University, Australia
Stephan Olariu, Old Dominion University, USA
Cristina Pinotti, University of Perugia, Italy
Swaroop Kalasapur, Samsung Research, USA
Sieteng Soh, Curtin University of Technology,

Australia
Yonghe Liu, University of Texas at Arlington,

USA

Main Track Tei-Wei Kuo, National Taiwan University, Taiwan
Chih-Yuan Huang, Silicon Integrated Systems

Corp., Taiwan

XIV Organization

Young-Sik Jeong, Wonkwang University, Korea
Bernd Kleinjohann, University of Paderborn,

Germany
Chin-Fu Kuo, National University of Kaohsiung,

Taiwan
Chi-Sheng Shih, National Taiwan University,

Taiwan
Zili Shao, Hong Kong Polytech University,

Hong Kong
Chih-Wen Hsueh, National Taiwan University,

Taiwan
Doohyun Kim, Konkuk University, Korea
Shih-Hao Hung, National Taiwan University,

Taiwan
Ken-ichi Itoh, Siebold University of Nagasaki,

Japan
Jen-Wei Hsieh, National Chiayi University,

Taiwan
Jun Wu, National Pingtung Institute of Commerce,

Taiwan
Jianwu Zhang, Hangzhou Dianzi University, China
Lung-Jen Wang, National Pingtung Institute of

Commerce, Taiwan
Nei-Chiung Perng, Genesys Logic, Taiwan
Shi-Wu Lo, National Chung-Cheng University,

Taiwan
Ting-Ao Tang, Fudan University, China
Tai-Yi Huang, National Tsing Hua University,

Taiwan
Xiaoyang Zeng, Fudan University, China
Chia-Lin Yang, National Taiwan University,

Taiwan
Cheng-Zhong Xu, Wayne State University, USA
Dakai Zhu, University of Texas at San Antonio,

USA

Table of Contents

Power Aware Computing

Real-Time Loop Scheduling with Energy Optimization Via DVS and
ABB for Multi-core Embedded System . 1

Guochen Hua, Meng Wang, Zili Shao, Hui Liu, and Chun Jason Xue

A Software Framework for Energy and Performance Tradeoff in
Fixed-Priority Hard Real-Time Embedded Systems 13

Gang Zeng, Hiroyuki Tomiyama, and Hiroaki Takada

A Shortest Time First Scheduling Mechanism for Reducing the Total
Power Consumptions of an IEEE 802.11 Multiple Rate Ad Hoc
Network . 25

Weikuo Chu and Yu-Chee Tseng

Energy Efficient Scheduling for Real-Time Systems with Mixed
Workload . 33

Jheng-Ming Chen, Kuochen Wang, and Ming-Ham Lin

Reconfigurable Embedded Systems

Function-Level Multitasking Interface Design in an Embedded
Operating System with Reconfigurable Hardware . 45

I-Hsuan Huang, Chih-Chun Wang, Shih-Min Chu, and
Cheng-Zen Yang

Task Scheduling for Context Minimization in Dynamically
Reconfigurable Platforms . 55

Nei-Chiung Perng and Shih-Hao Hung

Compiler Support for Dynamic Pipeline Scaling . 64
Kuan-Wei Cheng, Tzong-Yen Lin, and Rong-Guey Chang

Parallel Network Intrusion Detection on Reconfigurable Platforms 75
Chun Jason Xue, Zili Shao, MeiLin Liu, QingFeng Zhuge, and
Edwin H.-M. Sha

Wireless Networks

Evaluating Mobility Support in ZigBee Networks . 87
Tony Sun, Nia-Chiang Liang, Ling-Jyh Chen,
Ping-Chieh Chen, and Mario Gerla

XVI Table of Contents

On Using Probabilistic Forwarding to Improve HEC-Based Data
Forwarding in Opportunistic Networks . 101

Ling-Jyh Chen, Cheng-Long Tseng, and Cheng-Fu Chou

Employment of Wireless Sensor Networks for Full-Scale Ship
Application . 113

Bu-Geun Paik, Seong-Rak Cho, Beom-Jin Park, Dongkon Lee,
Jong-Hwui Yun, and Byung-Dueg Bae

Improving the Performance of the Wireless Data Broadcast by the
Cyclic Indexing Schemes . 123

Long-Sheng Li, Ming-Feng Chang, and Gwo-Chuan Lee

Real-Time/Embedded Operating Systems

Revisiting Fixed Priority Techniques . 134
Nasro Min-Allah, Wang Yong-Ji, Xing Jian-Sheng, and Junxiang Liu

A Server-Side Pre-linking Mechanism for Updating Embedded Clients
Dynamically . 146

Bor-Yeh Shen and Mei-Ling Chiang

Real-Time Scheduling Under Time-Interval Constraints 158
Fábio Rodrigues de la Rocha and Rômulo Silva de Oliveira

Towards a Software Framework for Building Highly Flexible
Component-Based Embedded Operating Systems . 170

Dong Xu, Hua Wang, Qiming Teng, and Xiangqun Chen

Embedded System Architectures

A Study on Asymmetric Operating Systems on Symmetric
Multiprocessors . 182

Yu Murata, Wataru Kanda, Kensuke Hanaoka, Hiroo Ishikawa, and
Tatsuo Nakajima

An Efficient Code Generation Algorithm for Code Size Reduction
Using 1-Offset P-Code Queue Computation Model 196

Arquimedes Canedo, Ben A. Abderazek, and Masahiro Sowa

Interconnection Synthesis of MPSoC Architecture for Gamma
Cameras . 209

Tianmiao Wang, Kai Sun, Hongxing Wei, Meng Wang,
Zili Shao, and Hui Liu

Integrated Global and Local Quality-of-Service Adaptation in
Distributed, Heterogeneous Systems . 219

Larisa Rizvanovic, Damir Isovic, and Gerhard Fohler

Table of Contents XVII

Scheduling and Resource Management

Toward to Utilize the Heterogeneous Multiple Processors of the Chip
Multiprocessor Architecture . 234

Slo-Li Chu

Consensus-Driven Distributable Thread Scheduling in Networked
Embedded Systems . 247

Jonathan S. Anderson, Binoy Ravindran, and E. Douglas Jensen

Novel Radio Resource Management Scheme with Low Complexity for
Multiple Antenna Wireless Network System . 261

Jian Xu, Rong Ran, DongKu Kim, and Jong-Soo Seo

Mobile Computing

Modelling Protocols for Multiagent Interaction by F-logic 271
Hong Feng Lai

Adding Adaptability to Mailbox-Based Mobile IP . 283
Liang Zhang, Beihong Jin, and Jiannong Cao

Palpability Support Demonstrated . 294
Jeppe Brønsted, Erik Grönvall, and David Fors

GPS-Based Location Extraction and Presence Management for Mobile
Instant Messenger . 309

Dexter H. Hu and Cho-Li Wang

System Security

Bilateration: An Attack-Resistant Localization Algorithm of Wireless
Sensor Network . 321

Xin Li, Bei Hua, Yi Shang, Yan Guo, and LiHua Yue

ID-Based Key Agreement with Anonymity for Ad Hoc Networks 333
Hung-Yu Chien

Buffer Cache Level Encryption for Embedded Secure Operating
System . 346

Jaeheung Lee, Junyoung Heo, Jaemin Park, Yookun Cho,
Jiman Hong, and Minkyu Park

SOM-Based Anomaly Intrusion Detection System . 356
Chun-dong Wang, He-feng Yu, Huai-bin Wang, and Kai Liu

XVIII Table of Contents

Networks Protocols

TCP-Taichung: A RTT-Based Predictive Bandwidth Based with
Optimal Shrink Factor for TCP Congestion Control in Heterogeneous
Wired and Wireless Networks . 367

Ben-Jye Chang, Shu-Yu Lin, and Ying-Hsin Liang

Dynamic Rate Adjustment (DRA) Algorithm for WiMAX Systems
Supporting Multicast Video Services . 379

Ray-Guang Cheng, Wei-Jun Wang, and Chang-Lueng Chu

Efficient and Load-Balance Overlay Multicast Scheme with Path
Diversity for Video Streaming . 389

Chao-Lieh Chen, Jeng-Wei Lee, Jia-Ming Yang, and
Yau-Hwang Kuo

A Cross Layer Time Slot Reservation Protocol for Wireless Networks . . . 400
Bih-Hwang Lee, Chi-Ming Wong, and Hung-Chi Chien

Fault Tolerance

An Efficient Handoff Strategy for Mobile Computing Checkpoint
System . 410

Chaoguang Men, Zhenpeng Xu, and Dongsheng Wang

A Lightweight RFID Protocol Using Substring . 422
Hung-Yu Chien and Chen-Wei Huang

The Reliability of Detection in Wireless Sensor Networks: Modeling
and Analyzing . 432

Ming-Tsung Hsu, Frank Yeong-Sung Lin, Yue-Shan Chang, and
Tong-Ying Juang

Fast and Simple On-Line Sensor Fault Detection Scheme for Wireless
Sensor Networks . 444

Jeng-Yang Wu, Dyi-Rong Duh, Tsang-Yi Wang, and Li-Yuan Chang

Human-Computer Interface and Data Management

An Activity-Centered Wearable Computing Infrastructure for
Intelligent Environment Applications . 456

Dipak Surie and Thomas Pederson

Finding and Extracting Data Records from Web Pages 466
Manuel Álvarez, Alberto Pan, Juan Raposo, Fernando Bellas, and
Fidel Cacheda

Table of Contents XIX

Towards Transparent Personal Content Storage in Multi-service Access
Networks . 479

Koert Vlaeminck, Tim Wauters, Filip De Turck, Bart Dhoedt, and
Piet Demeester

Extraction and Classification of User Behavior . 493
Matheus L. dos Santos, Rodrigo F. de Mello, and Laurence T. Yang

HW/SW Co-design and Design Automations

A Floorplan-Based Power Network Analysis Methodology for
System-on-Chip Designs . 507

Shih-Hsu Huang, Chu-Liao Wang, and Man-Lin Huang

A Multi Variable Optimization Approach for the Design of Integrated
Dependable Real-Time Embedded Systems . 517

Shariful Islam and Neeraj Suri

SystemC-Based Design Space Exploration of a 3D Graphics
Acceleration SoC for Consumer Electronics . 531

Tse-Chen Yeh, Tsung-Yu Ho, Hung-Yu Chen, and Ing-Jer Huang

Optimal Allocation of I/O Device Parameters in Hardware and
Software Codesign Methodology . 541

Kuan Jen Lin, Shih Hao Huang, and Shih Wen Chen

Service-Aware Computing

A Semantic P2P Framework for Building Context-Aware Applications
in Multiple Smart Spaces . 553

Tao Gu, Hung Keng Pung, and Daqing Zhang

Usage-Aware Search in Peer-to-Peer Systems . 565
Irene Sygkouna and Miltiades Anagnostou

A Service Query Dissemination Algorithm for Accommodating
Sophisticated QoS Requirements in a Service Discovery System 577

Liang Zhang and Beihong Jin

User Preference Based Service Discovery . 587
Jongwoo Sung, Dongman Lee, and Daeyoung Kim

Sensor Networks

An Optimal Distribution of Data Reduction in Sensor Networks with
Hierarchical Caching . 598

Ying Li, M.V. Ramakrishna, and Seng W. Loke

XX Table of Contents

MOFBAN: A Lightweight Modular Framework for Body Area
Networks . 610

Benôıt Latré, Eli De Poorter, Ingrid Moerman, and Piet Demeester

Performance Analysis for Distributed Classification Fusion Using
Soft-Decision Decoding in Wireless Sensor Networks 623

Jing-Tian Sung, Hung-Ta Pai, and Bih-Hwang Lee

Ad Hoc and Sensor Networks

Hard Constrained Vertex-Cover Communication Algorithm for WSN . . . 635
Maytham Safar and Sami Habib

A Selective Push Algorithm for Cooperative Cache Consistency
Maintenance over MANETs . 650

Yu Huang, Beihong Jin, Jiannong Cao, Guangzhong Sun, and
Yulin Feng

A Constrained Multipath Routing Protocol for Wireless Sensor
Networks . 661

Peter K.K. Loh and Y.K. Tan

Ubiquitous Computing

PerSON: A Framework for Service Overlay Network in Pervasive
Environments . 671

Kumaravel Senthivel, Swaroop Kalasapur, and Mohan Kumar

Universal Adaptor: A Novel Approach to Supporting Multi-protocol
Service Discovery in Pervasive Computing . 683

Joanna Izabela Siebert, Jiannong Cao, Yu Zhou,
Miaomiao Wang, and Vaskar Raychoudhury

U-Interactive: A Middleware for Ubiquitous Fashionable Computer to
Interact with the Ubiquitous Environment by Gestures 694

Gyudong Shim, SangKwon Moon, Yong Song, Jaesub Kim, and
Kyu Ho Park

Towards Context-Awareness in Ubiquitous Computing 706
Edwin J.Y. Wei and Alvin T.S. Chan

Embedded Software Designs

Real-Time Embedded Software Design for Mobile and Ubiquitous
Systems . 718

Pao-Ann Hsiung, Shang-Wei Lin, Chin-Chieh Hung, Jih-Ming Fu,
Chao-Sheng Lin, Cheng-Chi Chiang, Kuo-Cheng Chiang,
Chun-Hsien Lu, and Pin-Hsien Lu

Table of Contents XXI

Schedulable Online Testing Framework for Real-Time Embedded
Applications in VM . 730

Okehee Goh and Yann-Hang Lee

Scalable Lossless High Definition Image Coding on Multicore
Platforms . 742

Shih-Wei Liao, Shih-Hao Hung, Chia-Heng Tu, and Jen-Hao Chen

Self-stabilizing Structure Forming Algorithms for Distributed
Multi-robot Systems . 754

Yansheng Zhang, Farokh Bastani, and I-Ling Yen

Author Index . 767

Real-Time Loop Scheduling with Energy

Optimization Via DVS and ABB for Multi-core
Embedded System

Guochen Hua1, Meng Wang1, Zili Shao1, Hui Liu2, and Chun Jason Xue3

1 Department of Computing, The Hong Kong Polytechnic University, Hong Kong
{04994029d,csmewang,cszlshao}@comp.polyu.edu.hk

2 Software Engineering Institute, Xidian University, Xi’an, China
liuhui@xidian.edu.cn

3 City University of Hong Kong Kowloon, Hong Kong,
jasonxue@cityu.edu.hk

Abstract. Dynamic Voltage Scaling (DVS) is an effective technique to
reduce energy consumption of processors by dynamically adjusting the
operational frequency and supply voltage. However, with feature sizes
shrinking, the achievable power saving by DVS is becoming limited as
the leakage power increases exponentially. Adaptive Body Biasing (ABB)
is an effective technique to reduce leakage power by increasing the cir-
cuit’s threshold voltage via body biasing. In this paper, we propose a
novel real-time loop scheduling technique to minimize both dynamic and
leakage energy consumption via DVS and ABB for applications with
loops considering voltage transition overhead. The proposed algorithm,
EOLSDA (Energy Optimization Loop Scheduling with DVS and ABB),
is designed to repeatedly regroup a loop based on rotation scheduling
[4,5] and decrease the energy consumption via DVS and ABB within a
timing constraint. We conduct experiments on a set of DSP benchmarks
based on the power model of 70nm technology. The results show that
our technique achieves big energy saving compared with list scheduling
[8] and the algorithm in [11].

1 Introduction

Power consumption has become an extremely important issue for real-time em-
bedded systems due to its significant impact on battery life, system density,
cooling cost, and system reliability, etc. Traditionally, dynamic power is the pri-
mary contributor to total power consumption. Dynamic Voltage Scaling (DVS)
is one of the most effective techniques to reduce the dynamic power by dy-
namically scaling down the supply voltage and operational frequency. However,
supply voltage scaling often requires a reduction in the threshold voltage, which
leads to an exponential rise in the sub-threshold leakage current, and hence
the leakage power consumption. As technology feature size continues to shrink,
leakage power is becoming comparable to dynamic power in the current genera-
tion of technology, and it will dominate the overall energy consumption in future

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 1–12, 2007.
c© IFIP International Federation for Information Processing 2007

2 G. Hua et al.

technologies. Therefore, with the trend of adopting multi-cores in embedded sys-
tems, it is important to reduce both dynamic and leakage energy for multi-core
embedded systems. As loops are prevalent in multimedia processing and Digital
Signal Processing (DSP) applications, we focus on minimizing both dynamic and
leakage energy consumption via DVS and ABB for real-time applications with
loops considering time and energy transition overhead.

Many researches have been done on energy optimization using DVS and ABB
for real-time embedded systems [9,11,1,5,2,13,6]. In [9], Martin et al. proposed
a technique combining DVS and ABB to minimize both dynamic and leakage
power consumption for unrelated tasks. And the expression for obtaining the op-
timal tradeoff between supply voltage and bias voltage is derived in that work.
Yan et al. [13] proposed an algorithm with DVS and ABB for a task graph with
real-time constraints. Huang et al. [6] proposed a leakage-aware compilation
methodology that targets embedded processors with both DVS and ABB capa-
bilities. Although these work can effectively reduce energy consumption, loop
optimization is not considered. There has been some work on minimizing energy
for application with loops. Saputra et al. [10] used several classic loop-oriented
compiler optimization techniques such as loop fusion to reduce the execution
time and then applied DVS to reduce energy. However, the whole loop is scaled
with the same voltage in their work. Shao et al. [11] proposed a Dynamic Voltage
Loop Scheduling algorithm (DVLS) to minimize the energy consumption con-
sidering transition overhead for applications with loops on multi-core embedded
systems. However, leakage power is not considered in their work.

In this paper, we propose a novel real-time loop scheduling algorithm, EOLSDA
(Energy Optimization Loop Scheduling with DVS and ABB), to minimize energy
consumption via performing DVS and ABB simultaneously based on the power
model [9] for applications with loops considering transition overhead. Our basic
idea is to repeatedly regroup a loop based on rotation scheduling [4,5] and decrease
the energy consumption via DVS and ABB within a timing constraint. We conduct
experiments on a set of DSP benchmarks based on a 70nm processor. The results
show that our technique achieves big energy saving compared with list scheduling
[8] and the algorithm in [11]. On average, our algorithm contributes to 65.61%
energy reduction over list scheduling and 42.74% over DVLS algorithm [11].

The rest of the paper is organized as follows. The motivational examples are
shown in Section 2. The models and basic concepts are introduced in Section 3.
The EOLSDA algorithm is presented in Section 4. The experimental results and
analysis are provided in Section 5, and the conclusion is given in Section 6.

2 Motivational Examples

In this section, we motivate the loop scheduling problem with energy minimiza-
tion via DVS and ABB by showing how to schedule a cyclic DFG that represents
a loop on a real-time multi-core embedded system. We compare the energy con-
sumption of the schedules generated by the list scheduling algorithm, the DVLS
algorithm [11], and our technique.

Real-Time Loop Scheduling with Energy Optimization Via DVS and ABB 3

(c)

E[0]=E[−1]=E[−2]=1;

}

B[i]=A[i]+1;

D[i]=A[i]*A[i];
E[i]=B[i]+C[i]+D[i];

C[i]=A[i]+3;

A[i]=E[i−3]*E[i−3];
for (i=1; i<=N; i++){

(a)

A EC

B
3

D
4

1delay

4 1

(b)

A

B

C

D

E

1

3
4

4

1

Node
Num of

clock cycles
Time TimeEnergy Energy Energy

High Voltage
Time

Low Voltage
Time Energy
Low Voltage

Dynamic Voltage Scaling Combined DVS and ABB

High Voltage

0.1
0.1
0.4
0.3

10.48
2.62

10.48
7.86

0.8
0.2
0.2
0.8
0.6

6.72
1.68
1.68
6.72
5.04

0.4 0.4
0.1
0.1
0.4
0.3

0.8
0.2
0.2

0.6
0.8

2.62
1.47
1.47

4.41 2.28
3.04
0.76
0.76
3.045.88

5.88

Fig. 1. (a) A loop application. (b) The corresponding DFG (Data Flow Graph). (c)
The number of clock cycles, execution time, and the energy of each node.

A loop application is shown in Figure 1(a). The corresponding DFG is shown
in Figure 1(b). In DFG, each node represents the computation task in the loop,
the edge without delay represents the intra-iteration data dependency (e.g. A →
B), the edge with delays represents the inter-iteration data dependency (e.g.
E → A has three delays which are denoted by three bars), the number of delays
represents the number of iterations involved, and the number beside each node
represents the execution time of that node.

Assume that there are two processor cores in the multi-core embedded sys-
tem, and the maximum frequency of each processor core is 10 GHz with the
supply voltage/body bias voltage pair of (0.7244V, 0V). Note that the body bias
voltage is set to 0 since there is no body bias voltage applied here. According
to the power model introduced in [9], we get P = 26.2μW , T = 0.1ns, where
P and T represent the power consumption and clock period, respectively. There
are two voltage scaling approaches for reducing power consumption. One is Dy-
namic Voltage Scaling, and the other is combined Dynamic Voltage Scaling and
Adaptive Body Biasing.

We first consider applying the Dynamic Voltage Scaling. Assume that the
operational frequency can be scaled to 50% of the maximum frequency. By per-
forming DVS, the frequency and the supply voltage can be scaled down from
10 GHz to 5 GHz, and 0.7244V to 0.4770V, respectively. Thus, the power con-
sumption is reduced from 26.2μW to 8.4μW .

Then we consider the approach that combines Dynamic Voltage Scaling and
Adaptive Body Biasing. In this approach, we first apply the body bias voltage
to the maximum frequency. Based on the power model in [9], we can obtain
the optimal pair of supply and body bias voltage, which is (0.8189V, -0.6566V).
Therefore, we get the power consumption reduced from 26.2μW to 14.7μW .

4 G. Hua et al.

Similarly, if the frequency is scaled down by 50%, by obtaining the optimal
pair of supply and body bias voltage, which is (0.5795V, -0.7124V), the power
consumption can be reduced to 3.8μW . The execution time and energy of each
node via DVS alone and combined DVS and ABB are shown in 1(c), where the
time unit is ns and the energy unit is 10−15J . Since the voltage transition causes
both time and energy overhead, we assume it takes 0.1ns with 10−15J to transit
between different frequency levels. These assumptions are only for demonstration
purpose. Our technique is general enough to deal with general energy models as
discussed in later sections.

Assume that the timing constraint is 1.2ns which is the upper bound for the
schedule length of the loop. If the execution time of a loop iteration is less than
a given timing constraint, we use the real execution time for energy calculation.

with P=3.8uW

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

P1 P2

1

3

2

4

5

6

7

8

9

10

11

12

D

C

B

AE

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

P1 P2

1

3

2

4

5

6

7

8

9

10

11

12

D

C

B

AE

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

P1 P2

A

D

E

C

B

1

3

2

4

5

6

7

8

9

10

11

12

(a) (b) (c)

Voltage Transition

NOP

High Frequency Level
with P=26.2uW with P=8.4uW

Low Frequency Level High Frequency Level
with P=14.7uW

Low Frequency Level

Fig. 2. The schedules generated by list scheduling, DVLS and our technique, respec-
tively. The energy: (a) 2 ∗ 1.1 ∗ 26.2 = 57.64 × 10−15J , (b) 26.2 ∗ 0.4 + 2 + 8.4 ∗ 1.8 =
27.6 × 10−15J , and (c) 14.7 ∗ 0.4 + 2 + 3.8 ∗ 1.8 = 14.72 × 10−15J .

In the following, we compare the energy consumption of the schedules gener-
ated by different techniques. Note that each time slot in the schedule represents
0.1ns. We obtain the first schedule by the list scheduling (shown in Figure 2(a)),
where both processor cores operate at the maximum frequency level for the best
timing performance. Consider all empty slots filled with NOP operations, we get
the energy consumption E = 2 ∗ 1.1 ∗ Pmax = 2 ∗ 1.1 ∗ 26.2 = 57.64 × 10−15J .

The second schedule shown in Figure 2(b) is generated by the DVLS algo-
rithm [11] which repeatedly rotates the schedule and applies DVS for energy
minimization. Two frequency levels 10 GHz (the high level) and 5 GHz (the
low level) are used in this example, with PH = 26.2μW , PL = 8.4μW , and
TH = 0.1ns, TL = 0.2ns, respectively. This schedule is generated after ap-
plying DVLS for 3 rotation steps based on the list schedule in Figure 2(a).
In this schedule, nodes A, B, C, and E are assigned to the low level, while
node D is assigned to the high level. Processor core P1 operates at two differ-
ent frequency levels by processing D at the high level and E at the low level.

Real-Time Loop Scheduling with Energy Optimization Via DVS and ABB 5

Considering the transition overhead, the energy consumption of this schedule is
E = PH ∗0.4+2∗Etran+PL∗(0.6+1.2) = 26.2∗0.4+2+8.4∗1.8 = 27.6×10−15J .

The schedule generated by our EOLSDA algorithm is shown in Figure 2(c).
Compared with the schedule in Figure 2(b), this schedule consumes less energy
since leakage power is reduced as well as dynamic power by performing DVS
and ABB simultaneously. In EOLSDA, we also use the two frequency levels 10
GHz and 5 GHz, with TH = 0.1ns and PH = 14.7μW for the high level, and
TL = 0.2ns and PL = 3.8μW for the low level. The total energy consumption of
this schedule is E = PH∗0.4+2∗Etran+PL∗(0.6+1.2) = 14.7∗0.4+2+3.8∗1.8 =
14.72 × 10−15J . The results show that our EOLSDA algorithm achieves big
energy saving compared with the list scheduling and DVLS algorithm.

3 Models and Concepts

In this section, we introduce the power model and some basic concepts that will
be used in this paper.

3.1 Power Model

In this subsection, we summarize the previous power model [9] that derives
power consumption and the performance as functions of the supply and body
bias voltages.

Power Consumption. In MOSFET circuit, there are three major sources of
power consumption: dynamic power, static power, and short circuit power. The
short circuit power consumption occurs only during signal transitions and is
negligible [12]. The dynamic power, PAC is given by,

PAC = CeffV 2
ddf (1)

where Ceff is the average switched capacitance per cycle, and f is the clock fre-
quency. The static power consumption consists of the power due to sub-threshold
leakage current and reverse bias junction current. Thus, the static power con-
sumption, PDC is given by,

PDC = VddIsubn + |Vbs| (Ijn + Ibn) (2)

where Isubn is the sub-threshold leakage current, Ijn and Ibn are the drain to
body junction leakage current and source to body junction leakage current in
the NMOS device. As Ijn + Ibn can be approximated as a constant, Ij , the
static power can be expressed as,

PDC = VddK3e
K4VddeK5Vbs + |Vbs| Ij (3)

thus the total power consumption, P , becomes,

P = CeffV 2
ddf + VddK3e

K4VddeK5Vbs + |Vbs| Ij (4)

therefore, the total energy consumed per cycle is given by,

Ecyc = CeffV 2
dd + Lgf

−1(VddK3e
K4VddeK5Vbs + |Vbs| Ij) (5)

6 G. Hua et al.

Energy Optimization. To optimize the energy consumption, we utilize the
equation (8) and (9) derived in [9] to find the optimal pairs of supply and body
bias voltages for given frequencies and process technologies. Equation (8) illus-
trates the relationship between the body bias voltage and the derivative of the
total energy consumption per cycle. Equation (9) formulates the supply voltage
as a function of the body bias voltage.

∂Ecyc

∂Vbs
= {Lg K3f

−1(k1Vbs + k2)ek3Vbs+k4 − IjLgf
−1 + 2Ceff (k5Vbs + k6)

(6)
Vdd = (LdK6f − K2Vbs + Vth1)/(1 + K1) (7)

3.2 Rotation Scheduling

Rotation Scheduling [3,4] is a scheduling technique used to optimize a loop sched-
ule with resource constraints. It transforms a schedule to a more compact one
iteratively in a DFG. By using rotation scheduling, we can get more opportu-
nities to reschedule nodes of DFG to better locations so that the length of a
schedule can be reduced. In Figure 3, we show an example to explain how to ob-
tain a new schedule via rotation scheduling. Using the schedule generated by list
scheduling in Figure 2(a) as an initial schedule, we rotate the nodes at the first
row of the schedule down. The rotated graph is shown in Figure 3(a), the new
schedule is shown in Figure 3(b), and the equivalent loop body after rotation is
shown in Figure 3(c).

From the program point of view, rotation scheduling regroups a loop body
and attempts to reduce intra-dependencies among nodes. In this case, after the
rotation, a new loop is obtained by the transformation as shown in Figure 3(c),
where the corresponding computation for node A is rotated and put at the end of

B

���
���
���

���
���
���

���
���
���
���

������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

(a)

{

E[0]=E[−1]=E[−2]=1;

Prologue

Body
Loop

A EC

D

3

1

4

P2
1
2
3
4
5
6
7
8
9

10

P1

D

E

(b)

Epilogue

}

E[i]=B[i]+C[i]+D[i];

D[i]=A[i]*A[i];

B[i]=A[i]+1;

(c)

11
12

4 1

C
B

A

A[1]=E[−2]*E[−2];

C[i]=A[i]+3;

A[i+1]=E[i−2]*E[i−2];

B[N]=A[N]+1;

D[N]=A[N]*A[N];
E[N]=B[N]+C[N]+D[N];

C[N]=A[N]+3;

for (i=1; i<=N−1; i++)

Fig. 3. (a) The rotated DFG. (b) The schedule after the rotation. (c) The equivalent
loop after regrouping loop body.

Real-Time Loop Scheduling with Energy Optimization Via DVS and ABB 7

the new loop body. One iteration from the old loop is separated and put outside
the new loop body: the computation for node A is put in the prologue and
those for the other nodes are put in the epilogue. In the new loop body, node
A performs the computation for the (i + 1)th iteration when the other nodes
do the computation of the ith. The transformed loop body after the rotation
scheduling can be obtained based on the retiming values of nodes [4]. The code
size is increased by introducing the prologue and epilogue after the rotation is
performed. This problem can be solved by the code size reduction technique
proposed in [14].

In the new schedule, the schedule length is reduced from 11 to 7 after the first
rotation. Therefore, more opportunities are provided for energy optimization by
DVS and ABB. In the following, we introduce our EOLSDA (Energy Optimiza-
tion Loop Scheduling with DVS and ABB) technique that can effectively reduce
energy with loop optimization and combined DVS and ABB.

4 The Energy Optimization Loop Scheduling with DVS
and ABB Algorithm

In this section, we propose our real-time loop scheduling algorithm, EOLSDA
(Energy Optimization Loop Scheduling with DVS and ABB), to minimize energy
consumption via DVS and ABB for applications with loops. Our basic idea is
to repeatedly regroup a loop based on rotation scheduling [3,4] and decrease the
energy by combined DVS and ABB technique as much as possible within a timing
constraint. The EOLSDA algorithm is shown in Algorithm. In EOLSDA, based
on an initial schedule, we repeatedly reschedule nodes and adjust their frequency
levels for energy minimization. The initial schedule can be obtained by assigning
each node with the maximum frequency level using the list scheduling.

In the EOLSDA algorithm, we first put all rotatable nodes into Rotate Node
Set and do retiming. If a node is the first node scheduled on a processor and
there is at least one delay in each of its incoming edge, then the node is rotatable.
For a node u that is not the first node scheduled on a processor, it is rotatable
if the following two conditions are satisfied:

1. There is at least one delay in each of its incoming edge, and
2. All nodes scheduled before u on the same processor are rotatable.

In this way, we can rotate all nodes without disobeying dependencies [4].
After the rotatable set is obtained, the nodes in it are ordered based on the

execution time so the node with longer execution time will be rescheduled ear-
lier. Following such order, we can obtain a schedule that can satisfy the timing
constraint as much as possible. The reason is that the frequency level of a rotated
node will be adjusted for energy minimization in the next step so its execution
time may be increased. Therefore, we should first reschedule the node with the
longest execution time to avoid the situation that we can not find an empty slot
with enough length to put it in.

8 G. Hua et al.

When rescheduling a node, we try to find the earliest empty slot to put the
node in, following the dependencies in the retimed graph. After finding this
empty slot, we first put the node into it and adjust its frequency level so the
minimum energy consumption can be obtained for the empty slot. This can be
achieved by trying all possible frequency levels of the node and filling the rest of
the empty slot with all frequency levels of NOP operations. Then we calculate
the total energy of the empty slot and select the frequency level of the node with
the minimum energy consumption.

It is possible that no empty slots can be found to put the rotated node in. In
this case, we assign the node with the highest frequency level so that the node
has the minimum execution time. We then repeat the above rescheduling steps
to try to put the node into an empty slot with the earliest schedule time and
adjust the frequency level for energy minimization. If we still can not find an
empty slot even with the highest frequency level, we will pick up a processor to
put the node to the end of it in such a way that the node is rescheduled as the
last node on the processor with the earliest schedule time. Finally, we calculate
the energy of the schedule and record the schedule with the minimum energy
consumption if the timing constraint is satisfied with the schedule.

Figure 4 shows an example. Given the DFG shown in Figure 1(b) and the
initial schedule in Figure 2(a), the schedules generated by the EOLSDA algo-
rithm in three consecutive rotations are shown in Figure 4(a)-(c), respectively.
As shown in the example, in each rotation, all rotated nodes are put into the ro-
tation set and rescheduled with frequency adjustment for energy minimization.
After three rotations, the schedule shown in Figure 4(c) achieves the minimum
energy consumption for the DFG.

In the following, we perform complexity analysis on the EOLSDA algorithm.
Let P Num be the number of processor cores and k the number of the available
frequency levels. Let |V | and |E| be the node and edge numbers of a given graph,

Low Frequency Level

���
���
���
���

C

B

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

P1 P2

1

3

2

4

5

6

7

8

9

10

11

12

D

E

A

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
��
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

NOP

P1 P2

1

3

2

4

5

6

7

8

9

10

11

12

A

C

B

E

D

(a) (b)

P1 P2

1

3

2

4

5

6

7

8

9

10

11

12

D

C

B

AE

(c)

High Frequency Level

���
���
���
���

Fig. 4. The schedules generated by the EOLSDA algorithm for the DFG in Figure 1(b)
with the initial schedule in Figure 2(a) after (a) the first rotation, (b) the second
rotation, and (c) the third rotation

Real-Time Loop Scheduling with Energy Optimization Via DVS and ABB 9

respectively. For the EOLSDA algorithm, let R Num be the number of rotations.
In one rotation, we can finish the retiming in O(|V ||E|) and it takes at most
O(|V | ∗ log|V |) to order the nodes in the rotation set. When doing rescheduling,
we need to reschedule at most |V | nodes and it takes O(|E| + P Num ∗ |V |)
to find an empty slot with the earliest schedule time where it takes at most
O(P Num∗|V |) to find all empty slots in a schedule and takes at most O(|E|) to
determine the earliest available slot considering the edge dependencies. So totally
it takes O(|V |(|V | + |E|)) to do rescheduling considering P Num is a constant,
and the EOLSDA algorithm can be finished in O((|V |2 + |V ||E|) ∗ R Num).

5 Experiments

In this section, we do experiments with a set of benchmarks including Infinite
Impulse Response filter (IIR), 8-stage lattice filter (8-Stage), the differential
equation solver (DEQ), elliptic filter (Elliptic), and voltera filter (Voltera). In
the experiments, we set the rotation times as 10∗Node Num where Node Num
is the number of nodes in the DFG. The results show that the rotation times
to generate the best schedule is less than 1 ∗ NodeNum and close to the times
when all nodes have been rotated one time.

Table 1. The frequency levels, corresponding Supply voltage, Body Bias Voltage and
Power based on the power model of a 70nm processor

Frequencies Supply Voltage Bias Voltage Power
fop (GHz) Vdd (V) Vbs (V) P (μW)

7.8 0.712 -0.667 8.76
10.4 0.839 -0.656 15.97
13 0.968 -0.661 26.28

15.6 1 -0.676 40.27

The experiments are conducted base on the power model of 70nm processor.
We configure the parameters of the processor according to the power model in
[9]. The frequency level of the processor can be varied between 50-100% in 16%
steps, with the maximum frequency of 15.6GHz. According to the power model,
we can obtain the optimal supply and body bias voltage for a given frequency.
Then, the energy consumption per cycle can be calculated by using equation
(9), and the power is derived from the formula Ecyc = P/f . The four frequency
levels, as well as their corresponding Vdd and Vbs and energy consumptions,
are shown in Table 1. The time overhead during a voltage transition among the
above four voltage levels is calculated based on equation (12), and the energy
overhead is calculated based on equation (13).

We obtain the number of clock cycles for instructions from the IA-32 architec-
ture manual [7]. Basically, a NOP instruction takes one clock cycle, an Addition
instruction with memory operands takes three clock cycles, and a Multiplica-
tion instruction with memory operands takes six clock cycles. Base on the above

10 G. Hua et al.

Table 2. The frequency levels, corresponding Supply voltage and Power of a 70nm
processor applying DVS only

Frequencies Supply Voltage Power
fop (GHz) Vdd (V) P (μW)

7.8 0.616 16.12
10.4 0.744 27.15
13 0.8728 43

15.6 1 65

Table 3. The energy comparison for the schedules generated by list scheduling, the
DVLS algorithm and the EOLSDA algorithm

Bench. TC List DVLS EOLSDA
Range Energy Energy Energy Imp-List Imp-DVLS
(ns) (10−15J) (10−15J) (10−15J) (%) (%)

2 processor cores

IIR 3-7.5 315.21 186.11 107.15 66.01 42.43
DEQ 2-6.5 229.11 138.49 80.47 64.88 41.89
ELF 5-9.5 547.16 390.73 223.48 59.16 42.80

Voltera 5-9.5 566.42 385.19 223.59 60.53 41.95
8-Stage 9-13.5 820.80 533.23 302.96 63.09 43.18

Average Imp. (2 Cores) 62.73 42.45

3 processor cores

IIR 3-7.5 321.60 177.63 99.84 68.96 43.79
DEQ 2-6.5 236.19 131.47 76.27 67.71 41.98
ELF 5-9.5 548.49 360.46 202.57 63.07 43.80

Voltera 5-9.5 563.52 335.05 181.71 67.75 45.77
8-Stage 9-13.5 820.60 429.30 237.66 71.21 44.64

Average Imp. (3 Cores) 67.74 44.00
4 processor cores

IIR 3-7.5 322.88 179.49 105.58 67.30 41.17
DEQ 2-6.5 246.80 138.21 82.04 66.76 40.64
ELF 5-9.5 554.44 384.20 221.26 60.09 42.41

Voltera 5-9.5 568.32 318.92 191.44 66.32 39.97
8-Stage 9-13.5 830.40 426.71 238.05 71.33 44.21

Average Imp. (4 Cores) 66.36 41.68
Total Average Improvement 65.61 42.71

latencies, the execution time of each node is small in terms of transition over-
head. Therefore, an enlarge factor of 1000000 is applied to the execution time
of each node while all data dependency relations are kept. Moreover, since the
clock cycle is too small (for instance, 0.13ns), we set the unit of time slot for
scheduling is 0.01ns. Thus, the instructions can be scheduled in integer number
of time slots, e.g. an NOP instruction will take 13 time slot to execute at the
frequency level of 7.8GHz.

Real-Time Loop Scheduling with Energy Optimization Via DVS and ABB 11

To evaluate the performance of our algorithm, we compare the energy con-
sumption with the list scheduling and DVLS algorithm [11]. The energy con-
sumption of the schedule generated by list scheduling is calculated under the
maximum frequency level. For DVLS algorithm, we set all the Vbs = 0 since
body bias voltage is not considered in [11]. In this case, for the same frequency
scaling levels, we calculate the corresponding supply voltage and energy con-
sumption for each frequency level according to equation (15) and (9). Table 2
lists the frequency levels of the 70nm processor when applying DVS.

For each benchmark, we apply 10 timing constraints with 0.5ns steps, and first
timing constraint we use is the approximated minimum execution time from the
list scheduling. The experiments are conducted on the systems with 2, 3 and 4
processor cores, respectively.

The experimental results are shown in Table 3. For each benchmark, we
list the average energy consumption. In Table 3, column ”TC” represents the
range of timing constraints we applied. Sub-columns ”Energy” under columns
”List”, ”DVLS” and ”EOLSDA” represent the average energy obtained by the
list scheduling, DVLS and EOLSDA, respectively. Sub-column ”Imp-List” under
column ”EOLSDA” represents the energy reduction of the EOLSDA algorithm
over list scheduling. Sub-column ”Imp-DVLS” under column ”EOLSDA” repre-
sents the energy reduction of the EOLSDA over DVLS. The total average energy
reduction of EOLSDA is shown in the last row.

The results show that the EOLSDA algorithm achieves great energy reduc-
tion compared with list scheduling and DVLS. On average, EOLSDA has a
energy reduction of 65.61% over list scheduling, and a reduction of 42.71% over
DVLS.

6 Conclusion

In this paper, we proposed a novel real-time loop scheduling algorithm to min-
imize both dynamic and leakage power consumption via performing DVS and
ABB simultaneously for applications with loops considering transition overhead.
The proposed algorithm, EOLSDA, is designed to repeatedly regroup a loop
based on rotation scheduling [4] and decrease the energy by combining DVS and
ABB as much as possible within a timing constraint. We conducted experiments
on a set of DSP benchmarks based on the power model of the 70nm proces-
sor. The experimental results show that our algorithm achieves great energy
reduction compared with list scheduling [8] and the algorithm in [11].

Acknowledgments

The work described in this paper was partially supported by the grants from
the Research Grants Council of the Hong Kong Special Administrative Re-
gion, China (PolyU A-PH13, PolyU A-PA5X, PolyU A-PH41, and PolyU
B-Q06B).

12 G. Hua et al.

References

1. Andrei, A., Schmitz, M., Eles, P., Peng, Z., Al-Hashimi, B.: Overhead-conscious
voltage selection for dynamic and leakage power reduction of time-constraint sys-
tems. In: DATE 2004, pp. 518–523 (2004)

2. Andrei, A., Schmitz, M., Eles, P., Peng, Z., Al-Hashimi, B.: Simultaneous commu-
nication and processor voltage scaling for dynamic and leakage energy reduction
in time-constrained systems. In: DATE 2004, pp. 362–369 (2004)

3. Chao, L.-F.: Scheduling and Behavioral Transformations for Parallel Systems. PhD
thesis, Princeton University (1993)

4. Chao, L.-F., LaPaugh, A.S., Sha, E.H.-M.: Rotation scheduling: A loop pipelining
algorithm. TCAD 16(3), 229–239 (1997)

5. Chen, Y., Shao, Z., Zhuge, Q., Xue, C., Xiao, B., Sha, E.: Minimizing energy via
loop scheduling and dvs for multi-core embedded systems. Parallel and Distributed
Systems 2, 2–6 (2005)

6. Huang, P., Ghiasi, S.: Power-aware compilation for embedded processors with dy-
namic voltage scaling and adaptive body biasing capabilities. In: DATE 2006, pp.
943–944 (2006)

7. Intel. IA-32 Intel Architecture Optimization Reference Manual (April 2006)
8. Landskov, D., Davidson, S., Shriver, B., Mallett, P.W.: Local microcode com-

paction techniques. ACM Computing Surveys 12(3), 261–294 (1980)
9. Martin, S., Flautner, K., Mudge, T., Blaauw, D.: Combined dynamic voltage scal-

ing and adaptive body biasing for lower power microprocessors under dynamic
workloads. In: ICCAD 2002, pp. 721–725 (2002)

10. Saputra, H., Kandemir, M.: Energy-conscious compilation based on voltage sacling.
In: LCTES 2002 (2002)

11. Shao, Z., Wang, M., Chen, Y., Xue, C., Qiu, M., Yang, L.T., Sha, E.H.-M.: Real-
time dynamic voltage loop scheduling for multi-core embedded systems. Accepted
in IEEE Transactions on Circuits and Systems II (TCAS-II)

12. Veendrick, H.: Short-circuit dissipation of static cmos circuitry and its impact on
the design of buffer circuits. IEEE J. Solid-State Circuits 19, 468–473 (1984)

13. Yan, L., Luo, J., Jha, N.K.: Joint dynamic voltage scaling and adaptive body
biasing for heterogeneous distributed real-time embedded systems. TCAD 24(7),
1030–1041 (2005)

14. Zhuge, Q., Xiao, B., Sha, E.H.-M.: Code size reduction technique and implemen-
tation for software-pipelined dsp applications. TECS 2(4), 1–24 (2003)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 13–24, 2007.
© IFIP International Federation for Information Processing 2007

A Software Framework for Energy and Performance
Tradeoff in Fixed-Priority Hard Real-Time Embedded

Systems

Gang Zeng, Hiroyuki Tomiyama, and Hiroaki Takada

Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

{sogo,tomiyama,hiro}@ertl.jp

Abstract. A dynamic energy performance scaling (DEPS) framework is pro-
posed to save energy in fixed-priority hard real-time embedded systems. In this
generalized framework, two existing technologies, i.e., dynamic hardware re-
source configuration (DHRC) and dynamic voltage frequency scaling (DVFS)
can be combined for energy performance tradeoff. The problem of selecting the
optimal hardware configuration and voltage/frequency parameters is formulated
to achieve maximal energy savings and meet the deadline constraint simultane-
ously. Through a case study, the effectiveness of DEPS has been validated.

1 Introduction

Power consumption has become one of the major concerns in today’s embedded system
design. Reducing power consumption can extend battery lifetime of portable systems,
decrease chip cooling costs, as well as increase system reliability. In contrast to the
traditional hardware-based low power designs, software-based energy performance
tradeoff approaches have attracted much attention recently due to its flexibility and
easy implementation. This approach is based upon the following observations: (1)
Application needs for particular hardware resources such as caches, issue queues, and
instruction fetch logic within an embedded processor can vary significantly from ap-
plication to application and even within the different phases of a given application [8].
(2) In real-time systems the utilization of processor is less than 100% even if all tasks
run at worse case execution time (WCET). Moreover, the actual workload even for the
same task may vary from instance to instance, which depends on the specific input data
and execution path. To take advantage of this application-dependent potential for en-
ergy and performance tradeoff, software-based approach tries to select the appropriate
hardware resource for different applications or different program phases to save energy
and meet the deadline constraint simultaneously.

There are two kinds of commonly used energy performance tradeoff technologies.
One is dynamic hardware resource configuration (DHRC), such as adaptive-issue
queue [13], adaptive branch prediction [10], selective cache way [11] etc. This tech-
nology tries to improve processor energy efficiency by dynamically tuning major
processor resources in accordance with varied needs of applications [8]. However, its
effectiveness on specific application is difficult to predict for two reasons. First, DHRC

14 G. Zeng, H. Tomiyama, and H. Takada

is application-dependent, i.e., a specific DHRC technique may be effective for some
applications, but may be ineffective for other ones [9]. Second, even for a
DHRC-effective application, the specific energy and performance relation for different
hardware configuration is also difficult to predict. Another technology for energy
performance tradeoff is dynamic voltage frequency scaling (DVFS) [1-7]. Because the
dynamic power consumption of CMOS circuits is proportional to its clock frequency
and its voltage square, DVFS tries to save energy by lowering both frequency and
voltage of processor subject to deadline constraint. In contrast to DHRC, DVFS gen-
erally has similar effectiveness on different applications. That is, lowering frequency
and voltage in a range always leads to longer execution time and less energy con-
sumption. Moreover, the variation of execution time and energy consumption can be
estimated by simple calculations. For example, most DVFS algorithms assume the
execution time is linear-inversely proportional to the processor frequency.

Based on different criteria, the software-based energy performance tradeoff ap-
proaches can be classified into different categories. First, according to the granularity at
which the technologies are applied, they can be classified into inter-task and intra-task
approaches. While the inter-task approach targets for different applications (tasks) or
different jobs of the same task; the intra-task approach is applied on periodic intervals
[24], program phases [11, 12] or subroutines [9] within one application. Second, they
can be classified into static (off-line) and dynamic (on-line) approaches according to
when the configuration decisions are made.

Although both DHRC and DVFS are very effective for energy and performance
tradeoff, unfortunately, combining them to achieve more energy savings is not a trivial
problem. The reasons are that (1) while the energy consumption and execution time can
be predicted by calculation after voltage/frequency scaling; they cannot be done so
after hardware configuration is changed. Thus to guarantee hard real time for DHRC
application, the only way to predict execution time is measurement. (2) As a general
energy performance tradeoff technology, DVFS can be effectively applied to various
applications. On the contrary, one kind of hardware resource configuration may be
effective for some applications, but may be useless for other applications. Thus a
framework should have the capability to accommodate different hardware configura-
tion mechanisms.

In this work, we propose a generalized software framework, i.e., dynamic energy
performance scaling (DEPS), to combine the two energy performance tradeoff tech-
nologies for more energy savings. This framework targets for hard real-time embedded
systems with preemptive scheduling policy. As a first step, we discuss its static in-
ter-task based application. In general, the static and inter-task based approach has
global view of program power behaviors, low runtime overhead, simple implementa-
tion, and it is particularly suitable for task with stable workload. Through analysis of an
actual DVFS application, it is suggested in [23] that while dynamic DVFS is of limited
use in case of large DVFS overhead and without precise prediction of CPU load, static
DVFS generally is sufficient. In addition, it is shown that static application of DHRC
achieved better energy savings than dynamic one due to its global information of pro-
gram behaviors [9]. Furthermore, though off-line approach cannot handle dynamic
variations of workload, it can often be used as a complement to on-line approaches. The
main contributions of this work are as follows: (1) Formulate the problem of selecting

 A Software Framework for Energy and Performance 15

the optimal hardware configuration and CPU voltage/frequency to achieve the maximal
energy savings and meet the deadline requirements simultaneously. (2) Proposes a
static application scheme of DEPS. (3) Construct a simulation environment for evalu-
ating the proposed framework, and demonstrate the effectiveness of DEPS by a case
study.

The rest of the paper is organized as follows. Section 2 describes related work. Sec-
tion 3 presents the proposed DEPS framework. Section 4 gives a case study. Finally,
Section 5 summarizes the paper.

2 Related Work

There have been a large number of publications using DHRC or DVFS for energy and
performance tradeoff in recent years. Pillai and Shin proposed off-line and on-line
DVFS algorithms under fixed-priority and earliest deadline first (EDF) scheduling
policy, respectively [1]. Kim et al. evaluated various existing DVFS algorithms in-
cluding both fixed-priority and EDF scheduling algorithm for hard real-time systems
[2]. Saewong and Rajkumar proposed several off-line and on-line DVFS algorithms for
fixed-priority real-time systems corresponding to processors with large or little DVFS
overhead [3]. Mochocki et al. introduced off-line DVFS algorithms for EDF scheduling
policy considering time and energy overhead of DVFS [25]. Cho et al. first proposed
DVFS algorithms considering measured energy performance relations for different
applications [4]. In contrast to the above inter-task approaches; Choi et al. presented a
fine-grained intra-task DVFS algorithm for memory-bound application using per-
formance counter for runtime measurement [5]. In [6], Shin and Kim also proposed
intra-task DVFS algorithm using control flow information for hard real-time systems.
Recently, Yuan et al. proposed cross-layer adaptation DVFS algorithm combining both
inter-task and intra-task scaling for energy savings in a soft real-time application [7].

As far as DHRC is concerned, Albonesi proposed selective cache ways by using
off-line program profiling and runtime program phase-based configuration [11].
Banerjee et al. proposed completely dynamic cache ways configuration using hard-
ware-based program phase detector [12]. Both the above approaches utilize temporal-
ity-based program phase information to switch the configurations. On the contrary,
Huang et al. proposed position-based (subroutine) hardware configuration approach
including off-line and on-line algorithms [9]. Note that all these DHRC approaches
performed fine-granularity configuration and not targeted for hard real-time systems,
which is different from the proposed approach. Albonesi et al. summarized recent
dynamically tuning processor resources approaches in [8].

Although the two technologies are effective for energy savings, there are few papers
considering the combination of them due to the reasons discussed in Section 1. Huang
et al. first proposed the combination of DVFS and hardware resource configuration for
energy and temperature management in which an on-line interval-based algorithm was
presented to select the most energy-saving configuration subject to a given slowdown
factor [26]. While this work targets for single-task application with given slowdown
factor, our approach target for multi-task hard real-time application with given period
and deadline. Recently, Nacul and Givargis proposed combination of DVFS and cache

16 G. Zeng, H. Tomiyama, and H. Takada

reconfiguration for low power [14].Their approach used an on-line algorithm for se-
lecting the Pareto-optimal configuration that best fill the slack for the next task to be
executed, which is different from our off-line optimal global exploration algorithm for
all tasks. Moreover, our generalized framework can adopt various DHRC schemes, and
not limited to cache reconfiguration.

3 Proposed DEPS Framework

3.1 System Model

This work focuses on embedded system and assumes a DHRC and DVFS enabled
embedded processor. The DVFS can operate at a finite set of supply voltage levels,
each with an associated speed.

We consider hard real-time applications consisting of a set of independent n periodic

real-time tasks, represented as }...,,{ 21 nτττ=Γ . Each task iτ has a period Pi and

relative deadline Di that is equal to Pi. A task iτ has mi candidate DEPS configurations

{Ci1, Ci2, …, Cimi} consisting of both DHRC configuration and DVFS parameters. Each
DEPS configuration Cij is associated with a specific energy time (performance) rela-
tion, which can be represented by a pair of values (Tij, Eij) where Tij is its worst-case
execution time under this DEPS configuration, and Eij is its energy consumption cor-
responding to the Tij.

Note that we employ measurement to obtain this application-dependent energy time
relation for each DEPS configuration. There are two reasons for this. First, as described
in Section 1, the only way for prediction of energy and time relation after DHRC con-
figuration change is measurement. Second, although most DVFS papers use calculation
to predict energy and time relation after voltage/frequency scaling, recent research
reveals application-specific energy time relation through actual measurements, which
can be exploited to further save energy over normal DVFS application [4, 5]. These
application-specific power characteristics include memory or I/O access behaviors as
well as leakage power consumption, etc., which is generally neglected by simple cal-
culation.

3.2 Problem Formulation for Static Application of DEPS

We assume the overhead for task switching and DEPS configuration is negligible for
simplicity, and denote hyperperiod = LCM (P1, P2, …, Pn), i.e., the least common
multiple of all task periods. The problem is to determine the set of optimal DEPS
configurations that minimize the energy consumption over a hyperperiod while meet-
ing the deadline constraints. This problem can be formulated as follows:

Minimize energy:

∑∑
= =

−
n

i

m

j
ijidleijij

i

i

CWTE
P

dHyperPerio

1 1

)((1)

 A Software Framework for Energy and Performance 17

subject to

)12(/1

1 1

−≤∑∑
= =

n
n

i

m

j
ij

i

ij nC
P

Ti

 (2)

and

∑
=

=
im

j
ijC

1

1 ni ,,2,1 L= (3)

where jiCij ,},1,0{ ∀∈
.

In the above formulation, Widle denotes the idle power of processor. The constraint
(2) represents utilization-based schedulability test for RM scheduling [16]. Note that
more complex schedulability test such as response time analysis (RTA) [17] can also be
used for fixed-priority based scheduling at the expense of higher computational com-
plexity. Although we only give the schedulability test for fixed-priority based sched-
uling, it is straightforward to extend it to EDF based scheduling. Constraint (3) indi-
cates that for one task, only one DEPS configuration can be selected where Cij = 1

denotes that the configuration Cij has been selected for task iτ in DEPS framework,

otherwise Cij = 0.
It is clear that the problem for selecting the optimal DEPS configuration is a typically

multiple choice 0/1 knapsack problem, which is known as a NP-hard problem [15].
Although there is no polynomial-time exact method for this problem, we can use
common dynamic programming or mixed-integer linear programming method for
solving any reasonable size by off-line computation.

Note that although we do not consider the configuration overhead in the above
formulation for simplicity, they can be incorporated easily. This is because in one
hyperperiod, the occurred number of hardware configuration and DVFS settings is
known. Thus, if the DEPS overhead in terms of time latency and energy consumption
for once hardware configuration and DVFS setting is also known, their influences can
be incorporated into formula one and two. A detailed discussion on the overhead of
DHRC and DVFS configuration can be found in [9] and [25], respectively.

3.3 Decision Algorithm for Selecting Candidate DEPS Configurations

Actually, a processor may have many DEPS configurations consisting of different
DHRC and DVFS parameters. To reduce the computational complexity we only select
some of them as candidates in the above optimal computation. As discussed in Section
1, because DVFS is effective for any applications, we retain all DVFS parameters as
candidates directly. And then, to select effective DHRC configuration under the same
DVFS parameters, first, we conduct measurement to obtain energy time relation for all
possible DEPS configurations. Second, the maximal energy consumption Emax and the
minimal execution time Tmin from the above results are selected as comparative objects.
Third, different DHRC configurations Cij (Tij, Eij) with the same DVFS parameters are
compared with each other by calculating its energy improvement over performance

18 G. Zeng, H. Tomiyama, and H. Takada

degradation, which is represented by (Emax-Eij)/(Tij-Tmin+1). Finally, the DHRC
configurations with higher energy improvement rate will be selected as candidates in
the optimal computation.

3.4 Implementation of Static DEPS

The implementation procedure of static DEPS mainly includes the following steps:

1. Obtain application-dependent energy time relation under all possible DEPS con-
figurations by simulation or actual measurement.

2. Select candidate DEPS configurations for the optimal computation as the proposed
decision algorithm.

3. Solve the energy optimal problem using the above formulation and obtain the op-
timal DEPS configuration for each task.

4. Store the optimal DEPS configuration including corresponding hardware parameters
into a static configuration table.

5. OS scheduler sets corresponding DEPS configuration based on the static configu-
ration table for next task to run at every context switch.

Execution time (s)

Energy (J)

Task 1 (period = 2s)

Task 2 (period = 3s)

C11 (1.0, 9)

C12 (1.2, 5.4)

C13 (1.4, 4)

C14 (1.8, 3)

C21 (0.2, 5)

C22 (0.6, 2.95)

C23 (1.4, 2)

Fig. 1. An example for DEPS including two tasks and 7 selected DEPS configurations

We use the following example to illustrate the application of DEPS. This simple
example includes two periodic tasks and 7 candidate DEPS configurations as shown in
Fig.1, where C11(1.0, 9) indicates that for DEPS configuration C11 of task1, its corre-
sponding worse case execution time and energy consumption are 1.0s and 9J, respec-
tively. The idle power of processor is assumed to be 1 W. As the above formulation, the
objective of DEPS is to find the optimal configuration combination for two tasks that
can achieve the minimal energy and meet the deadline constraints simultaneously. The
DEPS results for one hyperperiod scheduling are given in Fig.2. As can be seen,
RTA-based method has more potential on energy savings, and considering idle power
in the formulation can lead to more energy savings than without consideration of idle
power.

 A Software Framework for Energy and Performance 19

C13

0 1 2 3 4 5 6 Exe. time (s)

Power

C21

C12

0 1 2 3 4 5 6 Exe. time (s)

Power

C22

0 1 2 3 4 5 6 Exe. time (s)

Power

C13

C21

C13

C12 C22 C12

C13
C22

C13
C22

C13

(a) utilization -based schedulability test without considering idle power

total energy = 22 + idle energy = 23.4 (J)

(b) utilization -based schedulability test considering idle power

total energy = 22.1 + idle energy = 23.3 (J)

(c) RTA-based schedulability test considering idle power

total energy = 17.9 + idle energy = 18.5 (J)

CPU idle state

Fig. 2. DEPS results using different schedulability test methods with and without considering
idle power

4 A Case Study

As mentioned earlier, because DEPS can adopt various DHRC and DVFS techniques,
the achievable energy savings of DEPS are highly dependent on the employed DHRC
and DVFS. Therefore, it is difficult to evaluate the absolute energy savings of general
DEPS. For this reason, we demonstrate the effectiveness of DEPS through a case
study.

We choose a 4-level voltage DVFS and the selective cache way (SCW) [11] as
DHRC for our DEPS framework in this case study. In [3], it is shown that limited
voltage/frequency level will result in more energy consumption for DVFS applications.
However, while most general-purpose commercial DVFS processors can provide more
voltage levels, embedded processors typically have less ones due to its relatively low
running frequency. For example, the evaluation board of TMS320C5509 only provides
3-voltage levels [22]. The reason for selecting SCW is due to its easy implementation
and low configuration overhead. SCW exploits the subarray partitioning of set asso-
ciative caches in order to provide the capability to disable ways of the cache during
periods where full cache functionality is not required to achieve energy savings. The
detail implementations of SCW, configuration overhead, as well as method for keeping
data coherency can be found in [11] and [12]. Note that our DEPS framework is general

20 G. Zeng, H. Tomiyama, and H. Takada

and independent of the employed DHRC and DVFS technologies. We simple choose
the above technologies as an example of DEPS.

4.1 Simulation Environment Setup

As we focus on embedded systems, a SimpleScalar/ARM [18] based Sim-Panalyzer
[19] power simulator is employed to run the power simulation for our experiments.
Sim-Panalyzer is an infrastructure for microarchitectural power simulation considering
both dynamic and leakage power. The ARM configuration for SimpleScalar is listed in
Table 1. Note that we only implement the SCW on instruction cache to further reduce
the configuration overhead associated with writing cache operations. The possible
configurations for SCW on L1 instruction cache are summarized in Table 2. In addition
to the above configurations for SimpleScalar, Sim-Panalyzer uses its default configu-
ration. Furthermore, we incorporate the DVFS capability into the Sim-Panalyzer as
shown in Table 3. Some benchmark programs from Mibench [20] and Powerstone [21]
that have distinct power characteristics are selected for this evaluation. A task set in-
cluding these benchmark programs is assumed to run on this ARM simulator using
fixed-priority scheduling with specified periods in Table 4.

Table 1. Configuration for SimpleScalar/ARM

Fetch queue 8

Branch Predictor Not-taken

Fetch & Decode width 1

Issue width 1 (in-order)
Functional units 1 int ALU, 1 int Multiplier 1FP

 ALU, 1 FP Multiplier
Instruction L1 Cache selective cache way (SCW)
Data L1 Cache Size: 8KB; sets: 64; block size:

 32-byte; 4-way

L2 Cache none
Memory bus width 4-byte

Table 2. Instruction L1 cache SCW configurations

Parameters Config. 1 Config. 2 Config. 3
Cache size (KB) 8 4 2

Num. of sets 64 64 64
Block size 32 32 32

Associativity 4 2 1
Replacement policy LRU LRU LRU

Table 3. Configuration for DVFS

Processor frequency (MHz) 280 220 160 100

Processor voltage (V) 2.0 1.8 1.6 1.4

 A Software Framework for Energy and Performance 21

Table 4. Task set for experiments

No.
Task
name

Period
(ms)

WCET(ms) :
280MHz; HRC config.1

Total CPU
utilization

1 sha 400 64.9
2 v42 200 36.7
3 engine 100 8.7
4 g3fax 100 15.6

59%

4.2 Experimental Results

According to the above Table 2 and 3, there are 3 configurations for DHRC and 4
configurations for DVFS. Therefore, this framework can provide total 12 possible
DEPS configurations for each task. Each benchmark is simulated 12 times using
Sim-Panalyzer, which corresponds to 12 DEPS configurations. The simulation results
are summarized in Table 5, in which the HRC denotes the hardware resource con-
figuration as shown in Table 2, and VF denotes the voltage frequency parameters as
shown in Table.3. As these results show, DVFS can provide an identical energy per-
formance tradeoff for all benchmarks. That is, lowering processor frequency and
voltage leads to longer execution time and less energy consumption. However, for
DHRC, the energy performance tradeoff is highly dependent on program behaviors.
For example, while the large instruction cache (HRC config.1: 8KB) can achieve better
energy performance results for v42 benchmark; small instruction cache (HRC config.
3: 2KB) is the better choice for g3fax benchmark because it leads to negligible variation
of execution time but with less energy consumption.

Table 5. Simulation Results for Benchmarks

280 MHz 220MHz 160 MHz 100MHz Name VF
HRC E(mJ) T(ms) E(mJ) T(ms) E(mJ) T(ms) E(mJ) T(ms)
config.1 24.34 64.88 19.93 82.60 15.94 113.16 12.62 180.91

config.2 20.35 64.90 16.69 82.63 13.37 113.19 10.64 180.95

sha

config.3 19.37 66.92 16.09 84.98 12.93 115.40 10.48 184.01

config.1 13.40 36.72 11.10 46.35 8.93 61.94 7.23 98.24

config.2 14.66 44.48 12.60 55.37 10.28 70.43 8.79 109.95

v42

config.3 25.82 72.90 23.54 88.36 19.71 101.28 18.15 152.42

config.1 3.22 8.69 2.63 11.05 2.11 15.17 1.67 24.25

config.2 2.72 8.69 2.22 11.05 1.78 15.17 1.42 24.26

engine

config.3 4.70 14.10 4.17 17.33 3.36 21.03 2.99 32.30

config.1 6.00 15.56 4.90 19.80 3.92 27.18 3.10 43.48

config.2 5.13 15.56 4.20 19.80 3.36 27.19 2.66 43.48

g3fax

config.3 4.71 15.58 3.85 19.82 3.09 27.20 2.46 43.50

The selected candidate DEPS configurations for each benchmark as the proposed

decision algorithm are denoted in boldface in the table. In this case study, we use
LPSolve tool [27], a free mixed integer linear programming solver, to solve the energy
optimal problem as described in Section 3.2. DEPS results corresponding to different
schedulablity test methods are reported in Table 6 and 7. It is clear that DEPS can

22 G. Zeng, H. Tomiyama, and H. Takada

Table 6. DEPS results for fixed-priority scheduling using utilization-based schedulability test

DEPS results: total energy 62.57 mJ
No. Task name

HRC VF
1 sha config. 3 220 MHz
2 v42 config. 1 220 MHz
3 engine config. 2 220 MHz
4 g3fax config. 3 220 MHz

Table 7. DEPS results for fixed-priority scheduling using RTA-based schedulability test

DEPS results: total energy 52.03 mJ
No. Task name

HRC VF
1 sha config. 3 160 MHz
2 v42 config. 1 160 MHz
3 engine config. 2 220 MHz
4 g3fax config. 3 160 MHz

Table 8. Comparison with other methods

SVFS [1][3] Opt-clock [3] Static DHRC DEPS Task name
& Results HRC VF HRC VF HRC VF HRC VF

sha config.1 220 config.1 160 config.3 280 config.3 160
v42 config.1 220 config.1 160 config.1 280 config.1 160
engine config.1 220 config.1 220 config.2 280 config.2 220
g3fax config.1 220 config.1 160 config.3 280 config.3 160

Energy of
hyperperiod

72.3 mJ 60.0 mJ 75.9 mJ 52.0 mJ

Ave. power 180.6 mW 150.0 mW 189.7 mW 130.1 mW
Power red. 53.1 % 61.0 % 50.7 % 66.2 %

achieve the minimal energy consumption and meet the deadline simultaneously by
selecting the optimal DEPS configuration.

Table 8 compares the DEPS with other power saving methods. Note that because the
proposed DEPS is an inter-task based static method, we also select the inter-task based
static application of DVFS and DHRC for fair comparison. In addition, we assume that
static application of DVFS utilizes full hardware resource, and static application of
DHRC utilizes the highest processor performance. In Table 8, the column denoted as
SVFS represents the static voltage frequency scaling methods proposed in [1] and [3],
in which identical speed is assigned to all tasks to reduce the energy loss caused by
large DVFS overhead. The column denoted as Opt-clock represents the optimal speed
assignment method proposed in [3]. This method statically assigns different speed for
different tasks to achieve the maximal energy savings. Because the absolute energy
consumption depends on the run time of application, we compare the average power of
various methods to the maximal power consumption in this ARM-based simulator, i.e.,
385 mW when running g3fax at 280 MHz on HRC config. 1. As can be seen from Table
8, the DEPS can achieve 66.2% power reduction and a 5%-15% improvement over
previous methods when original task set has a total CPU utilization of 59%.

 A Software Framework for Energy and Performance 23

To verify the relation of the CPU utilization and power reduction rate, we extend the
periods of sha and v42 in Table 4, to 600 and 300 ms, respectively, which means a
lower CPU utilization, i.e., 47%. And then, the above experiments are conducted again,
and results show a 75.7% reduction in power consumption, which is a significant im-
provement over the case of 59% CPU utilization.

5 Conclusion

We proposed a generalized software framework, i.e., DEPS: dynamic energy per-
formance scaling for energy savings targeting for hard real-time embedded systems. It
integrates two existing energy performance tradeoff technologies, i.e., dynamic hard-
ware resource configuration and dynamic voltage frequency scaling into this frame-
work. We formulate the problem of selecting the optimal DEPS configuration to
achieve maximal energy savings and meet the deadline constraint simultaneously. As a
first step, we propose static task-level application of DEPS. Through a case study,
DEPS shows 66% power reduction and a 5%-15% improvement over previous methods
in the case of 59% CPU utilization.

Acknowledgments. The authors would like to thank Professor Tohru Ishihara at
System LSI Research Center of Kyushu University for his valuable comments. This
work is supported by the Core Research for Evolutional Science and Technology
(CREST) from Japan Science and Technology Agency.

References

1. Pillai, P., Shin, K.G.: Real-Time Dynamic Voltage Scaling for Low-Power Embedded Oper-
ating Systems. In: Proc. ACM Symposium Operating Systems Principles, pp. 89–102 (2001)

2. Kim, W., Shin, D., Yun, H., Kim, J., Min, S.L.: Performance Comparison of Dynamic
Voltage Scaling Algorithms for Hard Real-Time Systems. In: Proc. IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp. 219–228 (2002)

3. Saewong, S., Rajkumar, R.: Practical Voltage Scaling for Fixed-Priority RT-Systems. In:
Proc. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
pp. 106–114 (2003)

4. Cho, Y., Chang, N., Chakrabarti, C., Vrudhula, S.: High-Level Power Management of
Embedded Systems with Application-Specific Energy Cost Functions. In: Proc. Design
Automation Conference (DAC), pp. 568–573 (2006)

5. Choi, K., Soma, R., Pedram, M.: Fine-Grained Dynamic Voltage and Frequency Scaling for
Precise Energy and Performance Tradeoff Based on the Ratio of Off-Chip Access to
On-Chip Computation Times. IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems 24(1), 18–28 (2005)

6. Shin, D., Kim, J.: Intra-Task Voltage Scheduling on DVS-Enabled Hard Real-Time Sys-
tems. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 24(10),
1530–1549 (2005)

7. Yuan, W., Nahrstedt, K., Adve, S.V., Jones, D.L., Kravets, R.H.: GRACE-1: Cross-Layer
Adaptation for Multimedia Quality and Battery Energy. IEEE Trans. Mobile Comput-
ing 5(7), 799–815 (2006)

24 G. Zeng, H. Tomiyama, and H. Takada

8. Albonesi, D.H., Balasubramonian, R., Dropsbo, S.G., et al.: Dynamically Tuning Processor
Resources with Adaptive Processing. IEEE Computer, 49–58 (2003)

9. Huang, M., Renau, J., Torrellas, J.: Positional Adaptation of Processors: Application to
Energy Reduction. In: Proc. IEEE International Symposium Computer Architecture, pp.
157–168 (2003)

10. Chaver, D., Pinuel, L., Prieto, M., Tirado, F., Huang, M.: Branch Prediction on Demand: An
Energy-Efficient Solution. In: Proc. International Symposium on Low-Power Electronics
and Design, pp. 390–395 (2003)

11. Albonesi, D.H.: Selective Cache Ways: On-Demand Cache Resource Allocation. In: Proc.
International Symposium on Microarchitecture, pp. 248–259 (1999)

12. Banerjee, S., Nandy, G.S., Program, S.K.: Phase Directed Dynamic Cache Way Recon-
figuration for Power Efficiency. In: Proc. Asia and South Pacific Design Automation Con-
ference (ASPDAC), pp. 884–889 (2007)

13. Buyuktosunoglu, A., et al.: A Circuit-Level Implementation of an Adaptive-Issue Queue for
Power-Aware Microprocessors. In: Proc. Great Lakes Symp. VLSI, pp. 73–78. ACM Press,
New York (2001)

14. Nacul, A., Givargis, T.: Dynamic Voltage and Cache Reconfiguration for Low Power. In:
Proc. Design Automation and Test in Europe (DATE), pp. 1376–1377 (2004)

15. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations.
Wiley, Chichester (1990)

16. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment. Journal of the ACM 20(1), 40–61 (1973)

17. Lehoczky, J.P., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior. In: Proc. IEEE Real Time Systems Sympo-
sium (RTSS), pp. 166–171 (1989)

18. SimpleScalar Tools, http://www.simplescalar.com/
19. Sim-Panalyzer Project, http://www.eecs.umich.edu/ panalyzer/
20. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.:

MiBench: A Free, Commercially Representative Embedded Benchmark Suite. In: IEEE
Annual Workshop on Workload Characterization (2001)

21. Scott, J., Lee, L., Arends, J., Moyer, B.: Designing the Low-Power M*CORE Architecture.
In: Proc. International Symposium on Computer Architecture Power Driven Microarchi-
tecture Workshop, pp. 145–150 (1998)

22. Texas Instruments, Application Report, SPRA848A: Using the Power Scaling Library
(2004)

23. Texas Instruments, Application Report, SPRAA19A: Power Management in an RF5 Audio
Streaming Application Using DSP/BIOS (August 2005)

24. Lee, S., Sakurai, T.: Run-Time Voltage Hopping for Low-Power Real-Time Systems. In:
Proc. Design Automation Conference (DAC), pp. 806–809 (2000)

25. Mochocki, B.C., Hu, X.S., Quan, G.: A Unified Approach to Variable Voltage Scheduling
for Nonideal DVS Processors. IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems 23(9), 1370–1377 (2004)

26. Huang, M., Renau, J., Yoo, S.M., Torrellas, J.: A Framework for Dynamic Energy Effi-
ciency and Temperature Management. In: Proc. International Symposium on Microarchi-
tecture (MICRO), pp. 202–213 (2000)

27. LPSolve tool: http://sourceforge.net/projects/lpsolve/

A Shortest Time First Scheduling Mechanism

for Reducing the Total Power Consumptions of
an IEEE 802.11 Multiple Rate Ad Hoc Network

Weikuo Chu1,2 and Yu-Chee Tseng1

1 Department of Computer Science
National Chiao-Tung University, Hsin-Chu, Taiwan

2 Department of Information Management
St. John’s University, Tamsui, Taipei, Taiwan

Abstract. Power management is one of the most important issues in
mobile communications. Much research has been done in reducing wire-
less station’s power consumptions. IEEE 802.11 addresses this issue by
adopting a MAC layer active-doze Power Saving Mechanism. In an 802.11
ad hoc network, this Power Saving Mechanism works as follows. Any
wireless station with data to send must first announce its traffic and
then contends for the channel with other stations for data transmissions,
all based on the DCF protocol. Stations not involved in any data trans-
missions can go to the doze mode to conserve energy. In this paper, we
first show that this mechanism has the problem of power management
inefficiency when used in a multiple rate ad hoc network. We then pro-
pose a novel scheduling mechanism, STFS, to reduce the total power
consumptions of the wireless stations in the network. Simulation results
show that the proposed scheduling mechanism does have better perfor-
mance than that of 802.11 PSM.

1 Introduction

Wireless LAN or WLAN is the fastest growing field in mobile communications.
By now, the majority of notebook computers and an increasing number of PDAs
are equipped with wireless technology. Among the many wireless technologies,
the family of IEEE 802.11 protocols is the most widely used access method for
WLAN. In IEEE’s proposed protocols for WLAN, there are two different ways
to configure a network: ad hoc and infrastructure. In the ad hoc configuration,
wireless stations (STAs) are brought together to form a network ”on the fly”.
There is no structure to the network; there are no fixed points; and usually every
STA is within the communication range of every other STA in the network.
When configured in infrastructure mode, the WLAN consists of at least one
access point (AP) connected to the wired network and a number of wireless
STAs. The AP provides a local relay function for the network. All STAs in the
network communicate with the AP and no longer communicate with each other
directly.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 25–32, 2007.
c© IFIP International Federation for Information Processing 2007

26 W. Chu and Y.-C. Tseng

In WLAN, battery power is an unavoidable issue that must be dealt with.
In order to save power, 802.11 defines a MAC-layer Power Saving Mechanism
(802.11 PSM) that allows a wireless STA to go from the active state to doze
or power-saving state when the STA is not involved in any data transmissions
[1]. In the infrastructure configuration of a WLAN, the AP will keep track of all
STAs that are in power-saving state and buffer frames addressed to these STAs.
These frames are kept until the STAs request them to be sent or discarded if
they are not requested for a certain period of time. While in the case of ad hoc
configuration, time is divided into Beacon Intervals and each Beacon Interval
contains an ATIM (Ad Hoc Traffic Indication Message) Window followed by the
Data Transmission Phase. The ATIM Window is used as the common awake
period for all participating STAs to announce their traffic through ATIM frame
transmissions. After the ATIM Window finishes, STAs that successfully send
or receive ATIM frames must remain in the active state, and STAs can switch
to power-saving state if they are not involved in any traffic announcements till
the beginning of next ATIM Window. Actual data transfers occur in the Data
Transmission Phase, and the normal DCF (Distributed Coordination Function)
access procedure is used while sharing the transmission medium among the ac-
tive STAs. Any STA that completes the ATIM frame transmission in the ATIM
Window but fails to send data packet in the Data Transmission Phase will try
to initiate another traffic announcement in the next ATIM Window. In addition
to the 802.11 PSM, a number of power saving methods [2, 3] covering all pro-
tocol layers from Physical to the Application layer have also been proposed in
the literature, and a system-level power-saving methodology for heterogeneous
wireless networks is in [4].

Fig. 1. The worst-case and best-case scenarios of power management in an 802.11
multiple rate ad hoc network

Because of signal fading, interference, shadowing, and path loss, etc., wireless
channels have time varying characteristics. As a result, different wireless STAs
may perceive different channel qualities at the same time. In order to obtain
optimum throughput, STAs in the network need to use different transmission
rates for different channel qualities [6]. But when 802.11 PSM is enabled in such
a multiple rate ad hoc environment, we observe a problem of power management
inefficiency which can be exemplified in Fig. 1. In this example, we assume there

A Shortest Time First Scheduling Mechanism 27

are 16 STAs in the network, 8 of which are transmitters1, and 8 of which are
receivers. Each transmitter has only one packet to send to its receiver and all
data packets are equal in length. In those transmitters, 4 of them are fast STAs,
and the other 4 are slow STAs. Since fast (slow) STAs will use less (more) time
in sending packets, the packets transmitted by fast (slow) STAs are represented
by narrow (wide) rectangles in Fig. 1. According to the operations of 802.11
PSM, these transmitters must first announce their traffic in the ATIM Window
and then use DCF to contend for the channel in the Data Transmission Phase.
In the worst case, it may happen that all slow transmitters win the channel con-
tentions before any fast transmitter has a chance to send data packet. Therefore
as shown in the upper half of Fig. 1, the numbers of STAs that must stay in
the active/power-saving state in the first, second, and third Data Transmission
Phases are 16/0, 12/4, and 8/8, respectively. That is, 4 of the 16 STAs must stay
in the active state for 2 Beacon Intervals, and 8 STAs must remain active for all
of the 3 Beacon Intervals. In order to save power, we will propose a scheduling
mechanism called STFS (Shortest Time First Scheduling) in this paper so that
the packets transmitted on the channel can be as shown in the lower half of Fig.
1. This scheduling mechanism has the characteristic that it will schedule all fast
transmissions or transmissions using less time to proceed before any of the slow
STAs is allowed to send packet in every Data Transmission Phase. By scheduling
in this way, more STAs can complete their data transmissions earlier and then
go to power-saving state to conserve energy. Now the numbers of active/power-
saving STAs are only 16/0, 8/8, and 4/12 in Data Transmission Phases 1, 2, and
3, respectively, the total power consumptions of these STAs are thus minimized.

In the above example, we assume each transmitter only has a specified number
of data packets to send, therefore after a transmitter completes all its data trans-
missions, it will go to the doze mode; that is, the number of active transmitters
in each Beacon Interval may decrease over time. By scheduling fast transmissions
to proceed first, STFS can make this decrease more significant, so more power
can be saved.

The rest of the paper is organized as follows. Section 2 describes the opera-
tions of the proposed scheduling mechanism. The performance of the STFS is
investigated in section 3 and conclusions are given in section 4.

2 The Shortest Time First Scheduling

In STFS, we assume: (1) The WLAN is configured in its ad hoc mode; (2)
An ideal channel condition without packet losses is considered; (3) The Beacon
Intervals begin and end approximately at the same time at all STAs, so the
problem of time synchronization is not considered; (4) Each STA in the network
can support k data rates, r1 > r2 > · · · > rk, and has implemented an automatic
rate selection protocol such as the RBAR in [5] which enables a receiver to select
the most appropriate rate for its sender to use in the Data Transmission Phase;
1 In this paper, a transmitter is a wireless STA that only transmit, not receive data

packets.

28 W. Chu and Y.-C. Tseng

Fig. 2. The configuration of k + 1 queues in the scheduling array

and (5) The promiscuous mode of the wireless interface is enabled so that the
interface can intercept and read each network packet that arrives in its entirety.

As we mentioned earlier, STFS will schedule all fast transmissions before any
of the slow transmissions in every Beacon Interval. A major problem with this
scheduling mechanism is starvation; that is, some of the slow STAs may have no
chances to send packets when Data Transmission Phase can not accommodate
all active transmissions. In order to achieve the goals of shortest time first and
starvation prevention, we modify the packet formats of 2 control frames as fol-
lows: (1) The ATIM frame is extended with a 1-byte aging field; and (2) The
ATIM-ACK is modified to include 2 additional 1-byte fields, aging and rate.
The uses of these fields will be described in the following paragraph.

In addition to the above modifications, each STA in the network needs to
maintain a local counter, fc. This counter has an initial value of 0. Whenever an
STA has made a traffic announcement in an ATIM Window but fails to initiate
transmission in the following Data Transmission Phase, fc is incremented by 1,

• •

•

Fig. 3. A simple STFS scheduling example

A Shortest Time First Scheduling Mechanism 29

otherwise fc is reset to 0. Before an ATIM frame is sent, the transmitter will
copy the value of fc to the aging field of the frame. After an ATIM frame is
received, the rate selected by the receiver is sent back to it’s transmitter through
the rate field of the ATIM-ACK. The contents of the field aging in ATIM-ACK
are coming from the same field of the received ATIM frame.

For the purpose of deciding packet transmission order in every Data Transmis-
sion Phase, a scheduling array of size q and a number of 2× (k +1)2 indexes, s0,
e0, s1, e1, · · ·, sk, ek, also need to be maintained by each STA in the network. The
size of this array is such that it can accommodate at least k +1 non-overlapping
queues, q0, q1, · · ·, and qk; that is: |q0|+ |q1|+ · · ·+ |qk| ≤ q. The two ends, front
and rear, of each qi are pointed to by si and ei, 0 ≤ i ≤ k, respectively. The
configuration of these queues in the array is shown in Fig. 2. Whenever an STA
receives an ATIM-ACK, the STA will use the DA3, rate, and aging fields of the
frame to update its scheduling array as follows: (1) If aging > 0, the contents
of DA will be put into q0; and (2) If aging = 0 and rate = ri, the contents of
DA will be put into qi, 1 ≤ i ≤ k; that is, the addresses of all STAs with the
local counter fc = 0 and using the same data rate will be put into the same
queue in the scheduling array. The order of the station addresses in queue qi,
1 ≤ i ≤ k, is decided by the order of ATIM-ACK receptions, while the order in q0
is determined as follows: The address in DA of ATIM-ACK1 will have a smaller
index value in q0 than that in DA of ATIM-ACK2 if (1) aging of ATIM-ACK1
is larger than that of ATIM-ACK2 or (2) aging of ATIM-ACK1 is equal to that
of ATIM-ACK2 and rate of ATIM-ACK1 is higher than that of ATIM-ACK2
or (3) Both aging and rate of ATIM-ACK1 are equal to those of ATIM-ACK2
and ATIM-ACK1 is received earlier than ATIM-ACK2. For example, suppose an
STA X receives 4 ATIM-ACKs with DA=’A’, aging=0, and rate=r2 at time t,
DA=’B’, aging=0, and rate=r2 at time t + 1, DA=’C’, aging=1, and rate=r1
at time t + 2, and DA=’D’, aging=2, and rate=r2 at time t + 3. Then, in the
scheduling array of STA X , the address of STA A will have a smaller index
value in q2 than that of STA B, and the address of STA D will have a smaller
index value in q0 than that of STA C. When ATIM Window finishes, the array
index values will be used by those STAs whose addresses are recorded in the
scheduling array to setup the backoff counters to be used in data transmissions.
Therefore all STAs whose addresses are in q0 are permitted to send packets first,
followed by the transmitters in q1, and so on. Since the STAs whose addresses
are in qi will use a higher transmission rate than those whose addresses are in
qj , 1 ≤ i < j ≤ k, the goal of shortest time first is achieved. Any STAs that
had completed traffic announcements but failed to transmit data in the previ-
ous Beacon Interval(s) are recorded in q0, so the starvation problem mentioned
above is also solved. After a transmitter completes its data transmission, it will
reset its backoff counter value to ek + 1. This will give that transmitter chances
to send multiple packets in the same Data Transmission Phase. After the current

2 Recall that k is the number of different rates supported by STAs in the network.
3 The Destination Address field, which now contains the address of the STA that

transmitted the ATIM frame.

30 W. Chu and Y.-C. Tseng

× ×

×

× ×

×

×

Fig. 4. Power consumption performance of STFS and 802.11 PSM with each transmit-
ter having 1000 data packets to send

Beacon Interval terminates, the contents of the scheduling arrays maintained at
all STAs are flushed to ensure the correct scheduling in the next Beacon Interval.
A simple scheduling example of the STFS is shown in Fig. 3.

3 Performance of the STFS

We have developed a C++ based simulator to investigate the power consump-
tions of both STFS and 802.11 PSM. Since the ATIM Window size will

A Shortest Time First Scheduling Mechanism 31

significantly affect the performance of 802.11 PSM [10, 11], we will vary that
size to be 30%, 40%, and 50% of the Beacon Interval in each set of the simu-
lations to see its effect on the performance of STFS. In this paper, we assume
an STA will never be both a transmitter and a receiver at the same time. An
802.11b-based ad hoc network is particularly considered in our simulations, so
the STAs in the network can support k = 4 different data rates, with r1 = 11.0
Mbps, r2 = 5.5 Mbps, r3 = 2.0 Mbps, and r4 = 1.0 Mbps. The rate used to
send all control frames is 1 Mbps. In all simulations, we assume the numbers of
transmitters that will use rate ri, 1 ≤ i ≤ 4, for data transmissions are equally
distributed among all transmitters in the network. The size of the scheduling
queue maintained at each STA is set to q = 63. The packet size at the MAC
layer is fixed at 1024 bytes, and the lengths of the Beacon, ATIM, and ATIM-
ACK frames for 802.11 PSM are 50, 28, and 14 bytes, respectively. The Beacon
Interval is set to be 100 ms. For the energy model, a wireless STA will con-
sume 1.65 W, 1.4 W, 1.15 W, and 0.045 W in the transmit, receive, idle, and
the power-saving states, respectively [7, 8]. As in [9], the energy consumption
for switching between awake and power-saving states is not considered in this
paper. All simulation results are averages over 30 runs.

In our simulations, we measure the total power consumptions of all STAs
for the case in which one half of the STAs are transmitters and each trans-
mitter has 1000 data packets to send to its receiver. The results are shown
in Fig. 4(a)∼(c). As we can see from the results, the total power consumed
by all STAs in the network is less in STFS than in 802.11 PSM for all situ-
ations. The percentage improvement on total power consumptions, defined as
TotalPowerConsumption802.11P SM−TotalPowerConsumptionSTF S

TotalPowerConsumption802.11P SM

, is shown in Fig.
4(d). We find a 20% to nearly 40% saving on energy is achieved by STFS.
Finally, the results in Fig. 4(e) show that the savings on power consumption are
more significant when the number of STAs in the network gets higher or the
ATIM Window size becomes larger4. When these situations occur, more STAs
will remain active in the same Data Transmission Phase, so the less chance they
all can complete data transmissions. By scheduling fast transmissions first, STFS
can send more packets in every Data Transmission Phase, therefore more STAs
can complete their transmissions earlier and then go to power saving mode to
conserve energy.

4 Conclusions

WLANs are usually designed for mobile applications. In mobile applications,
battery power is one of the critical issues that must be dealt with. Due to lim-
ited battery power, various energy efficient protocols have been proposed to
reduce wireless station’s power consumptions in the literature. 802.11 addresses
this power issue by allowing wireless stations to go into power-saving state at

4 When ATIM Window size gets larger, the Data Transmission Phase will become
shorter for Beacon Intervals with fixed length.

32 W. Chu and Y.-C. Tseng

appropriate times to save power. However, this Power Saving Mechanism pro-
posed by 802.11 has the problem of power management inefficiency when used
in a multiple rate ad hoc network.

In this paper, a novel scheduling mechanism, STFS, is proposed to solve the
above problem. The main idea of STFS is to schedule as many wireless stations to
send packets as possible in every Beacon Interval so that they can complete their
data transmissions earlier and then go to power-saving state to conserve energy.
Simulation results show that the improvements made by STFS are significant
and obvious in all situations.

References

[1] IEEE Std 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications (1999)

[2] Karl, H.: An Overview of Energy-Efficiency Techniques for Mobile Communication
Systems, Technical Report TKN-03-017, Telecommunication Networks Group,
Technische University, Berlin (September 2003)

[3] Jones, C.E., Sivalingam, K.M., Agrawal, P., Chen, J.C.: A Survey of Energy Ef-
ficient Network Protocols for Wireless Networks, Wireless Networks, pp. 343–358
(July 2001)

[4] Simunic, T.: Power Saving Techniques for Wireless LANs. In: Proceedings of the
Design, Automation, and Test in Europe Conference and Exhibition, vol. 3, pp.
96–97 (2005)

[5] Holland, G., Vaidya, N., Bahl, P.: A Rate-Adaptive MAC Protocol for Multi-Hop
Wireless Networks. In: Proceeding ACM MOBICOM, pp. 236–251 (July 2001)

[6] Ci, S., Sharif, H.: A Variable Data Rate Scheme to Enhance Throughput Perfor-
mance of Wireless LANs. In: Proc. IEEE Int. Symp. on Communication Systems,
Networks and Digital Signal Processing, pp. 160–164 (2002)

[7] Lucent, IEEE802.11 WaveLAN PC Card - Users Guide, p. A-1
[8] Stemm, M., Katz, R.H.: Measuring and Reducing Energy Consumption of Net-

work Interfaces in Hand-Held Devices. IEICE Transactions on Communications,
special Issue on Mobile Computing, 1125–1131 (1997)

[9] Kim, D.-Y., Choi, C.-H.: Adaptive Power Management for IEEE 802.11-Based
Ad Hoc Networks. In: Procceedings of the 5th World Wireless Congress, San
Francisco (May 2004)

[10] Woesner, H., Ebert, J.-P., Schlager, M., Wolisz, A.: Power- Saving Mechanisms
in Emerging Standards for Wireless LANs: The MAC Level Perspective. IEEE
Personal Communications 5(1), 40–48 (1998)

[11] Jung, E.-S., Vaidya, N.H.: An Energy Efficient MAC Protocol for Wireless LANs.
In: INFOCOM, pp. 1103–1112 (2002)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 33–44, 2007.
© IFIP International Federation for Information Processing 2007

Energy Efficient Scheduling for Real-Time Systems with
Mixed Workload*

Jheng-Ming Chen, Kuochen Wang, and Ming-Ham Lin

Department of Computer Science
National Chiao Tung University

Hsinchu 300, Taiwan
jmchen@cs.nctu.edu.tw, kwang@cs.nctu.edu.tw,

travelaman958@cs.95g.nctu.edu.tw

Abstract. In spite of numerous inter-task dynamic voltage scaling (DVS)
algorithms of real-time systems with either periodic tasks or aperiodic tasks,
few of them were aimed at the mixed workload of both kind of tasks. A DVS
algorithm for mixed workload real-time systems should not only focus on
energy saving, but also should consider low response time of aperiodic tasks. In
this paper, we develop an on-line energy efficient scheduling, called Slack
Stealing for DVS (SS-DVS), to reduce CPU energy consumption for mixed
workload real-time systems under the earliest deadline first (EDF) scheduling
policy. The SS-DVS is based on the concept of slack stealing to serve aperiodic
tasks and to save energy by using the dynamic reclaiming algorithm (DRA).
Unlike other existing approaches, the SS-DVS does not need to know the
workload and the worst case execution time of aperiodic tasks in advance.
Experimental results show that the proposed SS-DVS obtains better energy
reduction (17% ~ 22%) while maintaining the same response time compared to
existing approaches.

Keywords: mixed workload real-time system, inter-task dynamic voltage
scaling, slack time, actual workload, worst case-execution time.

1 Introduction

In order to conserve energy for battery-powered real-time systems, some techniques
were proposed in the past. Such as shutting down systems parts while they are not in
use is one of the techniques for portable devices. However, restarting the hardware
takes time and increases the response time. It's not effortless to determine when and
which device should be shut down and woken up [8]. Another approach, called
dynamic voltage scaling (DVS), to conserve power is by scaling down the processor
voltage and frequency when some unused idle periods exist in the schedule at run
time. The voltage scheduler determines which voltage to use by analyzing the state of
the system. That is, the voltage scheduler of the real-time system supplies the lowest

* This work was supported by the NCTU EECS-MediaTek Research Center under Grant Q583

and the National Science Council under Grant NSC96-2219-E-009-012.

34 J.–M. Chen, K. Wang, and M.–H. Lin

possible level voltage without affecting the system performance. Several
commercially available processors provide the DVS feature, including Intel Xscale
[11] and Xeon [12], Transmeta Crusoe [13], AMD Mobile Athlon [14], and IBM
PowerPC 405LP [15].

It is known that the energy consumption E of a CMOS circuit is dominated by its
dynamic supply voltage and is proportional to the square of its supply voltage, which

is defined as CVCE ddeff ⋅⋅= 2 [10], where effC is the effective switched capacitance,

ddV is the supply voltage, and C is the number of execution cycles. Degrading the

supply voltage also drops the maximum operating frequency proportionally (fVdd ∝).

Thus E could be approximated as being proportional to the operating frequency
squared (2fE ∝). Therefore, lowering operating frequency and according supply

voltage is an effective technique for reducing energy consumption. However,
reduction of the operating frequency leads to long service time. For this reason,
applying DVS algorithms for real-time tasks to reduce energy consumption should
still meet all requirements of real-time systems. For hard real-time tasks, DVS
algorithms which lower operating frequency have to ensure no task missing its
deadline. In the same way, DVS algorithms have to ensure reasonable response time
of soft real-time tasks while reducing the operating frequency.

Despite several obvious advantages by using DVS algorithms, it also causes more
preemptions which increase energy consumption in memory subsystems, and extra
energy consumption and extra time for voltage transitions. However, these overheads
have been generally ignored because the overhead can be included into the worst case
execution time (WCET) of a task [3] [16]. Thus, a DVS algorithm can be used
without modifications for real variable-voltage processors [3]. Additionally, [17]
provides a technique that takes the task preemption into account while adjusting the
supply voltage using the delayed preemption technique. The DVS algorithms have
been proposed in growing numbers to minimize energy consumption in the past
decade. In [9], it classifies existing DVS algorithms for real-time systems into two
categories. One is intra-task DVS algorithms, which uses the slack time when a task is
predicted to complete before its WCET. The other is inter-task DVS algorithms,
which allocates the slack time between the current task and the following tasks. The
basic difference between them is that intra-task algorithms adjust the supply voltage
during an individual task boundary, while inter-task algorithms adjust the supply
voltage task by task.

In this paper, we consider inter-task DVS scheduling. Most of the existing inter-
task DVS algorithms were targeted at periodic tasks, and could get all tasks
information in advance including arrival time, deadline, and WCET at the maximum
processor speed. However, practical real-time applications involve both periodic and
aperiodic tasks. For instance, in multimedia applications such as MPEG players, some
tasks such as decoding frames periodically have stringent periodic performance, and
some aperiodic user requests (e.g., volume control) should be with reasonable
response times [3]. Periodic tasks are time driven with absolute hard deadlines, in
general, and aperiodic tasks are event driven with soft deadline. Moreover, a portion
of aperiodic tasks could not know the actual workload in advance [7].

 Energy Efficient Scheduling for Real-Time Systems with Mixed Workload 35

2 Related Work

2.1 Aperiodic Real-Time Task Scheduling Schemes

Two schemes to serve aperiodic and periodic tasks in real-time systems, which were
used in the proposed approach, are described:

(1). Bandwidth Preserving Server [18][19][20][21]: It is similar to the polling
server. The concept of the bandwidth preserving server is creating a server with
execution budget which is a time amount for executing aperiodic tasks. It is also
characterized by an ordered pair (Qs, Ts). Qs/Ts is the server utilization. The difference
from the polling serve is that it serves aperiodic tasks anytime while the budget isn't
zero. It will execute aperiodic tasks according to the budget. If the budget is
exhausted, it will stop or delay serving the aperiodic tasks.

(2). Slack Stealing [5]: The slack stealing is executing aperiodic tasks by using
the available slack times of periodic tasks. If there is available slack time from
periodic tasks, aperiodic tasks could be serviced first without causing any deadline
miss of period tasks. In this scheme, the response time of aperiodic tasks is the lowest,
but the complexity of such a real-time system is the highest among the possible
approaches.

2.2 On-Line Inter-task DVS Strategies for Period Tasks

Two on-line inter-task DVS strategies for periodic tasks in real-time systems, which
were used in the proposed approach, are depicted [9]:

(1). Stretching-to-NTA [16]: This strategy is based on that the scheduler already
knows the next task arrival time (NTA) of periodic tasks. The scheduler will stretch
the execution time to the NTA, if it doesn't cause deadline miss in this way.
Therefore, the operating frequency and supply voltage can be decreased.

(2). Priority-Based Slack Stealing [2]: Because not all the execution time of tasks
are in the worst cases, the slack time remains on the schedule if high priority tasks
complete earlier than their WCETs. Consequently, the allowed execution time of low
priority tasks can be extended.

Note that most DVS algorithms used these strategies for real-time systems with
periodic tasks only, and directly using these algorithms for mixed workload real-time
systems is not appropriate. If we directly use the stretching to NTA for mixed
workload real-time systems, it is hard to know the next arrival time of an aperiodic
task. As a result, there will be deadline miss of hard real-time periodic tasks when
high priority aperiodic tasks abruptly arrive during the stretching period.

In the priority-based slack stealing strategy [2] and the utilization updating [22]
strategy, although getting the slack time of a periodic task is easy, it's not easy to
decide the slack time of an aperiodic task. Especially, we even don't know the arrival
time and the WCET of each aperiodic task ahead. If utilizing the slack time from an
aperiodic task is too aggressive or the actual workload of aperiodic tasks is higher
than the predicted processor utilization, the deadline miss will occur just like that
occurs in the stretching to NTA. Therefore, for mixed workload real-time systems, we

36 J.–M. Chen, K. Wang, and M.–H. Lin

should adapt these strategies to satisfy the timing constraints of periodic tasks and the
short response time requirement of aperiodic tasks. That is, we need to modify the on-
line DVS algorithms for periodic tasks and integrated them with the previous
mentioned aperiodic real-time tasks scheduling schemes.

2.3 Dynamic Reclaiming Algorithm

The Dynamic Reclaiming Algorithm (DRA) [2] is a kind of priority-based slack
stealing technique, which is based on detecting early completions and adjusting the
speeds of periodic tasks in order to provide additional power saving while still
meeting the deadlines of periodic tasks. The DRA is the basis of most existing DVS
algorithms for mixed workload real time systems. First of all, the optimal constant

speed S could be calculated [2][22], at which speed every instance completes its
worst case before the deadline. However, if the task finishes earlier than the worst
case, the amount of remaining CPU time the dispatched task can safely use to reduce
its speed. The DRA keeps and updates a data structure, α-queue, to calculate the
earliness belonging to the executing tasks at run time. The information of the α-queue
includes the identity, arrival time, deadline and remaining execution time irem of

each periodic task Ti. The irem field of the head of the α-queue decreases with a rate

equal to that of the passage of time. The DRA is under the EDF* policy. EDF* is
almost the same as EDF. The difference is that in EDF* among the tasks whose
deadlines are the same, the task with the earliest arrival time has the highest priority
(a FIFO policy). Among the tasks whose deadlines and arrival times are the same, the
task with the lowest index has the highest priority. The key notation for the DRA is as
follows [2]:

 canS : The canonical schedule in which each
periodic task finishes before its deadline

 iŜ : The nominal speed of periodic task iT

)(tremi : The remaining execution time of periodic

task iT at time t in canS

)(tw S
i : The remaining WCET of periodic task iT

under speed S at time t in the actual schedule
)(tiε : The earliness of periodic task iT at time t in

the actual schedule, defined as :

)()()()(**|
twtremtremt i

ij

S
iiDDj ji −+=∑ <

ε

)()(**|
twtrem i

ij

S
iDDj j −=∑ ≤

where Di is the deadline of iT

Note that the nominal speed is the default speed it has whenever it is dispatched by
the operating system prior to any dynamic adjustment.

 Energy Efficient Scheduling for Real-Time Systems with Mixed Workload 37

2.4 Existing Inter-task DVS Algorithm for Mixed Workload Real-Time Systems

Recently, several researchers proposed DVS algorithms for mixed workload real-time
systems. Under the EDF (or EDF*) scheduling policy, most of these algorithms
integrate the bandwidth preserving server and priority-based slack stealing strategies.
Doh et al. [6] proposed an approach which leads to proper allocation of energy
budgets for hard periodic and soft aperiodic real-time tasks. Given an energy budget,
it computes a proper voltage setting for attaining an improved performance for
aperiodic tasks while meeting the deadline requirements of periodic tasks. It used
TBS (total bandwidth server) [18], which is a kind of bandwidth preserving servers,
and only focused on the off-line static scheduling problem. Aydin et al. proposed
three separate on-line schemes with mixed workload under a power consumption
constraint. It also used TBS and DRA [2] under the EDF* scheduling policy. In the
Basic Reclaiming Scheme (BRS) [1] the earliness of aperiodic tasks is only used for
reclaiming the coming aperiodic tasks, and the earliness of periodic tasks is only used
for reclaiming the coming periodic tasks. The Mutual Reclaiming Scheme (MRS) [1]
was developed from BRS. The main difference between MRS and BRS is that in the
MRS both periodic and aperiodic tasks can mutually reclaim their unused
computation times. The Bandwidth Sharing Scheme (BSS) [1] is to solve the problem
of the actual aperiodic workload that is relatively lower than the predicted aperiodic
workload. In BSS when TBS is idle, the algorithm will create a ghost job J to produce
more earliness to aggressively reduce the operating speed. But it will increase the
response time of aperiodic tasks if an actual aperiodic task arrives right after creating
the ghost job.

In [4], Shin et al. merged the TBS and two DVS algorithms, lppsEDF [16] and
DRA, respectively, under the EDF* scheduling policy. They also proposed an
enhanced approach called Workload-based Slack Estimation (WSE) [3], which
integrates CBS [19] and DRA. The WSE is almost the same as the MRS (as indicated
in [3]), except that it uses Cslack to stretch the execution time of periodic tasks by using
the slack time from CBS and it guarantees the constrained response time. But Cslack
decreases to zero rapidly as aperiodic tasks arrive. In this case, the slack time of CBS
is wasted. Note that both the MRS and WSE need to know the workload of aperiodic
tasks in advance. In addition, the MRS needs to know the WCETs of aperiodic tasks.
However, in most cases the workload of aperiodic tasks of some real-time systems is
with large variance or unpredictable [7]. If the given budget of the bandwidth
preserving server is not suitable for the current schedule point, it will waste
unnecessary energy consumption or result in long response time. Another problem is
that a periodic task with the highest priority may run slowly even if there are some
aperiodic tasks waiting in the queue.

3 System Model, Assumptions and Notations

The target processor can change its supply voltage (V) and operating speed (S) (or
frequency) continuously within its operational ranges, [minV , maxV] and [minS , maxS].

There are two components of mixed workload real-time systems: a set of
T = { T1…Tn } of n periodic tasks with hard deadlines, and a set of J aperiodic tasks

38 J.–M. Chen, K. Wang, and M.–H. Lin

arriving randomly with soft deadlines. Based on related work
[1][3][4][5][18][19][20][21], the arrival time and the worst case requirements of
periodic tasks are known in advance, but those of aperiodic tasks are made available
only when they arrive. The relative deadline of each periodic task instance is assumed
equal to its period. All tasks are assumed to be independent. We used the following
notation:

 Ti,j : The jth instance of Ti
 Ci : The worst case CPU execution cycles per instance of Ti
 Di : The deadline of Ti
 Ji : The ith aperiodic task
 ri : The arrival time of Ji
 di : The deadline of Ji
 fi : The finish time of Ji
 Ea : The average CPU execution cycles per aperiodic task
 Na : The number of aperiodic tasks in the queue
 Ai : The largest amount of aperiodic processing possible of Ji

4 Proposed SS-DVS Algorithm

In this paper, we propose an on-line DVS algorithm for mixed workload real-time
systems, named Slack Stealing for DVS (SS-DVS). The SS-DVS doesn't need to know
the workload and the WCET of aperiodic tasks. It used the concept of slack stealing,
which was originally used in mixed workload real time systems without DVS, to
service aperiodic tasks. It used the DRA to serve aperiodic tasks and to reclaim the
operating speed. In SS-DVS, all allowed execution time belongs to periodic tasks. In
this way, the periodic tasks can execute slowly to save energy. It will increase the
operating frequency once aperiodic tasks arrive and serve the aperiodic tasks as soon
as possible. Although the slack stealing approach was considered to have high
computation overhead to derive the slack time of the schedule to service aperiodic
tasks, the proposed SS-DVS has low computation overhead compared to other
approaches. The reason is that the SS-DVS obtains slack time from the periodic tasks
completed earlier or generates slack time by raising the operation speed of the current
task. That is, the SS-DVS not only collects the slack time for reclaiming the speed to
save energy, but also for servicing aperiodic tasks to reduce their response time.

The basic idea of the proposed SS-DVS is using the slack time to reduce the
operating speed of periodic and aperiodic tasks and also using the slack time to
service aperiodic tasks based on the DRA. If no aperiodic task arrives, obtaining low
energy consumption is to operate periodic tasks with low speed. And if any aperiodic
task arrives, it uses the collected slack time to service aperiodic tasks. First we have to
construct a data structure call α’-queue which is almost the same as α-queue with an
additional flag, ModeFlag, in the α’-queue. The ModeFlag records the nominal speed
of each periodic task. If ModeFlag is set to H, it means the nominal speed is HS and

 Energy Efficient Scheduling for Real-Time Systems with Mixed Workload 39

if ModeFlag is set to L, it means the nominal speed is LS . There are four operations in

our algorithm.

(1). Setup: Compute the static optimal speed S . Then set LS , to a value large

than or equal to S , and set HS to a value between maxS and LS . Then, initialize the

α’-queue to the empty list and set the nominal speed of periodic tasks to LS .

(2). Basic stealing: Using the slack time to service aperiodic tasks is the basic
idea of SS-DVS. First of all, when an aperiodic task arrives at the active state, it
means that there are pending aperiodic tasks in the queue at time t and there already
exists at least one task iJ in the queue such that ii ftr <≤ . Otherwise, it is at the idle

state. When a task yJ arrives at the active state, the task is placed in a queue of

pending tasks according to the FIFO, and the allowed execution time and the deadline
of yJ are set according to the preceding task 1−yJ . When a task yJ arrives at the idle

state and no periodic tasks being serviced or in the queue, the deadline of yJ is set to

NTA, and the allowed execution time of yJ is set to tNTA − . As a task yJ arrives at

the idle state and some periodic tasks are being serviced or in the queue, the deadline
of yJ depends on the earliness of periodic task xT with the highest priority. Hence

the deadline of yJ is)(tt xε+ , where)(txε is the earliness of periodic task xT at time

t ,and xA is set to)(txε . For example, in Fig. 1(a), when a task yJ arrives at the idle

state and there are no other periodic tasks in the queue, the xA of yJ is tNTA − . And

in Fig. 1(b), when a task yJ arrives at the idle state and periodic task xT is executing,

the xA of yJ is set to)(txε .

(3). Aggressive stealing: The speed LS is the nominal speed of periodic tasks.

However, if we execute a periodic task at LS and the actual execution time of the

periodic task is in its worst case, there will be no earliness left. Consequently, the
speed is raised to HS to create more slack time for serving aperiodic tasks. In Fig.

1(c), yJ arrives at t1, but there is no earliness of xT left. Therefore, the operating

speed is changed to HS to create more slack time. As we can see, xT finishes at t2

and the slack time is available
(4). Swapping stealing: In the aggressive stealing, a periodic task executes at

high speed HS and produces some slack time. However, we still have to service

periodic tasks first. Therefore, we could more aggressively service aperiodic tasks
first to reduce the response time without causing any deadline miss of hard real-time
periodic tasks. Swapping the order of periodic and aperiodic tasks not only can reduce
the response time, but also could lower the speed of periodic tasks if aperiodic tasks
completes early than expects. As shown in Fig. 1(d), we change the order of execution
between xT and yJ .

40 J.–M. Chen, K. Wang, and M.–H. Lin

Fig. 1. The SS-DVS scheme (a) the aperiodic task arrives with no other periodic task in the
queue (b) the aperiodic task arrives with some periodic tasks in the queue, and the highest
priority task has some earliness (c) aggressive stealing(d) swapping stealing

5 Simulation Results

5.1 Simulation Model

We use the same simulation environment as that of WSE [3]. Aperiodic tasks were
generated by the exponential distribution using with inter arrival time (1/λ) and
service time (1/μ) with parameters λ and μ. We used a fixed value μ and varied λ to
control the workload (ρ = λ/μ) of aperiodic tasks under a fixed utilization Up of
periodic tasks [3]. There are four periodic tasks in Table 1. The period of each task is
6, 8, 14, and 18, respectively, and the WCET of each task is 0.5, 1.0, 2.1, and 3.1,
respectively. The utilization Up of periodic tasks is 0.4 ((0.5 / 6) + (1.0 / 8) + (2.1 / 14)
+ (3.1 / 18)).

The actual execution time of each periodic task instance was generated by a normal
distribution function in the range of [BCET, WCET], where BCET is the best-case

 Energy Efficient Scheduling for Real-Time Systems with Mixed Workload 41

Table 1. Periodic task set descriptin

Task Set (millisecond)
Task Period WCET

T1 6 0.5
T2 8 1.0
T3 14 2.1
T4 18 3.1
Up 0.4

execution time. The mean and the standard deviation were set to (WCET+BCET)/2
and (WCET-BCET)/6, respectively [1]. In the experiments, the voltage scaling
overhead was assumed negligible both in the time delay and power consumption. For
easiness to compare with other approaches, we used the fixed LS and HS in this

experiments. LS is 60% of the maximal speed (must be larger than or equal to the

static optimal speed) and HS is the maximal speed.

In order to experimentally evaluate the performance of the proposed algorithm, SS-
DVS, we implemented the following schemes for performance evaluation: (1)
PD/CBS [3]: Aperiodic tasks are serviced by CBS (constant bandwidth servers). It
was assumed that if the system is idle, it enters into the power-down mode (PD). The
power consumption in the PD mode is assumed to be zero. (2) Mutual Reclaiming
Scheme (MRS) [1]: We set Sa (the nominal speed of aperiodic tasks) equal to Sp (the
nominal speed of periodic tasks). (3) Workload-based Slack Estimation scheme
(WSE) [3]. (4) Bandwidth Sharing Scheme (BSS) [1]: We set Sa equal to Sp.

In the following, the average energy consumption and response time are
normalized to those of PD/CBS, under different conditions.

5.2 Effect of the Workload of Aperiodic Tasks on Energy Consumption and
Response Time

BCET is assumed to be 10% of WCET, and ρ is ranging from 0.05 to 0.25 (λ = 0.05 ~
0.25 and μ = 1.0) [3]. As shown in Fig. 2, by different workload of aperiodic tasks,
SS-DVS is compared with others approaches under varied server utilization. Fig. 2(a)
shows that SS-DVS has lower normalized energy consumption than that of the other
three existing algorithms, and it also has comparable normalized response time with
MRS and WSE, as shown in Fig. 2(b). Although BSS has less energy consumption
than SS-DVS when the server utilization is close to the workload of aperiodic tasks,
BSS has the highest response time. The normalized energy * response time [1] is a
performance metric that combines the two important dimensions, energy consumption
and response time, of the mixed workload real-time systems. As Fig. 2 (c) shown, SS-
DVS has better performance than the three other approaches in terms of normalized
energy * response time.

42 J.–M. Chen, K. Wang, and M.–H. Lin

Fig. 2(a). Normalized energy consumption

Fig. 2(b). Normalized response time

Fig. 2(c). Normalized energy * response time

 Energy Efficient Scheduling for Real-Time Systems with Mixed Workload 43

-0.1

0.1

0.3

0.5

0.7

0.9

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

BCET/WCET

N
o
rm
a
li
z
e
d
 E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n

MRS WSE SS-DVS

Fig. 3. The normalized energy consumption base on same response time with different
BCET/WCET

5.3 Effect of BCET/WCET Ratio of Periodic Tasks on Energy Consumption

The workload of aperiodic tasks was set to 0.1 (λ = 0.1 and μ = 1.0), and the
BCET/WCET ratio was from 0.1 to 1.0 with an increment of 0.1 0. Fig. 3 shows the
normalized energy consumption based on the same response time of all algorithms
with different BCET/WCET ratios. We have the following observations:

 The normalized energy consumption of SS-DVS increases as BCET/WCET
increases. This is because aperiodic tasks are served by the slack time from
periodic tasks. The less slack time from periodic tasks may cause the
periodic and aperiodic tasks to run at a higher speed.

 SS-DVS reduces the energy consumption by an average of 21% and 17%
compared with the MRS and WSE algorithms, respectively.

6 Conclusion

In this paper, we have presented an on-line dynamic voltage scaling (DVS) algorithm,
called SS-DVS, for mixed workload real-time systems. SS-DVS not only addresses
the energy consumption for mixed workload real-time systems, but also considers the
response time of aperiodic tasks. SS-DVS integrates the slack time stealing concept to
service aperiodic tasks and the dynamic reclaiming algorithm (DRA) to set a suitable
operating speed. SS-DVS can use the slack time more efficiently than existing
approaches, because it doesn’t reserve any time for aperiodic workload. Simulation
results have shown that SS-DVS can effectively reduce the average energy
consumption by 48%, 22%, 18% compared with the PD/CBS, MRS, and WSE
algorithms, respectively, under the same response time.

References

1. Aydin, H., Yang, Q.: Energy-responsiveness tradeoffs for real-time systems with mixed
workload. In: Proceedings of 10th IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 74–83 (2004)

2. Aydin, H., Melhem, R., Moose, D., Mejia-Alvarez, P.: Power-aware scheduling for
periodic real-Time tasks. IEEE Transactions on Computers 53(5), 584–600 (2004)

44 J.–M. Chen, K. Wang, and M.–H. Lin

3. Shin, D., Kim, J.: Dynamic voltage scaling of mixed task sets systems in priority-driven
systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25(3), 438–453 (2006)

4. Shin, D., Kim, J.: Dynamic voltage scaling of periodic and aperiodic tasks in priority-
driven systems. In: Proceedings of Asia and South Pacific Design Automation Conference,
pp. 653–658 (2004)

5. Lehoczky, J.P., Ramos-Thuel, S.: An optimal algorithm for scheduling soft-aperiodic tasks
in fixed priority preemptive systems. In: Proceedings of the IEEE Real-Time Systems
Symposium, pp. 110–123 (December 1992)

6. Doh, Y., Kim, D., Lee, Y.-H., Krishna, C.M.: Constrained energy allocation for mixed
hard and soft real-time tasks. In: Proceedings of 9th International Conference on Real-
Time and Embedded Computing Systems and Applications, pp. 533–550 (2003)

7. Rusu, C., Ruibin, X., Melhem, R., Mosse, D.: Energy-efficient policies for request-driven
soft real-time systems. In: Proceedings of Euromicro Conference on Real-Time Systems,
pp.175–183 (July 2004)

8. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system level
dynamic power management. IEEE Transactions on Very Large Scale Integration
Systems 8(3), 299–316 (2000)

9. Kim, W., Shin, D., Yun, H.S., Min, S.L., Kim, J.: Performance comparison of dynamic
voltage scaling algorithms for hard real-time systems. In: Proceedings of the IEEE Real-
Time and Embedded Technology and Application Symposium, pp. 219–228 (September
2002)

10. Moyer, B.: Low-power design for embedded processors. Proceedings of IEEE 89(11),
1576–1587 (2001)

11. Intel XScale® Technology, Intel. PXA270 processor electrical, mechanical, and thermal
specification, http://www.intel.com/design/intelxscale/

12. Intel® Xeon® Processor, http://www.intel.com/products/processor/xeon/
13. Trasmeta Corporation, TN5400 processor specification, http://www.transmeta.com/crusoe/
14. Mobile AMD AthlonTM 64 processor, http://www.amd.com/us-en/Processors/ProductInfor-

mation/0,,30_118_10220_10221,00.html
15. Carpenter, G.: Low power SOC for IBM’s PowerPC information appliance platform,

http://www.research.ibm.com/arl
16. Shin, Y., Choi, K.: Power conscious fixed priority scheduling for hard real-time systems.

In: Proceedings of the Design Automation Conference, pp. 134–139 (1999)
17. Kim, W., Kim, J., Min, S.L.: Preemption-aware dynamic voltage scaling in hard real-time

systems. In: Proceedings International Symposium Low Power Electronics and Design, pp.
393–398 (2004)

18. Spuri, M., Buttazzo, G.: Scheduling aperiodic tasks in dynamic priority systems. Journal of
Real-Time Systems 10(2), 179–210 (1996)

19. Abeni, L., Buttazzo, G.: Integrating multimedia applications in hard real-time systems. In:
Proceedings of the IEEE Real-Time Systems Symposium, pp. 4–13 (1998)

20. Strosnider, J.K., Lehoczky, J.P., Sha, L.: The deferrable server algorithm for enhanced
aperiodic responsiveness in hard real-time environments. IEEE Transactions on
Computers 44(1), 73–91 (1995)

21. Sprunt, B., Sha, L., Lehoczky, J.P.: Aperiodic task scheduling for hard real-time systems.
Journal of Real-Time Systems 1(1), 27–60 (1989)

22. Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low power embedded
operating systems. In: Proceedings of the ACM Symposium on Operating Systems
Principles, pp. 89–102 (2001)

Function-Level Multitasking Interface Design in an
Embedded Operating System with Reconfigurable

Hardware

I-Hsuan Huang, Chih-Chun Wang, Shih-Min Chu, and Cheng-Zen Yang

Department of Computer Science and Engineering
Yuan Ze University, Taiwan, R.O.C.

{ihhuang,ken,csm,czyang}@syslab.cse.yzu.edu.tw

Abstract. Reconfigurable architecture provides a high performance computing
paradigm. We can implement the compute-intensive functions into reconfigurable
devices to optimize the application performance. In current reconfigurable hard-
ware designs, the function-level reconfigurable hardware has high reusability and
low maintenance cost. However, the sharing mechanism and the function invo-
cation interface are still unknown. In this paper, we propose a function-level
multitasking interface design to support reconfigurable component sharing in a
multitasking embedded operating system. The reconfigurable hardware functions
are managed and scheduled by the operating system. Applications can use any
needed hardware function via invocation APIs. To study the performance impacts,
we implemented a prototype on Altera SOPC development board. We modified
μC/OS-II RTOS and evaluated the prototype with prime number search programs
and loop programs. The experimental results show the management overhead is
acceptable.

Keywords: Reconfigurable computing, multitasking, hardware function, FPGA-
based computer, μC/OS.

1 Introduction

Reconfigurable computing provides a high performance computing paradigm [3,4,9].
In the current development, a general reconfigurable computer comprises one or sev-
eral traditional microprocessors, and reconfigurable hardware devices. With hardware/
software co-design, the reconfigurable computer may execute the compute-intensive
tasks on the specific programmable devices. As the reconfigurable hardware can accel-
erate the task execution, system performance can be highly improved (e.g., [1,4,5]).

Adopting reconfigurable hardware has two most prominent benefits. First, overall
system productivity can be highly promoted because traditional software-coded func-
tions are accelerated with the reconfigurable computing hardware. Tasks can be thus
parallelized with multiple computing engines. Second, the acceleration engine can be
flexibly customized due to the reconfigurability. Therefore, the reconfigurable computer
can adapt to different computation requirements with high performance.

From the aspect of accelerating granularity, the reconfigurable computing engines
can be classified into three categories. The category of the finest accelerating granularity

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 45–54, 2007.
c© IFIP International Federation for Information Processing 2007

46 I.-H. Huang et al.

consists of instruction-level processing engines, such as the 2D-VLIW approach [7].
The reconfigurable device operates as a co-processor to execute the task instruction-
by-instruction. The instruction-level processing engine approach thus benefits system
performance with the expanded instruction set. This approach, however, may incur huge
amount of data synchronization overhead between the reconfigurable devices and the
general-purpose processors.

The acceleration granularity employed in the second category focuses on the task
level [2,11]. In this task-level acceleration approach, tasks can be either software-coded
or implemented as hardware units. Therefore, a software task unit can even have its own
correspondent reconfigurable hardware version. While task execution is initiated, the
system dynamically decides whether a hardware unit or a software unit is invoked. Since
the granularity is at task level, the synchronization overhead between programmable de-
vices and general-purpose processors is highly reduced. Nevertheless, the reusability of
hardware task units is very low due to the functional specificity of each unit. Besides,
the hardware space efficiency is low because the programmable device needs to main-
tain all hardware task units in its limited space. The management of hardware task units
incurs extra overhead.

The function-level acceleration schemes fall into the third category [6,10]. The
function-level processing engine maintains a consistent hardware interface as the pro-
gramming interface of software functions. Application developer can follow the pro-
gramming conventions to use the hardware functions. Due to the high modularity at the
function level, hardware function units favor high reusability and low maintenance cost.
Although the function-level acceleration approach can fully exploit the high-performance
and flexibility of reconfigurable computing architecture, two main issues need to be fur-
ther discussed: the sharing mechanism of function units and the multitasking interface
design. To the best of our survey, previous studies on function-level processing engines
mainly focus on performance optimization of specific functions, and rarely discuss the
sharing and multitasking issues [6,10]. Current embedded systems, however, are mostly
multitasking systems in which multiple tasks cooperate. To further improve system per-
formance with consideration of the limited space of FPGA, a multitasking interface de-
sign providing hardware unit sharing is very crucial.

To support reconfigurable component sharing in a multitasking environment, the en-
hancements can be practiced in three possible layers: applications, operating system
kernel, or reconfigurable hardware. For the following two reasons, we argue that OS
kernel support is more superior to other two enhancements. First, if applications take
the responsibility to maintain hardware function multitasking and sharing, they need to
manage the control registers of hardware functions and maintain function invocations
from other applications. Consequently, a task execution may be interfered with other
task executions. Application design becomes more complicated and error-prone. Sec-
ond, if the multitasking mechanism is implemented in reconfigurable hardware, it will
occupy a large amount hardware space due to many bookkeeping data structures. Since
the space resource is very precious in reconfigurable hardware, this approach incurs
high cost/performance ratio in reconfigurable hardware utilization. Implementation of
the multitasking mechanism in the OS layer can avoid both the error-prone development
problem and the low hardware utilization problem. Although the OS layer enhancement

Function-Level Multitasking Interface Design in an Embedded Operating System 47

cannot be benefitted from hardware acceleration, its overhead of software-coded execu-
tion is comparatively small in the whole system. Accordingly, we propose a function-
level multitasking interface design implemented in the OS layer to take advantage of
high performance of reconfigurable hardware.

This paper presents the multitasking interface design in an embedded operating sys-
tem with reconfigurable hardware. The proposed approach has three main design fea-
tures. First, multiple tasks can coherently share the reconfigurable accelerator hardware
with the OS support of the multitasking mechanism. Second, the invocation interface
of the hardware units is consistent with the software library to ease application devel-
opment. Third, if there are numerous tasks waiting for the same shared reconfigurable
hardware, OS can dynamically direct the function invocation to the software-coded li-
brary. With these features, the system keeps the flexibility to process the application
function calls with high performance.

The design of multitasking support for reconfigurable hardware is not straightfor-
ward because hardware unit sharing is very different with software library sharing. Two
main issues need to be considered: parameter passing flow and data consistency. To
maintain data consistency, a management module in OS is designed to deal with mul-
tiple invocations, and the OS has a specific job queue to schedule these invocations. In
addition, each hardware function unit has its own invocation API in OS to pass param-
eters. Programmers can replace the compute-intensive function calls in the applications
with the corresponding hardware function invocations. When the hardware function
unit completes the job, the results are returned via an interrupt service routine. These
two issues complicate the design of the multitasking interface.

We have implemented the proposed multitasking interface in an embedded OS
μC/OS-II [12] to study the performance impacts. The prototype is based on an Al-
tera SOPC (system-on-programmable-chip) development board [13]. Several hardware
functions have been implemented in FPGA to verify the functionality of the multitask-
ing interface. We also conducted preliminary experiments to evaluate the prototype.
Although the current benchmark set is primitive, the experimental results show that
the management overhead is acceptable and the application performance can be highly
improved.

The rest of the paper is organized as follows. Section 2 reviews previous reconfig-
urable computer studies of different acceleration granularity. Section 3 elaborates the
proposed function-level multitasking hardware interface. Section 4 presents the Altera
SOPC prototype implementation, and the evaluation results in the experiments. Sec-
tion 5 concludes the paper.

2 Related Work

The hardware accelerators on FPGA chips are also known as processing engines. From
the aspect of accelerating granularity, the processing engines can be classified into three
categories, the instruction-level, the task-level, and the function-level. The instruction-
level processing engines are usually implemented as co-processors. For example, San-
tos, Azevedo, and Araujo presented an instruction-level reconfigurable architecture
called the 2D-VLIW [7]. In the 2D-VLIW project, the processing engines are

48 I.-H. Huang et al.

controlled by 2D-VLIW instructions which are composed of multiple single operations.
The processing engine needs one 2D-VLIW instruction for each execution cycle. Since
processing engines are commanded according to 2D-VLIW instructions, the application
developer needs to understand the details of the processing engine and to write the 2D-
VLIW instructions in the application. Although the processing engine in the 2D-VLIW
can be beneficial to applications, the reconfigurable computer needs to synchronize the
processing engines and the general purpose processor frequently.

The task-level acceleration approach presents the second category. For example, An-
drews et al. proposed the hthreads task-level reconfigurable architecture [2]. The hthreads
is a multithreaded RTOS, which supports the software and the hardware threads it its
thread model. Each hardware thread obtains an exclusive processing engine kept in the
FPGA chip. The hthreads scheduler is responsible for managing the software threads and
the hardware threads. Since data of hardware threads are private, the data synchronization
can be largely reduced. However, the hardware thread maintenance are cumbersome. Be-
sides, since the hardware thread is customized, the hardware thread can hardly be reused.
Accordingly, the utilization of hardware threads is seriously degraded. Another exam-
ple is the SHUM-μC/OS project proposed by Zhou et al. [11]. Zhou et al. modified the
μC/OS-II RTOS and defined their hardware thread model. They implemented a hardware
thread control block in the μC/OS-II to keep the data structures of hardware threads. The
hardware threads in SHUM-μC/OS are also very difficult to be reused by other applica-
tions.

The function-level processing engines are implemented according to the basic al-
gorithmic function blocks of applications. The function-level reconfigurable architec-
ture provides a reusable, elegant, and high maintainability programming paradigm. For
example, Rullmann, Siegel, and Merker proposed an application partitioner [6]. The ap-
plication partitioner extracts compute-intensive algorithmic blocks. Then the compute-
intensive algorithmic blocks are implemented as FPGA processing engines. Thus, the
system performance can be improved. However, the processing engines are managed by
specific applications and cannot be directly used by other applications. Another exam-
ple is the ReConfigME function-level reconfigurable architecture proposed by Wigley,
Kearney, and Jasiunas [10]. Since the processing engine still managed by specific ap-
plications, they are very difficult to be reused by other applications. Shibamura et al.
also proposed a function-level reconfigurable platform called EXPRESS-1 in 2004 [8].
The major difference between EXPRESS-1 and our system is that EXPRESS-1 fo-
cused on the design of the reconfiguration procedure and our system focused on the
hardware/software interface design.

3 Functional-Level Multitasking Interface Design

The idea of the function-level multitasking interface is to support reconfigurable com-
ponent sharing in a multitasking reconfigurable computer. Since the processing engines
of previous function-level reconfigurable architecture are managed by respective appli-
cations, the hardware functions are difficult to be reused by other applications. With the
OS supported function-level multitasking interfaces, all applications can request to use
public hardware functions.

Function-Level Multitasking Interface Design in an Embedded Operating System 49

Hardware Function

OS_HW_Func(arg 1,)

Application Software-coded Function

Operating System

Function Linker

Hardware Function

Scheduler

Hardware Function

Job Queue Manager

Hardware Function

ISR

SW_Func(arg 1,)

{

}

return var1;

1. Start the application

2. Call hardware

 function API

3. Link hardware

 function

4b. Queue application request4a. Pass args into hardware

 function and activate the

 hardware function

5. Generate IRQ

6. Return

 results

Fig. 1. Control flow of the hardware function invocation

Hardware Function

OS_HW_Func(arg 1,)

Application Software-coded Function

Operating System

Function Linker

Hardware Function

Scheduler

Hardware Function

Job Queue Manager

Hardware Function

ISR

SW_Func(arg 1,)

{

}

return var1;

1. Start the application

2. Call hardware

 function API
3. Link software

 function

4. Return results

Fig. 2. Control flow when the hardware function job queue is full

Our proposed function-level multitasking architecture modifies four components in
a traditional reconfigurable computer: (1) Operating system: We move the management
responsibility of hardware functions to the operating systems. We develop a multitask-
ing hardware function manager in the OS. The manager includes a function linker and a

50 I.-H. Huang et al.

Fig. 3. Hardware function structure

scheduler. Besides, we develop a job queue for each hardware function. We provide
a multitasking invocation API for each hardware function. (2) Task: The compute-
intensive functions can be replaced with the multitasking invocation API. The interface
of function parameters and the return results is consistent with the software library to
ease application development. (3) Processing engine: In the beginning, each hardware
function has to register in the OS. The OS creates the job queue, the function-level mul-
titasking interface, and the interrupt service routine (ISR) for each hardware function.
When the hardware function is executing, the hardware function selects new job from
the job queue in the OS. When the hardware function finishes a job, it issues an IRQ
to the general purpose processor. (4) Software-coded function: Our architecture keeps
the software-coded functions. OS can dynamically direct the function invocation to the
software-coded library.

Figure 1 shows the control flow of the proposed function-level multitasking architec-
ture. Suppose the hardware function has already been registered. Since the SW Func()
is a compute-intensive function, we implement the hardware version function in FPGA
chip. At the same time, we replace the original function call with the hardware function
invocation interface called OS HW Func(). The control flow is as follows. First, the OS
executes the application. Meanwhile, the application is executed by the general purpose
processor. Second, the application invokes the hardware function. After the application
calls the interface, the OS forces the application enter the waiting queue. Third, After
the application passes the parameters to the OS, if the job queue still has free spaces,
the function linker forwards the parameters to the hardware function scheduler. Fourth,
the hardware function scheduler checks the status of the requested hardware function.
If the hardware function is available to be executed, the hardware function scheduler
passes the parameters into the hardware function. If the hardware function is busy, the
hardware function scheduler saves the hardware function request into the job queue.
Fifth, after the hardware function completes one job, the hardware function issues an
IRQ. The general purpose processor then jumps to the hardware function ISR to grab
computation results of the hardware function. Besides, the ISR configures the hardware

Function-Level Multitasking Interface Design in an Embedded Operating System 51

function to select next job from the job queue. Sixth, the ISR passes the results to the
application. The OS then forces the application enter the ready queue.

Figure 2 presents the control flow when OS dynamically direct the function invoca-
tion to the software-coded library. The difference is the third step. When the OS receives
the hardware function request, OS jumps to the function pointer of the software-coded
function. The parameters are also passed to the software-coded function. Fourth, af-
ter the software-coded function finishes the computation, it returns the results to the
application. In this case, all operations are executed by the general purpose processor.

Figure 3 shows the hardware function structure used in our architecture. The hard-
ware function is implemented in hardware description language like VHDL or Verilog.
In the figure, we denote the hardware function as the processing engine. Each process-
ing engine contains at least four registers, the control register, the status register, the
argument register, and the result register. The size of each register is varied according
to the application demands. The OS enables and disables each processing engine via the
control register. Since the OS has to manage the processing engine, it monitor the con-
dition of processing engine through the status register. The argument register records
the parameters of function request. The result register keeps the computation results of
the processing engine. Since the parameters and the results may be a pointer variable
or a data structure, the processing engine can directly connect to the memory bus. If
the parameter is a pointer variable, the processing engine directly access the memory
address to capture the variable value. If the processing engine has to access the global
variable, it also directly access the memory address of the global variable. When the
processing engine completes one job, it issues an interrupt to the general purpose pro-
cessor. The general purpose processor then executes the ISR to retrieve the computation
results. Sometimes, the processing engine needs to call an external function. To solve
this issue, the processing engine keeps a private memory space. The memory space
contains the function call instructions. When the processing engine wants to call the
external function, it first issues an IRQ. The general purpose processor then jump to the
ISR. Meanwhile, since the status register shows that the processing engine wants to call
an external function, the ISR then creates a new task and jumps to the address of the
private memory of the processing engine. After the called function returns the result,
rest instructions in the private memory resumes the execution of the processing engine.

4 Prototype Implementation and Experimental Results

We implemented a prototype on the Altera SOPC (system-on-programmable-chip) de-
velopment board [13] to study the performance impacts. The Altera SOPC development
board adopts an FPGA chip to be its core. We programmed the Altera Nios soft IP core
processor into the FPGA chip. We choose the μC/OS-II [12] to be our operating system.

To study the performance, we implemented the square root hardware function and
the loop hardware function. Both the two functions are compute-intensive. The hard-
ware engines are implemented in VHDL and are configured as memory-mapped I/O
devices. Each hardware engine needs to be registered in the OS. It also needs to register
its interrupt service routine (ISR). For each hardware function, the operating system
provides a multitasking interface. Figure 4 shows the implementation of the hardware

52 I.-H. Huang et al.

if((in_use->np_piodata & 0x2)){

ptcb = OSTCBPrioTbl[OSPrioCur];
OSTCBCur->OSTCBStat |= OS_STAT_HDF;
OSTCBCur->OSTCBPendTO = FALSE;
hdsqrt_wait++;
OS_EventTaskWait(hdsqrt);
OS_Sched();

}
in_use->np_piodata |= 0x2;

hdsqrt_owner = OSPrioCur; pointer = &hdsqrt_out->np_piodata;
*pointer = *parameter; pointer2 = &hdsqrt_in->np_piodata;

y = OSTCBCur->OSTCBY;
OSRdyTbl[y] &= ~OSTCBCur->OSTCBBitX;
if (OSRdyTbl[y] == 0) {

OSRdyGrp &= ~OSTCBCur->OSTCBBitY;
}

launch->np_piodata |= 0x2;

OS_Sched();

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Fig. 4. Implementation of the hardware function scheduler

function scheduler. Taking the square root hardware function as an example, line 1–9
presents the case when the hardware function is busy. We did not really implement a
new queue data structure in our prototype, on the contrasty, we adopted the ready ta-
ble structure in the μC/OS-II kernel. We used the table structure to record applications
which is requesting the hardware function. Line 1 checks if the hardware function is
busy. Line 3–6 increases the length of waiting queue of the square root hardware func-
tion. Line 7–8 sets the application into waiting state and forces the OS execute next
application. Line 10–23 presents the parameter passing procedure if the square root
hardware engine is available. Line 10 sets the status register of the hardware function.
Line 12–13 passes the parameters. Line 15–19 maintains the application state. Line 21
activates the hardware function. Finally, line 23 forces the OS execute next application.

To evaluate our prototype, we run two experiments. In the first experiment, we de-
veloped three tasks to search prime numbers. Each task uses the square root hardware
function to confirm the prime number. Hence, the square root hardware function is
shared by three tasks at the same time. Figure 5 shows the result. The x-axis presents
the amount of searched integers. The y-axis presents the processing time. The search
workload are shared by three tasks fairly. For example, if we want to find out all prime
numbers between 1 to 30000, the task 1 searches 1 to 10000, the task 2 searches 10001
to 20000, and the task 3 searches 20001 to 30000. We compared the processing time
of using square root hardware function with the processing time of pure software con-
dition. The processing time gains an obvious degradation in 15%. Accordingly, the
management overhead of hardware function is little and acceptable.

In the second experiment, we developed a loop program to study the operation over-
head of hardware functions. The loop program simply runs “for loop” instructions.
Figure 6 shows the result. The x-axis presents the variable n. In each test case, we ran
n3 times loop instructions. The y-axis presents the processing time. The processing

Function-Level Multitasking Interface Design in an Embedded Operating System 53

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 20 30 40 50 60 70 80 90 100

P
ro

ce
ss

in
g

tim
e

(s
ec

)

Integers to be searched (thousands)

accelerated with hardware function
pure software

Fig. 5. Performance of the prime number search program

 0

 5000

 10000

 15000

 20000

 25000

 50 100 150 200 250 300

P
ro

ce
ss

in
g

tim
e

(m
se

c)

n

accelerated with hardware function
pure software

Fig. 6. Performance of the loop program

time of hardware accelerated configuration is 3–4ms. Hence, the operation overhead of
hardware functions is very little and can be ignored.

5 Conclusions

Reconfigurable computing grabs the public attention recently because it provides a high
performance computing paradigm. In this paper, we propose a function-level multitask-
ing interface design in an embedded OS to exploit the high-performance benefit of re-
configurable hardware. The proposed mechanism has the following three distinguishing
features: (1) multiple tasks can coherently share the reconfigurable accelerator hardware

54 I.-H. Huang et al.

without data inconsistency; (2) the invocation interface of the hardware units is consis-
tent with the API of the software library; (3) OS can dynamically decide whether it
resolves the invocation with the hardware unit or with the software library. A prototype
implemented with an Altera SOPC development board and μC/OS-II shows its promi-
nent performance improvement in our preliminary experiments. Although the bench-
mark is still primitive, the positive experimental results convince us of the feasibility in
the future development.

In our future plan, the reconfigurable mechanism will be integrated in our proto-
type. Besides, a more comprehensive benchmark will be implemented to get complete
performance characteristics. We also plan to port the proposed multitasking scheme to
other famous embedded operating systems, such as uClinux. Improvements on other OS
components then will be under investigation to fully take the high-performance benefit
of reconfigurable hardware.

References

1. Alam, S.R., et al.: Using FPGA Devices to Accelerate Biomolecular Simulations. IEEE Com-
puter 40(3), 66–73 (2007)

2. Andrews, D., et al.: hthreads: A Hardware/Software Co-Designed Multithreaded RTOS Ker-
nel. In: Proc. IEEE ETFA 2005, pp. 331–338 (September 2005)

3. Buell, D., et al.: Guest Editors’ Introduction: High-Performance Reconfigurable Computing.
IEEE Computer 40(3), 23–27 (2007)

4. Garcia, P., et al.: An Overview of Reconfigurable Hardware in Embedded Systems. Eurasip
Journal of Embedded Systems 2006, 1–19 (2006)

5. Prasanna, V.K., Morris, G.R.: Sparse Matrix Computations on Reconfigurable Hardware.
IEEE Computer 40(3), 58–64 (2007)

6. Rullmann, M., Siegel, S., Merker, R.: Optimization of Reconfiguration Overhead by Algo-
rithmic Transformations and Hardware Matching. In: Proc. IEEE IPDPS 2005 (April 2005)

7. Santos, R., Azevedo, R., Araujo, G.: Exploiting Dynamic Reconfiguration Techniques: The
2D-VLIW Approach. In: Proc. IEEE IPDPS 2006 (April 2006)

8. Shibamura, H., et al.: EXPRESS-1: A Dynamically Reconfigurable Platform using Embed-
ded Processor FPGA. In: Proc. IEEE ICFPT 2004 (December 2004)

9. Todman, T.J., et al.: Reconfigurable Computing: Architectures and Design Methods. IEE
Proceedings: Computers and Digital Techniques 152(2), 193–207 (2005)

10. Wigley, G., Kearney, D., Jasiunas, M.: ReConfigME: A Detailed Implementation of an Op-
erating System for Reconfigurable Computing. In: Proc. IEEE IPDPS 2006 (April 2006)

11. Zhou, B., et al.: Reduce SW/HW Migration Efforts by a RTOS in Multi-FPGA Systems. In:
Shen, W.-m., Chao, K.-M., Lin, Z., Barthès, J.-P.A., James, A. (eds.) CSCWD 2005. LNCS,
vol. 3865, pp. 636–645. Springer, Heidelberg (2006)

12. Labrosse, J.: MicroC/OS-II, CMP Books (June 2002)
13. Altera corp.: SOPC Builder.

http://www.altera.com/products/software/products/sopc/

http://www.altera.com/products/software/products/sopc/

Task Scheduling for Context Minimization in
Dynamically Reconfigurable Platforms

Nei-Chiung Perng and Shih-Hao Hung

Department of Computer Science and Information Engineering
National Taiwan Univeristy

106 Taipei, Taiwan
{d90011,hungsh}@csie.ntu.edu.tw

Abstract. Dynamically reconfigurable hardware provides useful means to re-
duce the time-to-prototype and even the time-to-market in product designs. It also
offers a good alternative in reconfiguring hardware logics to optimize the system
performance. This paper targets an essential issue in reconfigurable computing,
i.e., the minimization of configuration contexts. We explore different constraints
on the CONTEXT MINIMIZATION problem. When the resulting subproblems
are polynomial-time solvable, optimal algorithms are presented.

1 Introduction

Dynamically reconfigurable hardware (DRH) allows partial reconfigurations to provide
different functionalities over a limited number of hardware logics, compared to the pop-
ular Application-Specific Integrated Circuit (ASIC) approach. It was recently raised by
many researchers that the DRH technology is very suitable to deal with the dynamism
of multimedia applications [1,2]. In such applications, instructions might be partitioned
into coarse-grained tasks with a partial order and loaded onto dynamically reconfig-
urable devices for executions! Reconfigurability has recently become an important is-
sue in the research community of embedded systems especially for FPGAs [3,4,5,6]. An
FPGA configuration context, also referred to as a context, is the basic element to load a
hardware description of a task. A multi-context system is a system with more than one
FPGA chips or an FPGA chip with its configurable logic blocks being partitioned into
several (equal-sized) areas. Although multi-context systems allow simultaneous task
executions on different contexts, many implementations only allow the loading of one
task at a time in reality [7].

One way to avoid the waiting time of task loadings is to pre-load proper hardware
descriptions before the run time. In particular, Hauck [8] presented the concept of con-
figuration prefetching in which the loading duration was overlapped with computations
to reduce the overheads. Harkin et al. [9] evaluated nine approaches of hardware/soft-
ware partitioning to provide insights in the implementation methodology for reconfig-
uration hardware. A genetic algorithm (GA) was also presented by the same authors
for run-time reconfiguration [10]. Yuh et al. [11] developed a tree-based data structure,
called T-tree, for a temporal floorplanning to schedule all the reconfigurable tasks with a
simulated-annealing-based algorithm. Ghiasi et al. [12] proposed an efficient optimal al-
gorithm to minimize the run-time reconfiguration delay in the executions of applications

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 55–63, 2007.
c© IFIP International Federation for Information Processing 2007

56 N.-C. Perng and S.-H. Hung

on a dynamically adaptable system under assumptions on several restricted implemen-
tation constraints. Noguera and Badia [2] introduced a two-version dynamic scheduling
algorithm for reconfigurable architectures with or without a prefetching unit. Resano et
al. [13] proposed a way to revise a given task schedule by considering reconfiguration
to minimize the latency overheads.

This paper targets one essential implementation issue in the reconfigurable comput-
ing: the minimization of the required number of FPGA configuration contexts, where
the deadline and precedence constraints of an application are given. We consider the op-
timization problem without a given schedule (that comes with fixed execution intervals).
The NP-completeness of the CONTEXT MINIMIZATION problem is first proved. Sev-
eral additional constraints on the loading time and the execution time of a task and the
precedence constraints of tasks (and their resulting subproblems) are explored. Optimal
algorithms are presented for subproblems that are polynomial-time solvable. The ob-
jective is provide insights on how and why difficult the CONTEXT MINIMIZATION
problem is.

The rest of this paper is organized as follows: Section 2 defines the CONTEXT MIN-
IMIZATION problem. Section 3 explores several subproblems under several additional
constraints. Optimal algorithms for subproblems that are solvable in polynomial time
are presented. Section 4 is the conclusion.

2 Problem Definition

In this paper, we are interested in the derivation of a reconfiguration plan � with the
objective to minimize the number of required FPGA configuration contexts in a multi-
context FPGA platform. The reconfiguration plan should be derived based on a given
task set T , a partial order of task precedences ≺, and a common deadline D. Each
task τi in a task set T is denoted as τi = (ei, li), where ei is the required execution
time, and li is the loading (configuration) duration to load task τi onto a context. A
precedence constraint τi ≺ τj in the partial order ≺ requires that task τj can only
start its execution after the completion of task τi. A precedence constraint might exist
because the latter task needs to read from the output of the former task. We are interested
in the minimization of the maximum time span of the task execution in T . The problem
is modeled as a performance requirement, i.e., the common deadline D. Any solution
to the targeted problem is a reconfiguration plan �, in which we have a loading time
�T(τi), an execution starting time �S(τi), and a configuration context ID �C(τi) for
each task τi. A solution should also satisfy the given partial order of task executions
and the common deadline. The problem is formally defined as follows.

Problem 1 (CONTEXT MINIMIZATION). Given a set T of n tasks (τi = (ei, li) ∈
T, 1 ≤ i ≤ n) with a partial order ≺ and a common deadline D, the problem is to find
a reconfiguration plan � with the minimum number of required FPGA configuration
contexts without violating the partial order of task executions and the common deadline.

A reconfiguration plan is feasible if and only if the following three conditions are satis-
fied: The first condition requires each FPGA context being loaded in time. The second
condition requires that any two tasks should not use the same context in any overlapped

Task Scheduling for Context Minimization in Dynamically Reconfigurable Platforms 57

time interval. The third condition requires the loading of contexts should be done one
by one. The three conditions are defined formally as follows:

Condition 1 (In-Time Loading). ∀τi, �T(τi) + li ≤ �S(τi) and �S(τi) + ei ≤ D.

Condition 2 (Non-Overlapping Configuration Contexts). ∀ (τi, τj) pair, �C(τi) �=
�C(τj) if any two time intervals (�T(τi), �S(τi) + ei] and (�T(τj), �S(τj) + ej] have
a non-null intersection.

Condition 3 (Mutual Exclusion on Loading). ∀ (τi, τj) pair, �T(τi) + li ≤ �T(τj)
or �T(τj) + lj ≤ �T(τi).

A reconfiguration plan is optimal if it is feasible, and the number of its required con-
texts, i.e., the largest ID of the assigned contexts, is equal to the minimum number
of required contexts of all feasible reconfiguration plans. We shall show later that this
optimization problem is NP-complete.

3 Problem Properties

In this section, we prove the NP-completeness of the CONTEXT MINIMIZATION
problem and later explore subproblems in which polynomial-time solutions exist. For
the sake of clarity, we transform this optimization problem into an equivalent decision
problem by providing a bound on the number of FPGA configuration contexts. The
decision version of the CONTEXT MINIMIZATION problem is to find a solution with
the number of required contexts no larger than a given number M .

3.1 NP-Complete Subproblems

We shall show the NP-completeness of two subprograms of the CONTEXT MIN-
IMIZATION problem under two constraints: (1) The execution time of each task is
identical, i.e., ∀i, ei = E. (2) The loading duration of each task is negligible, i.e.,
∀i, li = 0. Before we show the NP-completeness of the two subproblems, we shall
first define the PRECEDENCE CONSTRAINED SCHEDULING (SS9 in [14]), that is
NP-complete:

Given a set T of tasks, the execution time ei of every task τi ∈ T is 1, a given number
M ∈ Z+ of processors, a partial order ≺ of tasks ∈ T , and a deadline D ∈ Z+, the
problem is to derive a schedule σ over the M processors so that the deadline and the
partial order of task executions are satisfied. In other words, ∀τi, τj ∈ T , τi ≺ τj

implies σ(τj) ≥ σ(τi) + ei, where σ(τi) denotes the starting time of task τi.

Theorem 1. The CONTEXT MINIMIZATION problem under the constraint ∀i, ei = E
and li = 0 is NP-complete, where ei and li denote the execution time and the loading
duration of task τi, respectively.

Proof. This subproblem is indeed the PRECEDENCE CONSTRAINED SCHEDUL-
ING problem. �

58 N.-C. Perng and S.-H. Hung

Theorem 2. The CONTEXT MINIMIZATION problem under the constraint ∀i, li = 0
is NP-complete, where li denotes the loading duration of task τi.

Proof. The correctness of this theorem follows directly from the fact that the problem
stated in Theorem 1 is a special case of this problem. �

Theorem 3. The CONTEXT MINIMIZATION problem is NP-complete.

Proof. The correctness of this theorem follows directly from the fact that the problem
stated in Theorem 2 is a special case of this problem. �

3.2 Subproblems in P

This section is meant to explore three subproblems of the CONTEXT MINIMIZATION
problem that have polynomial-time solutions. It is to gain the insight on why and how
difficult the problem is.

A Task Set of Independent Tasks. Although the CONTEXT MINIMIZATION prob-
lem is NP-complete, the problem would become tractable under certain constraints.
Suppose that all of the tasks are independent, i.e., ≺= ∅, and ∀i, ei = E and li = L
(i.e., the same execution time and loading duration for every task). The problem has
optimal algorithms with a polynomial time complexity.

Algorithm 1
Input: A task set T (∀τi ∈ T, τi = (E,L)), ≺= ∅, a deadline D, and M contexts
Output: A feasible reconfiguration plan �
1: � = 0.
2: while T is not empty do
3: Remove an arbitrary task τi from T .
4: Locate context Mj with the earliest idle time Ij .
5: �T(τi) = max{Ij , �}.
6: �S(τi) = �T(τi) + L.
7: �C(τi) = j.
8: � = �T(τi) + li.
9: if �S(τi) + E > D then

10: Return failure.
11: end if
12: end while

The subproblem is shown being P-solvable by presenting a polynomial-time algo-
rithm Algorithm 1: The input of the algorithm includes a task set, a common deadline,
and an integer constant M that denotes the number of FPGA configuration contexts.
Because of the mutual exclusion requirements on context loading (Condition 3), the
algorithm maintains the earliest possible time for the next context loading, i.e.,
.

is initialized as 0 initially (Step 1). Each iteration of the loop between Step 2 and Step
12 is to schedule the loading of a task onto a context. The algorithm picks up a ready

Task Scheduling for Context Minimization in Dynamically Reconfigurable Platforms 59

task arbitrarily (Step 3) and load the task onto the context with the earliest available
time (Step 4). The loading time, starting time, and context ID of the task are updated
accordingly (Steps 5-7). The earliest possible time for the next context loading is then
updated (Please see Step 8 and Condition 3). The algorithm reports a failure if any task
misses the deadline (Steps 9-11). The time complexity is O(n × log M).

Theorem 4. Algorithm 1 is optimal in the sense that it always derives a solution if any
feasible solution exists.

Proof. The correctness of this theorem follows directly from the fact that all tasks are
of the same execution time and loading duration and share the common deadline. �

Figure 3.2 shows four optimal reconfiguration plans of four tasks, where the number
M of FPGA configuration contexts ranges from 1 to 4. An interesting packing of tasks
is shown in the figures, and the impacts of the mutual exclusion constraint, i.e., Con-
dition 3, are clearly illustrated. Note that the shaded rectangles denote the loadings of
tasks onto contexts, and white rectangles denote task executions.

Fig. 1. Four reconfiguration plans over four different numbers of contexts

Lemma 1. Algorithm 1 needs no more than MB = max{n, �E
L �+1} contexts to derive

a feasible reconfiguration plan, where n is the number of tasks.

Proof. The correctness of this lemma follows directly from the facts that loading dura-
tions can not be overlapped with each another, and a loading duration can be overlapped
with any execution time as long as the three feasibility conditions are satisfied. �

Lemma 1 provides an upper bound on the maximum number of contexts over that Al-
gorithm 1 could derive a feasible reconfiguration plan. Figure 2 shows reconfiguration
plans for two task sets, i.e., one with E ≤ L and the other with E > L, where different
numbers of FPGA configuration contexts are tried. Note that when n × (L + E) ≤ D,
only one context is needed to derive a feasible reconfiguration plan.

Although we show that the CONTEXT MINIMIZATION problem becomes tractable
when ≺= ∅, and ∀i, ei = E and li = L, one question remains. That is how difficult

60 N.-C. Perng and S.-H. Hung

Fig. 2. Reconfiguration plans of two task sets over different numbers of contexts

the problem is if we relax some of the above constraints! Suppose that we still have
tasks being independent, i.e., ≺= ∅, but every task might have a different execution
time, i.e., ei �= ej for some τi, τj ∈ T . Even if we let ∀i, li = 0, the CONTEXT
MINIMIZATION problem is intractable because the problem is indeed the MINIMUM
MULTIPROCESSOR SCHEDULING problem, which is a well-known NP-complete
problem [14].

A Task Set with a Tree Partial Order. As shown in Theorem 1, the CONTEXT MIN-
IMIZATION problem is NP-complete when ∀i, ei = E and li = 0. However, the
CONTEXT MINIMIZATION problem becomes tractable when all tasks are indepen-
dent, i.e., ≺= ∅. In this section, we shall show that the CONTEXT MINIMIZATION
problem remains tractable when ≺ is of a tree, and ∀i, ei = E and li = 0, regardless of
whether it is an intree or an outtree (Figure 3).

We shall present an optimal algorithm based on the Critical Path (CP) rule [15].
A critical path of a partial order is defined as a path with the maximum number of
tasks in a chain that follow the precedence constraints of the order. Note that when the
completion time of a task on a critical path is delayed, the latest completion time of the
tasks in the task set is delayed. Figure 3 shows an intree and an outtree. The path from
the top-left node to the sink node of the intree in Figure 3 is an example critical path,

Fig. 3. An intree/outtree for some precedence constraints

Task Scheduling for Context Minimization in Dynamically Reconfigurable Platforms 61

and there are two critical paths in the intree. The CP rule provides a way to assign tasks
priorities, where a task in the front of a critical path is assigned a higher priority, as
shown in Figure 3. In fact, the priority assignment of tasks follows a topological order.
Tie-breaking is done in an arbitrary way.

Algorithm 2
Input: A task set T (∀τi ∈ T, τi = (E, 0)), ≺ as a tree, a deadline D, and M contexts
Output: A feasible reconfiguration plan �
1: Assign priorities to tasks according to the CP rule.
2: S = { τi : τi ∈ T does not have any predecessor }.
3: while S is not empty do
4: Remove the task τi with the highest priority from S.
5: Locate context Mj with the earliest idle time Ij .
6: �T(τi) = �S(τi) = Ij .
7: �C(τi) = j.
8: S = S ∪ {τj}, where τi ≺ τj if all of the predecessors of τj have been scheduled.
9: if �S(τi) + E > D then

10: Return failure.
11: end if
12: end while

Algorithm 2 derives a feasible reconfiguration plan whenever possible: Tasks are first
assigned priorities according to the CP rule (Step 1). Initially, S is set as the set of ready
tasks in T (Step 2), where a ready task is a task with all of its preceding tasks in the
partial order complete. Each iteration of the loop between Step 3 and Step 12 is to load
a task onto a proper context. The ready task with the highest priority is loaded onto the
context with the earliest possible idle time. The loading time and the starting time of
the task is set as the earliest possible idle time of the context (Step 6), where ∀i, li = 0.
The context ID of the task is then set (Step 7). After the task is scheduled, any ready
task resulted from the scheduling join the ready task pool (Step 8). If the deadline is
violated, then the algorithm reports a failure (Steps 9 and 10). The time complexity of
Algorithm 2 is O(n2).

Theorem 5. Algorithm 2 is optimal in the sense that it always derives a solution if any
feasible solution exists.

Proof. The optimality of the algorithm is based on the proof of the CP rule in [15]. �

A Task Set with E ≤ L. As shown in the previous section, the CONTEXT MINI-
MIZATION problem becomes more tractable when a partial order is restricted in a tree
fashion, compared to that shown in Theorem 1. Another question is whether we could
trade the partial-order constraint with any other constraint to keep the CONTEXT MIN-
IMIZATION problem being tractable. In this section, we shall show that the CONTEXT
MINIMIZATION problem remains tractable by the constraint ∀i, ei = E, li = L, and
E ≤ L. In such a case, the partial order among tasks could be arbitrary.

62 N.-C. Perng and S.-H. Hung

Fig. 4. Reconfiguration plans of a task set with E ≤ L, where different numbers of contexts are
used

An optimal algorithm for this problem is as the same as Algorithm 1 except two
minor modifications: (1) Step 3: Remove any arbitrary ready task τi ∈ T , and (2) Step
4: Use the context Mj which is idle in the last iteration. The algorithm is referred to as
Algorithm 3. The time complexity of Algorithm 3 is O(n).

Theorem 6. Algorithm 3 is optimal in the sense that it always derives a solution if any
feasible solution exists.

Proof. The optimality of the algorithm is based on the fact that the minimum number
of the required contexts must be 1 or 2, unless there is no feasible solution. If the
summation of loading durations and execution times of all tasks is less than the common
deadline, i.e., n × (L + E) ≤ D, the answer is 1; Otherwise, the answer is 2. �

Figure 4 illustrates the idea of the proposed algorithm and provides further explanation
of the above theorem. As shown in the figure, there are three reconfiguration plans of a
task set derived by Algorithm 3, where the number of contexts ranges from 2 to 4. Be-
cause of the mutual exclusion requirements on context loadings (i.e., Condition 3), only
two contexts are needed to load tasks in turn. The execution time of each task on one
context is contained in the loading duration of another task on the other context, where
these two tasks are scheduled one after another. We shall point out that the CONTEXT
MINIMIZATION problem would become much more intractable when constraints of
Section 3 are relaxed.

4 Conclusion

In this paper, we explore different constraints on the CONTEXT MINIMIZATION
problem, and provide the complexity proofs of NP-complete subproblems and the op-
timal algorithms of subproblems in P . We are currently investigating heuristic-based
greedy algorithms for the CONTEXT MINIMIZATION problem. We will further ex-
plore the problem on the reconfigurable platforms allowing one-dimension allocation.

Task Scheduling for Context Minimization in Dynamically Reconfigurable Platforms 63

References

[1] Kneip, J., Schmale, B., Moller, H.: Applying and implementing the mpeg-4 multimedia
standard. IEEE Micro 19(6), 64–74 (1999)

[2] Noguera, J., Badia, R.M.: Multitasking on reconfigurable architectures: Microarchitec-
ture support and dynamic scheduling. ACM Transactions on Embedded Computing Sys-
tems 3(2), 385–406 (2004)

[3] De Micheli, G., Gupta, R.K.: Hardware/software co-design. Proceedings of the IEEE 85(3),
349–365 (1997)

[4] De Hon, A., Wawrzynek, J.: Reconfigurable computing: What, why, and implicatios for
design automation. In: Proceedings of the 36th ACM/IEEE Conference on Design Automa-
tion, pp. 610–615 (1999)

[5] Hauck, S.: The roles of FPGA’s in reprogrammable systems. Proceedings of IEEE 86(4)
(1998)

[6] Wolf, W.: FPGA-Based System Design. Prentice-Hall, Englewood Cliffs (2004)
[7] Xilinx Inc.: XAPP151 Virtex Series Configuration Architecture User Guide (v1.7) edn.

(2004)
[8] Hauck, S.: Configuration prefetch for single context reconfigurable coprocessors. In:

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (1998)
[9] Harkin, J., McGinnity, T.M., Maguire, L.P.: Partitioning methodology for dynamically

reconfigurable embedded systems. IEE Proceedings on Computers and Digital Tech-
niques 147(6), 391–396 (2000)

[10] Harkin, J., McGinnity, T.M., Maguire, L.P.: Modeling and optimizing run-time reconfigu-
ration using evolutionary computation. ACM Transactions on Embedded Computing Sys-
tems 3(4), 661–685 (2004)

[11] Yuh, P.H., Yang, C.L., Chang, Y.W.: Temporal floorplanning using the T-tree formulation.
In: Proceedings of ACM/IEEE International Conference on Computer-Aided Design (2004)

[12] Ghiasi, S., Nahapetian, A., Sarrafzadeh, M.: An optimal algorithm for minimizing run-time
reconfiguration delay. ACM Transactions on Embedded Computing Systems 3(2), 237–256
(2004)

[13] Resano, J., Mozos, D., Catthoor, F.: A reconfigurable manager for dynamically reconfig-
urable hardware. IEEE Design and Test of Computers 22(5) (2005)

[14] Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Company,
New York (1979)

[15] Pinedo, M.: Scheduling Theory, Algorithms, and Systems, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (2002)

Compiler Support for Dynamic Pipeline Scaling

Kuan-Wei Cheng, Tzong-Yen Lin, and Rong-Guey Chang

Department of Computer Science
National Chung Cheng University

Chia-Yi, Taiwan
{why93,lty93,rgchang}@cs.ccu.edu.tw

Abstract. Low power has played an increasingly important role for embedded
systems. To save power, lowering voltage and frequency is very straightforward
and effective; therefore dynamic voltage scaling (DVS) has become a prevalent
low-power technique. However, DVS makes no effect on power saving when the
voltage reaches a lower bound. Fortunately, a technique called dynamic pipeline
scaling (DPS) can overcome this limitation by switching pipeline modes at low-
voltage level. Approaches proposed in previous work on DPS were based on
hardware support. From viewpoint of compiler, little has been addressed on this
issue. This paper presents a DPS optimization technique at compiler time to re-
duce power dissipation. The useful information of an application is exploited to
devise an analytical model to assess the cost of enabling DPS mechanism. As a
consequence we can determine the switching timing between pipeline modes at
compiler time without causing significant run-time overhead. The experimental
result shows that our approach is effective in reducing energy consumption.

1 Introduction

Since most embedded systems are portable, reducing energy consumption to extend the
lifetime of batteries has become a crucial issue. In recent years, many techniques have
been proposed to address this issue. DVS is the famous one, which has been demon-
strated by much work to be very effective [8, 2, 12]. It adjusts dynamically voltage and
frequency to save power, as indicated in Equation 1.

E ∝ f × C × V 2, (1)

where A ∝ B means A is in direct ratio to B. However, DVS has no effect on energy
saving when the voltage reaches its low bound because it becomes a constant [10].
Fortunately, with reference to Equation 2, energy is in direct ratio not only to the clock
frequency and the square of the voltage, but also to instruction-per-cycle (IPC).

E ∝ f × V 2 × t ∝ f × V 2 × It

f × IPC
∝ V 2

IPC
(2)

Thus, we can reduce energy dissipation at low-voltage level based on IPC. Equa-
tion 1 and Equation 2 reveal that IPC is the key to power dissipation at low-voltage
level. This fact shows that power will increase in the opposite direction of IPC and mo-
tivates our low-power idea to devise a DPS technique to evaluate the IPC and determine

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 64–74, 2007.
c© IFIP International Federation for Information Processing 2007

Compiler Support for Dynamic Pipeline Scaling 65

Fig. 1. Voltage characteristic

the switching timing between pipeline modes at compiler time. In DPS, the pipeline
consists of deep mode and shallow mode. The deep mode is the default pipeline mode
and the shallow mode is designed by dynamically merging adjacent pipeline stages of
deep mode, where the latches between pipeline stages are made transparent and the cor-
responding feedback paths are disabled. In theory IPC is in inverse ratio to the pipeline
depth, the IPC of deep mode may be smaller than that of shallow mode [6]. Therefore,
executing applications in shallow mode will lead to the reduction of power dissipation.
But this statement is not always true. In reality, many factors in deep pipeline mode will
influence IPC [15, 13].

Hence, if we want to apply DPS to save power at low-voltage level, we must decide
when the pipeline enter deep mode or shallow mode depending upon the IPC. Consider
the voltage characteristic shown in Figure 1. In the first stage, DVS is applied to save
power at high-voltage level. Although reducing voltage is very effective to low power,
DVS fails in the second stage when the voltage reaches its lower bound. At the final
stage, we can enable DPS to switch the pipeline modes based on IPC. Since IPC is af-
fected by some factors, we can consider their impact on IPC to determine the switching
timing between pipeline modes to save energy.

Previous work on DPS was proposed by architects with architectural support [10,
7, 4, 14, 3]. However, the research about how to solve this issue with compilation tech-
niques remains open. In this paper, we present an optimization technique to enable DPS
with respect to IPC at compile time. We first partition an application into many regions
and then calculate the IPC of each region to determine the switching timing between
pipeline modes based on our evaluating model. Since our work is performed at compiler
time, the run-time overhead will be small and the hardware cost and complexity will be
as minimal as possible. The experimental results prove that the energy reduction really
benefit from our work.

The rest of this paper is organized as follows. Section 2 we study the previous work
on DPS. Section 3 gives the overview of our work and then presents our approach in
detail. The experimental results are shown in Section 4. Finally, we conclude our paper
in Section 5.

2 Related Work

Although many researchers still focus on devising new DVS techniques, other low-
power techniques that are irrelevant to DVS are valuable to be exploited. DPS is a

66 K.-W. Cheng, T.-Y. Lin, and R.-G. Chang

Fig. 2. The proposed DPS compilation system

typical example. Previous work on DPS has concentrated on hardware techniques, but
how to solve this issue using software techniques remains open. For example, Kop-
panalil et al. devised a DPS technique by switching the pipeline between deep mode and
shallow mode at run time with respect to high and low frequencies respectively [10].
Hiraki et al. proposed a method that skipped several pipeline stages and then used a
decoded buffer to replace the functionality of the original pipelines for low-power sup-
port [7]. Ernst et al. speculated on the timing information by monitoring the error rate
of pipeline processing to switch pipeline modes at circuit level [4]. Manne et al. ap-
plied pipeline gating to reduce energy consumption by stopping wrong-path instructions
from entering the pipeline when a branch misses its prediction result [14]. Efthymiou et
al. [3] applied a hardware-controlling method to reduce energy dissipation by adapting
the depth of pipeline stages.

3 The Proposed Approach

In this section, we focus on how our DPS approach is applied to applications to save
energy at compiler time. We first introduce our basic idea in Section 3.1. In section 3.2,
we depict the method to partition a code into regions and then present the evaluating
function to decide the switching between pipeline modes. The mechanism to enable
DPS is given in Section 3.3.

3.1 Basic Idea

Figure 2 shows our compilation system composed of SUIF framework [16], our pro-
posed engine, and Wattch simulator. First, an application is compiled by SUIF as a

Compiler Support for Dynamic Pipeline Scaling 67

control flow graph (CFG) and a data flow graph (DFG). Then the CFG and DFG are an-
alyzed to identify the loop regions and collect information for our evaluating model and
identify loop regions. In our work, a code will have another type of regions, non-loop
regions, except loop regions. Indeed, a region is an union of basic blocks as a unit that
our DPS can manipulate. The evaluation model has two goals: one is to partition the
remaining part of the loop regions into non-loop regions and the other is enable each
region to enter a suitable pipeline mode. The details of partitioning scheme is described
in Section 3.2. To activate DPS, for each region we will insert the DPS-enable function
in its entrance at compile time so that it can be executed in proper pipeline mode to
save energy based on its IPC. Since the switching between pipeline modes best is very
hard to decide, we propose an evaluation model to decide the timing during execution.
The evaluation model is presented in detail in Section 3.3. In this way, the code will be
switched between different pipeline modes at run time. The experiment is performed on
the Wattch simulator [1] with DSPstone and Mediabench benchmark suites.

3.2 Evaluation Model for Switching Pipeline Modes

As mentioned in Section 1, the IPC of deep pipeline mode is not always larger than that
of shallow mode. As a consequence, the shallow mode may have better power saving
than the deep mode according to Equation 2. Thus to reduce power reduction, each
region can enter deep mode or shallow mode based on the IPC during execution. To
achieve this objective, we conduct an evaluation model to decide the switching timing
between deep mode and shallow mode at compiler time. Since the calculation of IPC
closely relates to the size of a region, how to partition a code into regions becomes very
important to our work. On one hand, if the region size is too large, we may lose the
chances to take advantage of switching pipeline modes to save energy. On the other
hand, although the small region size can allow us to apply the DPS optimization to
a code, it possibly generates severe switching overheads. However what the size of a
region is the optimal solution for our approach is very hard to decide, thus we attempt to
seek for a principle to guide our selection in this section. With our observations, since
the loops usually dominate execution time and power consumption of a code, they are
the key to our decision. This result motivates us to use major loop as a guideline to
classify a code into regions to perform our code partitioning.

To use the loops to partition a code, they must be identified first and then be referred
to divided the remaining part into non-loop regions. Below we present our partitioning
approach and evaluation model. Given a code G = (V, E), it is divided into two types
of regions, Γ1 and Γ2, where Γ1, Γ2 ⊆ V × E, G = Γ1

⋃
Γ2, and Γ1

⋂
Γ2 = Ø. Note

Ø represents the empty set; that is Γ1 and Γ2 are disjoint. We first define Γ1 in case A
and then use Γ1 to define Γ2 in case B.

Case A: Γ1 is the set of regions, which are composed of loops. In other words, each
region in Γ1 only contains a loop.

After defining the loop regions, to classify the non-loop regions, we must present our
evaluation model first. Then the evaluation model is applied to loop regions for cate-
gorizing the non-loop regions. Below we first give some assumptions and then present

68 K.-W. Cheng, T.-Y. Lin, and R.-G. Chang

how to use them to divided the non-loop part of a code into non-loop regions and finally
formalize our evaluation model.

For a code G = (V, E), where V = {R1, R2, ..., Rn} is the set of regions in G and
E = {(u, v) | u, v ∈ V and u �= v}. That is, E is the set of edges between regions. For
each region Ri, we assume:

· NRi : the number of instructions in region Ri, for i = 1, 2, 3, · · ·
· Nbi : the number of branches in Ri

· Bij : the jth branch in Ri

· PBij : the probability that Bij is taken
· Ci: the number of clock cycles that does not result from any branch in Ri

· CBij : the number of clock cycles that results from that Bij is taken
· CBij : the number of clock cycles that results from that Bij is untaken

According to Equation 1 and Equation 2, IPC predominate the determination of
switching pipeline modes during execution. With the information collected previously
and the above terminologies, we can present our evaluating model as follows.

ΩRi =
Nbi∑

j=1

[PBij × CBij + (1 − PBij) × CBij] + Ci (3)

ΘRi = NRi/ΩRi (4)

Equation 3 estimates the clock cycles required for each region of the target code,
which is also applied to classify the non-loop regions. Equation 4 calculates the IPC
for each region and is the guideline to enable DPS. Since the loop regions very likely
dominates power dissipation of a code, we use the following parameter Λ with the aid
of the evaluation function of regions in Γ1 to partition the non-loop part of a code. Λ is
defined as the maximum of all ΩRi in Γ1. Formally, it can be described as follows.

Λ = {ΩR | ∃R ∈ Γ1 and ΩR ≥ ΩRi , for i = 1, · · · , n} (5)

Although the loops usually consume the majority of power dissipation for an appli-
cation, using λ to partition the non-loop part can be furthermore improved. Instead, we
adapt Λ as the new parameter by timing a α to it, where α is a real number. Thus Γ2
can be defined on the basis of αΛ in the following case B.

Case B: For a code we first identify the loop regions in Case A and the remaining part
is classified into non-loop regions. This part consists of two types of regions. The
first is a set of code segments existing between loops and the second type has two
special parts. One is from the beginning of a code to the beginning of the first loop
region and the other is from the end of the last loop region to the end of a code.
For each non-loop part, on one hand if its evaluation value (Ω value) is smaller
than αΛ, then it is identified as a non-loop region. On the other hand, if Ω value is
larger than αΛ, then it will be categorized into many non-loop regions so that their
Ω values are not larger than αΛ.

To make our partitioning mechanism clear, the above steps are summarized in
Figure 3.

Compiler Support for Dynamic Pipeline Scaling 69

For a given code G = (V, E), divide G into two types of
pipeline regions, Γ1 and Γ2, where Γ1, Γ2 ⊆ V,
V = Γ1 ∪ Γ2, and Γ1 ∩ Γ2 = ∅;

1. Identify the loops of G as the first type of regions, Γ1.
Assume Γ1 = {Ra1 , Ra2 , · · · , Ran}, where
Rai ∩ Raj = ∅ for i �= j.

2. Define Λ = {ΩRai
| ∃ Rai ∈ Γ1 and ΩRai

≥ ΩRaj
,

for j = 1, ..., n}
3. For the following non-loop parts:

(a) The code segment from the beginning of G
to the beginning of the first loop region.

(b) The code segment from the end of the last loop
region to the end of G.

(c) The code segments between loops.

Partition them into a set of regions Γ2 =
{Rb1 , Rb2 , ..., Rbm}, where Rbi ∩ Rbj = ∅ for i �= j
and ΩRbi

≤ αΛ for i = 1, 2, · · · , m.

Fig. 3. Classification of regions

3.3 DPS Enabling

After the code partitioning has been done, to enable DPS, we insert a function DPS
enable () into its head of each region to make it executed in deep mode or shallow
mode. The DPS enable () is implemented as follows.

DPS enable()

⎧
⎪⎪⎨

⎪⎪⎩

Lda #SYSCALL DEEP2SHAW
Call Pal #131
Lda #SYSCALL SHAW2DEEP
Call Pal #131

DPS enable() provides two functionalities to switch between pipeline modes with
the system call of Alpha 21264 Call Pal #131. #SYSCALL DEEP2SHAW switches the
pipeline from deep mode to shallow mode and #SYSCALL SHAW2DEEP switches
the pipeline from shallow mode to deep mode. In this way, we are able to determine
the timing to switch pipeline modes. The Ω value of each region calculated by Equa-
tion 4 is used for DPS enable() when the code is compiled by our system. Thus the
code will dynamically enter the deep mode or shallow mode during execution after the
DPS enable() is inserted into it. Finally the optimized DPSed program is performed on
the modified Wattch simulator.

4 Experimental Results

In Section 4.1, we introduce the system configuration of our work and present the ex-
perimental results in Section 4.2.

70 K.-W. Cheng, T.-Y. Lin, and R.-G. Chang

Table 1. Hardware configuration

Processor Core
Pipeline length 4 cycles (shallow mode)

8 cycles (deep mode)
Fetch buffer 8 entries
Functional units 4 Int ALU, 2 FP ALU, 1 Int mult/div,

1 FP mult/div, 2 mem ports
Instruction win-
dow

RUU=80, LSQ=40

Issue width 6 instructions per cycle: 4 Int, 2 FP
Memory Hierarchy

L1 D-cache size 64KB, 2-way, 32B blocks,
L1 I-cache size 64KB, 2-way, 32B blocks,
L1 latency 1 cycle
L2 Unified, 2MB, 4-way LRU

32B blocks, 11-cycle latency
Memory latency 100 cycles
TLB size 128-entry, fully-associative,

30-cycle miss

4.1 System Configuration

The underlying hardware is the Alpha 21264 processor, which contains one fetch buffer,
four integer ALUs, two floating-point ALUs, one integer multiplier/divider, and one
floating-point multiplier/divider, etc. In instruction window, RUU indicates register up-
date unit and LSQ comprises load queue (LQ) and store queue (SQ). Its main features
are summarized in Table 1. To perform our proposed approach, we extend the pipeline
mode from one mode to two modes. We assume that the original pipelining mode is
shallow mode and the new mode is deep mode by constructed by adding extra four
stages to shallow pipeline. It is designed to dynamically disable one of each pair of
stages by making the latches between pipeline stages transparent so that the processor
can switch between these two pipeline modes. The software configuration is shown in
Table 2. The SUIF compiler infrastructure is the front end of our system and generate
CFG and branch information. The operating system is Tru64 UNIX for 64-bit instruc-
tion set architecture. The Wattch simulator is an architectural simulator that provides
cycle-by-cycle simulation and detailed out-of-order issue with multi-level memory sys-
tem [9]. For keeping consistence with our DPS approach, it has been modified to support
shallow pipeline mode and deep pipeline mode.

4.2 Experimental Results

In our experiment, the deep mode is the default pipeline mode and the shallow mode
is chosen during execution if necessary. The energy reduction benefits by the switch-
ing between deep mode and shallow mode depending on the IPC of a region, which is
calculated by equation 4. The experiment is performed on the Wattch simulator with

Compiler Support for Dynamic Pipeline Scaling 71

Table 2. Software Configuration

OS and Software Configuration
Profiler SUIF
Compiler MachSUIF
OS Tru64 UNIX
Simulator Wattch v.1.02 with DPS

0

5

10

15

20

25

30

35

40

ad
p

cm

c_
m

u
lt

ip
ly

c_
u

p
d

.

co
n

vo
l.

d
_p

ro
d

.

ff
t

fi
r

fi
r2

d
im

N
_s

ec
.

o
n

e_
se

c.

lm
s

m
at

ri
x

m
at

1x
3

n
_c

_u
p

d
.

n
_r

_u
p

d
.

r_
u

p
d

.

st
ar

tu
p

E
n

er
g

y
R

ed
u

ct
io

n
 (

0.25Λ 0.5Λ 1Λ 2Λ

0

5

10

15

20

25

30

35

adpcm dec adpcm enc g721 mpeg enc epic enc

En
er

gy
 R

ed
uc

tio
n

(%
)

0.25Λ 0.5Λ 1Λ 2Λ

(a) (b)

Fig. 4. Energy reduction of various λ of profile-based DPS for DSPstone and Mediabench

DSPstone and Mediabench. For each program, the baseline is its original energy dis-
sipation and the optimized energy is measured by performing our DPS approach. This
benchmark is compiled by the Alpha compiler with default settings and linked with the
intrinsic library on Tru64 UNIX operating system.

Figure 4a shows the energy reduction by comparing the baseline energy and the op-
timized energy for DSPstone. In this experiment, we let α = 0.25, 0.5, 1.0, and, 2.0 to
measure the effects of various partitioning sizes of non-loop regions. The energy saving
ranges from 2% to 35%, with a mean of reduction 17.8%. As the partitioning size of
non-loop region λ becomes larger, the energy saving decreases slowly. With our ob-
servation, the large-size region eliminates some chances to switch the pipeline modes
based on IPC and thus slightly increases energy consumption. Nine of these programs
including adpcm, complex multiply, complex update, dot product, fft, iir biquad one
sections, matrix, real update, and startup, have better energy saving about from 22% to
35%. The reason is that there are many branches in them and thus our DPS approach
can take advantage of them to save energy depending upon the contribution of branch
penalty to IPC. With our experiences, our approach works better for the codes with
many loops and larger loops. Note that many programs have large outer loops such as
event-driven programs or programs with GUI, which may include almost the entire pro-
grams. In this experiment, the typical example for above discussion is matrix testbench,
and it has the best energy saving about 35%.

Figure 4b shows energy reduction by performing our profile-based DPS with Me-
diabench benchmarks. Since these programs are loop-intensive, they at least contain a
nested loop. For each benchmark, the Ω value of its loop region is large and thus the

72 K.-W. Cheng, T.-Y. Lin, and R.-G. Chang

0

0.2

0.4

0.6

0.8

1

1.2

1.4
ad

p
cm

c_
m

u
lt

ip
ly

c_
u

p
d

.

co
n

vo
l.

d
_p

ro
d

.

ff
t

fi
r

fi
r2

d
im

N
_s

ec
.

o
n

e_
se

c.

lm
s

m
at

ri
x

m
at

1x
3

n
_c

_u
p

d
.

n
_r

_u
p

d
.

r_
u

p
d

.

st
ar

tu
p

IP
C

Deep 0.25Λ Deep 0.5Λ

Deep 1Λ Deep 2Λ

DPS 0.25Λ DPS 0.5Λ

DPS 1Λ DPS 2Λ

Sh al lo w 0.25Λ Shallow 0.5Λ

Sh al lo w 1Λ Shallow 2Λ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

adpcm dec adpcm enc g721 m peg enc epic enc

IP
C

Deep 0.25Λ Deep 0.5Λ
Deep 1Λ Deep 2Λ
DPS 0.25Λ DPS 0.5Λ
DPS 1Λ DPS 2Λ
Shallow 0.25Λ Shallow 0.5Λ
Shallow 1Λ Shallow 2Λ

(a) (b)

Fig. 5. Chang in IPC for three cases using DSPstone and Mediabench as benchmark

small αλ can have better energy reduction than larger ones. From Figure 4b, the bar of
0.25λ has the best energy saving and 2λ is the worst. Compared to the baseline version,
our DPS approach can save energy by 12% to 28% and an average of 18.2%. Notice that
if a program has a very large loop, it may contain only one non-loop region or two very
small non-loop regions. In this case, the value of αλ will not influence our experimental
result.

Figure 5 demonstrates the effect on IPC for three cases using DSPstone and Medi-
abench as the metric. Deep and Shallow represent the results of executing a program
in deep and shallow pipeline modes respectively; DPS indicates the result of applying
our DPS approach to a program. They are still measured for various partitioning sizes
of non-loop regions 0.25λ, 0.5λ, λ, and, 2λ. For DSPstone, the average IPCs of Deep
case and Shallow case are 0.4 and 0.52. In DPS case, the average IPC is 0.45, which is
between those of deep mode and shallow mode. For Mediabench, the average IPCs of
Deep case, Shallow case, and DPS are 0.63, 0.87, and 0.75. Normally, the IPC of deep
mode is larger than that of shallow mode, but this contradicts with the results shown
in Figure 5. The reason comes from a key observation that branch penalty is closely
related to IPC. Since shallow mode has smaller branch penalty than deep mode, as a
result its IPC become larger than that of deep mode. In DSPstone, the IPCs of adpcm,
fft, fir2dim, and matrix are larger. This is because since they are loop-intensive appli-
cations and the loops in them contribute a lot to the increase of IPC. In Mediabench,
the IPCs of adpcm decoder, adpcm encoder, g721, mpeg encoder and epic encoder are
larger. This is because the five chosen programs are loop-intensive applications and the
loops in them contribute a lot to the increase of IPC.

Figure 6 show the effect of our DPS approach on performance for DSPstone and Me-
diabench. The latency between pipelining stages is designed to be equivalent to increase
performance and achieve resource sharing at each clock. In theory, the performance is
in direct ratio to the number of pipelining stages and thus the longer pipeline will lead
to the performance. Thus, the processor will result in slowdown when executing in shal-
low mode. The performance will be degraded if the pipelining stages are merged into
shallow mode. In reality, the performance may be degraded due to many factors such as
pipelining hazards, branch penalty, or switching overhead between pipeline modes. For
each benchmark, the performance of deep mode with λ is the baseline to compare those

Compiler Support for Dynamic Pipeline Scaling 73

0

10

20

30

40

50

60

70

ad p cm d ec ad p cm en c g 721 m p eg en c ep ic en c

D
eg

ra
d

at
io

n
 (

%

DPS 0 .2 5Λ DPS 0 .5Λ DPS 1Λ D PS 2Λ

Sha llow 0 .25Λ Sha llow 0 .5Λ Sha llow 1Λ Sha llow 2Λ

0

10

20

30

40

50

60

70

80

ad
pc

m

c_
m

ul
tip

ly

c_
up

d.

co
nv

ol
.

d_
pr

od
. fft fir

fir
2d

im

N_
se

c.

on
e_

se
c. lm
s

m
at

rix

m
at

1x
3

n_
c_

up
d.

n_
r_

up
d.

r_
up

d.

st
ar

tu
p

De
gr

ad
at

io
n

(%
)

DPS 0.25Λ DPS 0.5Λ DPS 1Λ DPS 2Λ
Shallow 0.25Λ Shallow 0.5Λ Shallow 1Λ Shallow 2Λ

(a) (b)

Fig. 6. Relative performance of various Λs for DSPstone & Mediabench

of deep mode and our DPS method for various λs. For the performance of DSPstone in
Figure 6a, on average, our DPS approach leads to 6.23% degradation in performance.
By contrast, the performance degradation of shallow pipeline mode is 61.62%, which
is almost ten times larger than the above one. Although the DPS switches the pipelin-
ing modes based on the IPC to save energy, the switching slows down the processor
compared to the high-speed execution in deep mode. In addition, larger λ has a better
performance than smaller ones since it causes the pipeline to enter the shallow mode
more infrequently. For Mediabench, on average, the shallow mode and profile-based
DPS have 48.02% and 25.23% performance degradations.

5 Conclusions

DVS has been proven be very effective in low power optimizations, but it cannot further
save energy when the voltage reaches its lower bound. Fortunately, DPS can overcome
this limitation by adjusting pipeline modes based on IPC. Previous work resolved this
issue with hardware techniques and thus increased hardware cost and design complex-
ity. In this paper, we present a DPS technique to reduce power dissipation by proposing
an evaluating model so that they can decide the timing of entering the proper pipeline
mode. In contrast, our work can eliminate hardware overhead and reduce energy con-
sumption according to the code behavior at compiler time. To investigate the effect of
our approach, we perform the experiment with various criteria for DSPstone and Me-
dieabench. In summary, the results show that smaller partitioning sizes of non-loop
regions can create optimization space and loop-intensive applications provide more
chances to optimize code to save energy.

References

[1] Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural level power
analysis and optimizations. In: International Symposium on Computer Architecture (2000)

[2] Burd, T., Brodersen, R.: Design issues for dynamic voltage scaling. In: International Sym-
posium on Low Power Electronics and Design (2000)

74 K.-W. Cheng, T.-Y. Lin, and R.-G. Chang

[3] Efthymiou, A., Garside, J.D.: Adaptive pipeline depth control for processor power-
management. In: IEEE International Conference on Computer Design: VLSI in Computers
and Processors (2002)

[4] Ernst, D., Kim, N.S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler, C., Blaauw, D., Austin,
T., Flautner, K., Mudge, T.: Razor: A low-power pipeline based on circuit-level timing
speculation. In: The 36th International Symposium on Microarchitecture (2003)

[5] Gerndt, M.: Automatic parallelization for distributed-memory multiprocessing systems. In:
Phd Thesis (1989)

[6] Hartstein, A., Puzak, T.R.: The optimum pipeline depth for a microprocessor. In:
ACM/IEEE International Symposium on Computer Architecture (2002)

[7] Hiraki, M., Bajwa, R.S., Kojima, H., Corny, D.J., Nitta, K., Shridhar, A., Sasaki, K., Seki,
K.: Stage-skip pipeline: A low power processor architecture using a decoded instruction
buffer. In: International Symposium on Low Power Electronics and Design (1996)

[8] Hsu, C., Kremer, U.: The design, implementation, and evaluation of a com-piler algorithm
for cpu power reduction. In: The ACM SIGPLAN Conference on Programming Languages
Design and Implementation (2003)

[9] Kessler, R., McLellan, E., Webb, D.: The alpha 21264 microprocessor architecture. In: Intl.
Conf. Computer Design (1998)

[10] Koppanalil, J., Ramrakhyani, P., Desai, S., Vaidyanathan, A., Rotenberg, E.: A case for
dynamic pipeline scaling. In: International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (2002)

[11] Kornerup, J.: Mapping powerlists onto hypercubes. In Masters Thesis (1994)
[12] Krishna, C., Lee, Y.-H.: Voltage-clock-scaling adaptive scheduling techniques for low

power in hard real-time systems. In: The 6th Real Time Technology and Applications Sym-
posium (2000)

[13] Lilia, D.: Reducing the branch penalty in pipelined processors. IEEE Computer 21(7), 47–
55 (1988)

[14] Manne, S., Grunwald, D., Klauser, A.: Pipeline gating: Speculation control for power re-
duction. In: ACM/IEEE International Symposium on Computer Architecture (1998)

[15] Parikh, D., Skadron, K., Zhang, Y., Stan, M.: Power-aware branch prediction: Characteri-
zation and design. The IEEE Transactions on Computers (2004)

[16] Suif, G.: Stanford University Intermediate Format, http://suif.stanford.edu

http://suif.stanford.edu

Parallel Network Intrusion Detection on

Reconfigurable Platforms�

Chun Jason Xue1, Zili Shao2, MeiLin Liu3, QingFeng Zhuge4,
and Edwin H.-M. Sha4

1 City University of Hong Kong, Kowloon, Hong Kong
jasonxue@cityu.edu.hk

2 Hong Kong Polytechnic University, Hong Kong
cszlshao@comp.polyu.edu.hk

3 Wright State University, Dayton, Ohio 45435, USA
meilin.liu@wright.edu

4 University of Texas at Dallas, Richardson, Texas 75083, USA
{qingfeng,edsha}@utdallas.edu

Abstract. With the wide adoption of internet into our everyday lives,
internet security becomes an important issue. Intrusion detection at the
network level is an effective way of stopping malicious attacks at the
source and preventing viruses and worms from wide spreading. The key
component in a successful network intrusion detection system is a high
performance pattern matching engine that can uncover the malicious
activities in real time. In this paper, we propose a highly parallel, scal-
able hardware based network intrusion detection system, that can handle
variable pattern length efficiently and effectively. Pattern matchings are
completed in O(log M) time where M is the longest pattern length.
Implementation is done on a standard off-the-shelf FPGA. Comparison
with the other techniques shows promising results.

1 Introduction

Network Intrusion Detection System (NIDS) performs packet inspection to iden-
tify, prevent and inhibit malicious attacks over internet. It can effectively stop
viruses, worms, and spams from wide spreading. Pattern matching is the key
component in the network intrusion detection systems. Using modern reconfig-
urable platforms, like FPGA, design and implement a parallel, high performance
pattern matching engine for network intrusion detection is the goal of this paper.

Traditionally, network intrusion detection systems are implemented completely
in software. Snort [20] is a well-known open source software network intrusion de-
tection system. It matches pattern database against each packet to identify ma-
licious target connections. With the rapid growth of pattern database, and the
rapid growth of network bandwidth, software only solution can not process the
� This work is partially supported by TI University Program, NSF EIA-0103709, Texas

ARP 009741-0028-2001, NSF CCR-0309461, USA and HK PolyU A-PH13, A-PA5X
and A-PH41.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 75–86, 2007.
c© IFIP International Federation for Information Processing 2007

76 C.J. Xue et al.

internet traffic in full network link speed. A natural approach will be to move the
computation intensive pattern matching to hardware. The main idea is to use spe-
cialized hardware resources along with a conventional processor. In this way, the
conventional CPU can process all the general-computing tasks and the specialized
co-processor can deal with string pattern matching, where parallelism, regularity
of computations can be exploit by custom hardware resources.

Extensive researches exist on general pattern matching algorithms. The Boyer-
Moore algorithm [6] is widely used for its efficiency in single-pattern matching
problems. However, the current implementation of Boyer-Moore in Snort is not
efficient in seeking multiple patterns from given payloads [3]. Aho and Corasick
[1] proposed an algorithm for concurrently matching multiple strings. Their algo-
rithm uses the structure of a finite automation that accepts all strings in the set.
Two implementations of the Aho-Corasick algorithm have been done for Snort,
by Mike Fisk [10] and Marc Norton [17], respectively. Fisk and Varghese [11] pre-
sented a multiple-pattern search algorithm that combines the one-pass approach
of Aho-Corasick with the skipping feature of Boyer-Moore as optimized for the
average by Horspool. The work by Tuck, et al. [22] takes a different approach
to optimizing Aho-Corasick by instead looking at bitmap compression and path
compression to reduce the amount of memory needed. All these approaches are
developed mainly for software implementation. To examine packets in real time
with full network link speed, a hardware solution is more favorable.

There are two main groups of hardware solutions for fast pattern matching.
The first group generally applies finite state machine (FSM) to process patterns
in sets. Aldwairi et al. [2] designed a memory based accelerator based on the
Aho-Corasick algorithm. In their work, rules are divided into smaller sets that
generate separate FSMs which can run in parallel. Hence significantly reduces
the size of state tables and increases the throughput. Liu et al. [15] designed and
implemented a fast string matching algorithm on network processor. Baker and
Prasanna [4] proposed a pipelined, buffered implementation of the Knuth-Morris-
Pratt algorithm [13] on FPGA. Li et al. [14] implemented rule clustering for fast
pattern matching based on [9] with FPGA platform. Pattern size is limited
by the available hardware resources. Tan and Sherwood [21] designed special
purpose architecture working in conjunction with string matching algorithms
optimized for the architecture. Performance improvement in this first group is
generally achieved by dividing patterns into smaller sets, and deeply pipelining
the pattern matching process. However, these type of approaches all have the
shortcoming in scalability, when the pattern database grows exponentially, these
type of approaches will suffer from extensive resources consumption and not able
to maintain the same level of performance. Deep pipelining also has the side effect
of increased latency, which is detrimental to some internet traffic.

The second group of hardware solutions uses hash tables as the foundation
for pattern matchings. Dharmapurikar et al. [8] used bloom filters [5] to per-
form string matching. The strings are compressed by calculating multiple hash
functions over each string. The compressed set of strings is then stored into a
small memory which is queried to find out whether a given string belongs to

Parallel Network Intrusion Detection on Reconfigurable Platforms 77

the set. If a string is found to be a member of the bloom filter, it is declared as
a possible match and a hash table or regular matching algorithm is needed to
verify the membership. Song and Lockwood [19] proposed a new version of the
implementation that eliminates the need of hash table for match verification.
Both of these implementation are done on FPGAs. Since patterns have different
length, a bloom filter is constructed for each pattern length. This is simple but
not efficient in handling variable pattern length.

This paper propose a novel hardware solution for pattern matching in NIDS.
Our approach uses hash tables. However, we handle variable pattern length nat-
urally from the beginning. Basically, we will slice each pattern into substrings of
length 2i, where 0 <= i <= k, k = � log (M) �, and M is the maximum pattern
length. A hash table will be constructed for each substring length. There will
be a total of k number of hash tables. Input string is processed in an iterative
fashion. First, all substrings of length 2k of the input string is matched against
the hash table for substring length 2k. Then, all substrings of length 2k−1 of the
input string is matched against the hash table for substring length 2k−1. Until all
substrings of length one is matched against hash table for substring length one.
A match is declared when all substrings of a pattern are matched. An extremely
simple example is shown in Figure 1 to illustrate our idea.

Input String:

Matching:

Pattern:

Step 2:

{THIS, HIS_, IS_I, S_IS, _IS_, IS_A,Step 1:
 S_A_, _A_T, A_TE, _TES, TEST}

Step 3: {T, H, I, S, _, I, S, _, A, _, T, E, S, T}

{TH, HI, IS, S_, _I, IS, S_, _A, A_,
_T, TE, ES, ST}

Pattern
Substring
Tables:

{THIS_IS_A_TEST}

M = 7, k = 2
{A_TEST, TEST_IS}

A_TE

TEST _I

len=4

S

12

ST

Fig. 1. An example

In this example, there are only two patterns to be matched, “A TEST” and
“TEST IS”. The maximum pattern length M = 7. Hence k = � log (7) � = 2. We
slice patterns into substrings of length 22, 21, and 20. Pattern substring tables
are built for each substring length. In this example, we show the exact value of
the substring for illustration purpose. In reality, these tables will be hash tables
for speed matching. An example input string is also shown in Figure 1. Using
our approach, the matching is done in 3 steps. In step 1, all substrings of length
4 of the input string are matched against the pattern substring table with length
equals 4. In step 2, all substrings of length 2 of the input string are matched
against the pattern substring table with length equals 2. In step 3, all substrings

78 C.J. Xue et al.

of length 1 of the input string are matched against the pattern substring table
with length equals 1. A match of pattern “A TEST” is declared when both
substring “A TE” and substring “ST” are matched during the process. The
detail of the matching process and the data structures used will be presented in
the rest of this paper.

In this paper, we use M to represent the maximum pattern length, example
value of M could be 256 or 512. We use N to represent the number of patterns.
A typical N would be 2k, which can fit the current snort rule set [20]. The main
research contributions of this paper are:

– Handles variable pattern length efficiently and effectively while using hash
tables.

– Finishes matching in O(log M) steps, where M is the maximum pattern
length.

– Excellent scalability. Pattern matching performance is not affected by the
growth of pattern database.

The remainder of this paper is organized as follows. The architecture of our
technique is shown in Section 2. The concepts and data structures used in our
approach are introduced in Section 3. Section 4 presents the algorithms. Section
5 presents the implementation on a reconfigurable platform. Section 6 presents
the concluding remarks.

2 Architecture

The block diagram of our proposed architecture is shown in Figure 2. In this
architecture, the core elements are an array of PEs (Processing Element). The
number of PEs equals to the size of the input string S. A PE processes a substring
of the input against all the same length substrings of the patterns. The input
string is processed in rounds of different substring length. Each PE will first
process all the 2k bytes substring of the input string, then 2k−1, etc.

M
U

X

Substring_Selector

Input

CLK
Hash_0

Hash_k

Match_
Table

...

...

Output

rw

r

PE

PE

PE

PE

Fig. 2. Architecture Diagram

Parallel Network Intrusion Detection on Reconfigurable Platforms 79

Match
Table
Lookup

Hash
Logic

Hash
Function

Match
Logic

Match
Logic

Output

Output

Input
Input_String

Substring
Select

Hash
Table
Lookup

Fig. 3. A Processing Element (PE)

The design diagram of a PE is shown in Figure 3. The inputs of a PE are a
substring and a substring select signal that determines the length of the substring
that will be worked on. First the input string will be passed to the hash function
block and a hashing value will be obtained. This hash value will be used to do a
hash table lookup. The result of hash table lookup will be passed to the match
logic block to determine if there is a match or not. The design of each PE is kept
simple. Duplicated hardware is used for the Match Logic block to increase the
performance.

3 Basic Concepts and Data Structures

In this section, we introduce the basic concepts which will be used in the later
sections. The data structures used in our approaches are also presented in this
section.

Let us first define the problem that we are trying to solve. Assuming a packet
carries a string S of length L, and we know a set of N patterns, p[1], p[2], ..., p[N],
the goal of Network Intrusion Detection System (NIDS) is to determine if there
is any exact matching between pattern p[i] and a substring of S. Let M be the
maximum pattern length, and let k = �logM�. The main idea of our approach
is to slice each pattern into substrings of length 2i, where 0 ≤ i ≤ k. Input data
string S is read in as a whole and processed in rounds of different substring
length. First all substrings of length 2k are processed, then all substrings of
length 2k−1, etc. The whole matching are completed in k steps.

After finding a match of a substring, we will first decide if all the previous
substrings in the pattern are matched, If yes, then a partial match is identified.
And then, we will see if this is the last substring in the partially matched pattern.
If yes, then an potential exact match is declared and a red flag will be raised by
the network intrusion detection system and processed accordingly by the host
system.

Three sets of data structures are used in our approach, and we will introduce
them one by one. The first data structure of interest is the Pattern Length table.
It is an array that stores each pattern’s length and indexed by the pattern ID.

80 C.J. Xue et al.

32 16 8 4 2 1

5

17

33 1

0

0

0

1

1

1

11 0 0

0

0

0000

0 0 1

1 0 0

0

1

10

2

3

4

Pattern
ID

Pattern
Length

Fig. 4. Pattern Length table

The binary representation of each pattern length shows what substrings that
this pattern will be decomposed into. An example is shown in Figure 4. In this
example, for the first pattern with pattern ID equals to 1 and length equals to
33, it will be sliced into a substring of length 32 and a substring of length 1, as
depicted by its binary representation in Figure 4.

The second set of data structure of interest is a set of hash tables that stores
the pre-processed information for each substrings of each patterns. For pattern
substrings of length 1, since there can only be 256 values, no hashing is done.
Instead, a table of 256 entries is created. Each entry contains three elements, the
first element is the value of this entry, the second element is the starting pattern
ID, and the third element is the number of patterns that have the same value
from the starting pattern ID. An example is shown in Figure 5. In this example,
there are three patterns with value “a” as the last byte. Hence, in the HASH 0
table, there is an entry with value equal to “a”, starting pattern ID equal to 100,
and number of consecutive patterns equal to 3.

a

a

a

100

101

102

b103

Value

...

Pattern ID

a

b

...

Pattern

ID
Pattern Count

100

103 1

3

HASH_0 Table

Fig. 5. HASH 0 table

For substring length greater than 1, a hash table is constructed for each sub-
string length. Hash table HASH i correspond to substring length 2i, where i �= 0.
Index of each hash table is the hashing value, and the entries in the hash tables
are the pattern IDs. An example of hash table when substring length not equal
to zero is shown in Figure 6(a). There are five columns in each hash table. Extra
columns are used to handle hashing collisions. There are two sources of potential
hashing collisions exist in our scheme. First, different substrings could be hashed
to the same hash value. Second, different patterns could have the same substring.
For example, pattern “hell” and pattern “hello” have the same 4 bytes substring

Parallel Network Intrusion Detection on Reconfigurable Platforms 81

“hell”. To handle hashing collisions efficiently, for each hash value, we reserve
two space for pattern ID in column two and column three respectively. These
two pattern ID will be read in the same clock cycle and processed by hardware
simultaneously. When there are more than 2 substrings are hashed to the same
value, a separate table called Sup Table is used to record these values. Sup Table
is also shown in Figure 6(a). Column four of the HASH i table points to the
starting Supplement index, and column five identify the number of consecutive
entries in the Sup Table that have the same hash value. In the example shown in
Figure 6(a), for hash value “100100111”, there are three patterns total have this
hash value, pattern 106, pattern 207 and pattern 209 as recorded in Sup Table
in entry 1001.

HASH_i

Hash_Value Pattern_id_1 Pattern_id_2

...
100100111 106

...
207 1001

Count

1

...

...
2091001

Pattern_id

Sup_Table

Supplement_index

Supplement_index

(a) HASH i table and Sup Table

32

16

8

4

2

1

Different
Substring
Length

Size of Input String

Number
Of Patterns

1

0

0

(b) Match Table

Fig. 6. HASH Table and Match Table

The third data structure that we use is the Match Table, which is a three-
dimensional bit array, with length equals to the input string length L, width
equals to the number of patterns N , and the height equals to number of different
substring length k. This table is used to record the substring matches found,
which is in turn used for determining whole pattern match. For each substring
match, a “1” will be recorded using the substring length, matched pattern id,
and the position of the substring in the input string S. An example is showing
in Figure 6(b). In this example, there are six different substring length, 1, 2, 4,
8, 16, and 32. Hence Match Table has a height of 6.

4 Algorithms

In this section, the algorithms of our approach are presented. An example is
given at the end of this section to show how the algorithms work. There are
two main algorithms in our approach. Algorithm Init Matching shown in Al-
gorithm 4.1 handles the initialization of all the necessary data structures. The
second algorithm Pattern Matching shown in Algorithm 4.2 processes the input
strings for potential matchings.

In algorithm Init Matching, first all the odd length patterns are sorted by
the value of the last byte. This is necessary for building the lookup table for

82 C.J. Xue et al.

Algorithm 4.1. Init Matching
Require: A set of patterns p.
Ensure: Initialized data structures.

Sort all the odd length patterns by the value of the last byte;
for all pattern p[i] do

Pattern Length[i] = length(p[i]);
end for
for all pattern p[i] do

for each substring s in p[i] do
hashed value = HASH(s);
set HASH j[hashed value] = i;

end for
end for
for j = 0 to 255 do

Insert Starting Pattern ID and number of patterns into HASH 0 ;
end for

substring length 1. Then for each pattern, Pattern Length table is populated
with the length of the pattern. Afterward, we will hash each substring of each
pattern, and store the pattern ID accordingly. Based on our HASH i table, there
are two spaces to store pattern ID. We will first try to store the pattern ID of
a particular hash value in one of these two spaces. If both of these two spaces
are occupied, we will then place the pattern ID in the Sup Table and update
the last two columns of the HASH i table accordingly. The last step of the
Init Matching algorithm populates the HASH 0 table with the sorted pattern
information. Updating the pattern set when we need to add or remove a pattern
can be done in the similar fashion of Algorithm 4.1.

The main algorithm that processes each input string for potential matching
patterns is algorithm Pattern Matching. There are two functions notable used
in Algorithm 4.2 , i.e., Pre Substring(pl,i) and Post Substring(pl,i), where pl is
the pattern length and i is the current substring length. These two functions are
used to determine if there is other substrings in the current pattern or not. If
there are substrings before the current substring with length i in a pattern of
length pl, Pre Substring(pl,i) will return the previous substring length. Other-
wise, Pre Substring(pl,i) will return “0”. Post Substring(pl,i) will return “1” if
there is any substring after the current substring with length i, and return “0”
if the current substring is the last substring of the pattern. In Pattern Matching
algorithm, for each substring length and each substring, we will first run the
hash function to obtain a hash value. The hash value is used to lookup the
corresponding hash table. If there are matches found in the hash table, for each
matched pattern ID, we will examine its previous substrings and post substrings.
If there is no previous substring or if there is a previous substring and it is also
matched to the same pattern, we will mark “1” in the Match Table for this
input substring, at this substring length and this matched pattern. After we
mark “1” in the Match Table, if this substring also happens to be the last sub-
string of the pattern, then we declare there is a potential match. Hash function

Parallel Network Intrusion Detection on Reconfigurable Platforms 83

Algorithm 4.2. Pattern Matching
Require: Input string S of length L.
Ensure: Yes/No. If there is a substring in the input string S that matches one pattern.

for all substring length i do
for all substring starting at position j of S do

hashed value ← HASH(substring);
for each match in HASH i; do

k ← matched pattern ID;
/* Find the pattern length for pattern k */;
pl ← Lookup the Pattern Length table for pattern k;
/* Find the previous substring for pattern k */;
pres ← Pre Substring(pl,i);
if (pres = 0) or (pres > 0 and Match Table[j − pre s][pre s][k] = 1) then

Match Table[j][i][k] = 1;
if Post Substring(pl,i) = 0 then

Return Match found= 1;
end if

end if
end for

end for
end for

is used heavily in our approach. Implementing hashing in hardware is relatively
inexpensive. A class of universal hash functions called H3 described in [18] were
found to be suitable for hardware implementation. Our implementation of hash
function falls into this class.

An example of the matching process is shown in Figure 7. This is a continua-
tion of the simple example shown in the introduction section. The detail of the
Match Table is shown in Figure 7. In this example, there are one input string
S that has 14 bytes, two patterns to be matched, and three different substring

TEST_IS

4

2

1

4

2

1

__ _

___T H I S I S A T E S T

TEST_IS

T H I S I S A T E S T
A_TEST

0 1

1

1

1

1 1 1

Fig. 7. Matching Example

84 C.J. Xue et al.

Table 1. Comparison of throughput, unit size, and performance

Design Throughput Unit Size (Logic cells) Performance (Mb/s/logic cell)

UTD 4.7Gb/s 232 20.3
USC(no pipelining) [4] 1.8Gb/s 92 19.6
USC(pipeline)[4] 2.4Gb/s 120 20.0
Los Alamos [12] 2.2Gb/s 243 9.1
Wash U. - DFA [16] 0.952Gb/s 260 3.7
Wash U. - Bloom [8] 0.8Gb/s 0.76 1058
UCLA [7] 2.88Gb/s 160 18.0

length. During the first round, where we match all substrings of length 4, there
are two matches, one for “A TE” and one for “TEST”. Both matches lead to
a marked “1” in the matching table. Moving on to the second round, where
we match all substrings of length 2. Substring “ST” is matched, and since the
previous substring of the same pattern is also marked as matched to the same
pattern, “1” is marked for the “ST” substring match. Since substring “ST” has
no substring after it, a match is declared. There is also a substring match of “ I”
found, however, since the previous substring is not marked as matched, we do
not mark “1” in the match table for the location where “ I” is matched.

5 Implementation

We have described our design in VHDL and targeted it to the Xilinx Virtex II
architecture with -7 speed grade. We use the Xilinx ISE 7.1i and Mentor Graphic
ModelSim 6.0 development tools. We have implemented a linear array of these
PEs. Using a Virtex II XC2V6000, we are able to accommodate 128 PEs. This
allows us to handle input string length of 128 bytes. The corresponding clock
frequencies are 220 MHz. Since we need an average of six clock cycles to complete
pattern matching for 128 bytes, hence our average throughput is 0.22x128/6 =
4.7 Gb/s.

Memory consideration in the implementation is very important in achieving
high performance. In our design, Match Table is the key in consolidating partial
matches from substrings into full matches. Concurrent read/write accesses to
the Match Table could be the bottleneck of our performance. In the real im-
plementation, we actually slice the match table into thin slices. As shown in
Figure 8, we can assign one slice of match table per PE. Each PE will write to
its own slice of match table, and read from other slices of the match tables if
needed. So the memory design requirement of the Match Table becomes single
write, multiple read instead of multiple write, multiple read. For our implemen-
tation on Xilinx Virtex II, we mapped each slice of match table into one 18kb
Block SelectRAM. There are 3.5 Mb of total memory constituted by these 18kb
Block SelectRAM on a chip [23]. We can fit all 128 slices of match tables easily.
Memory implementation for the hash tables can be optimized in the same fash-
ion. We can duplicate multiple copies of the hash tables and distribute among

Parallel Network Intrusion Detection on Reconfigurable Platforms 85

PE PE PE PE PE PE

Sliced Match Table

Fig. 8. Memory mapping for match table

the PEs. Since we only need to read from the hash tables during the matching
process, each copy of hash tables can be implemented using multi-port memory
and shared among several PEs.

Performance of our system can be further improved with the availability of
more hardware resources. There are two ways that this performance gain could
take place. First, we could use a larger FPGA that can accommodate 6x128
PEs. In this way, input strings can be processed in a pipelined fashion. At every
clock cycle, there will be a 128 bytes string input and a 128 bytes string output.
Second, multiple copies of the current design can be used in parallel to process
multiple input streams at the same time. Either way, scalability can be achieved
easily with the addition of new hardware resources.

The throughput, unit size, and performance of our design is compared with
several other designs in Table 1. While generating high throughput, our design
works relatively well in the unit size and performance. The real strength of our
design comes when the number of patterns grows significantly and the speed
of network increases dramatically, we do not have to make huge change in our
design, only increase in hardware resources will make our design scale as needed.

6 Conclusion

In this paper, we propose a new hardware solution for NIDS. Our solution can
handle variable pattern length efficiently while using the hash function approach.
Pattern matching is processed in O(log M) steps, where M is the maximum pat-
tern length. Enabling fast pattern matching is the key component in successful
network intrusion detection. As a next step, we plan to explore beyond exact
pattern matching, identifying threats that are not exactly the same as the known
patterns, but are variants of the known patterns.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search
18, 333–340 (1975)

2. Aldwairi, M., Conte, T., Franzon, P.: Configurable string matching hardware for
speeding up intrusion detection, pp. 99–107 (2005)

86 C.J. Xue et al.

3. Anagnostakis, K.G., Antonatos, S., Markatos, E., Polychronakis, M.: E2xb: A
domain-specific string matching algorithm for intrusion detection (2003)

4. Baker, Z.K.: Time and area efficient pattern matching on fpgas, 223–232 (2004)
5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors 13, 422–

426 (1970)
6. Boyer, R.S., Moore, J.S.: A fast string searching algorithm 20, 762–772 (1977)
7. Cho, Y., Navab, S., Mangione-Smith, W.: Specialized hardware for deep network

packet filtering (September 2002)
8. Dharmapurikar, S., Krishnamurthy, P., Sproull, T., Lockwood, J.: Deep packet

inspection using parallel bloom filters (2003)
9. Kruegel, C., et al.: Automatic rule clustering for improved, signature based intru-

sion detection (2002)
10. Fisk, M., Varghese, G.: An analysis of fast string matching applied to content-based

forwarding and intrusion detection (2002)
11. Fisk, M., Varghese, G.: Applying fast string matching to intrusion detection (2004)
12. Gokhake, M., Dubois, D., Dubois, A., Boorman, M., Poole, S., Hogsett, V.: Towards

gigabit rate network intrusion detection (2002)
13. Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in string (1977)
14. Li, S., Torresen, J., Soraasen, O.: Exploiting reconfigurable hardware for network

security (2003)
15. Liu, R.-T., Huang, N.-F., Chen, C.-H., Kao, C.-N.: A fast string-matching algo-

rithm for nerwork processor-based intrusion detection system, 614–633 (2004)
16. Moscola, J., Lockwood, J., Loui, R.P., Pachos, M.: Implementation of a content-

scanning module for an interenet firewall (2003)
17. Norton, M., Roelker, D.: Snort 2.0: Detection revised (2002)
18. Ramakrishna, M., Fu, E., Bahcekapili, E.: A performance study of hashing func-

tions for hardware applications, 1621–1636 (1994)
19. Song, H., Lockwood, J.: Multi-pattern signature matching for hardware network

intrusion detection systems (2005)
20. Sourcefire. Snort: The Open Source Network Intrusion Detection System (2003)
21. Tan, L., Sherwood, T.: A high throughput string matching architecture for intru-

sion detection and prevention, 112–122 (2005)
22. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient

string matching algorithms for intrusion detection (March 2004)
23. Xilinx, Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data

Sheet (2004)

Evaluating Mobility Support in ZigBee Networks�

Tony Sun1, Nia-Chiang Liang1, Ling-Jyh Chen2, Ping-Chieh Chen1,
and Mario Gerla1

1 Department of Computer Science, University of California at Los Angeles
2 Institute of Information Science, Academia Sinica

Abstract. The deployment of ZigBee networks is expected to facilitate numer-
ous applications, such as home healthcare, medical monitoring, consumer elec-
tronics, and environmental sensors. For many envisioned applications, device
mobility is unavoidable and must be accommodated. Therefore, providing ubiq-
uitous connection to/from a mobile ZigBee device is crucial for future ZigBee ap-
plications. In particular, knowledge of how nodal mobility affects ZigBee routing
protocol is of significance. In this paper, our contributions are twofold. First, we
dissect ZigBee routing and its support for device mobility, and we analyzed the
current provisions in dealing with different mobility cases. Second, we performed
a rich set of preliminary tests, illustrating the inefficacy of current standard. Our
results indicate that ZigBee device type plays a significant role in determining the
routing performance in most mobile scenarios.

Keywords: Mobility, Routing, ZigBee, IEEE 802.15.4, Simulation.

1 Introduction

With wireless networking technologies permeating into the very fabrics of our work-
ing and living environment, simple appliances and numerous traditional wired services
can now be efficiently connected wirelessly. This provides simple yet effective con-
trol/monitoring conveniences, while allowing very interesting applications to be de-
veloped on top of these wireless network enabled gadgets. The ZigBee standard [2],
designed to interconnect simple devices, is the latest attempt to realize this wireless
network vision. In the context of a business environment, this wireless technology can
facilitate better automated control/management of facilities and assets. Additionally,
there are also many ZigBee applications for home-appliance networks,home healthcare,
medical monitoring, consumer electronics, and environmental sensors.

For an environment richly connected with ZigBee devices, drastic topological
changes can occur due to device failures, mobility, and other factors. For certain ap-
plications, device mobility is unavoidable. For example, a health monitoring applica-
tion for the elderly described in [4] [3], where a ZigBee enabled health monitoring
sensor alerts the hospital, through an adjacent network, when a health-related emer-
gency has occurred. The consequence is disastrous if the message was not delivered
as intended. Therefore, understanding the performance of ZigBee networks becomes

� This work was co-sponsored by the National Science Council and the National Science Foun-
dation under grant numbers NSC 95-2218-E-002-072 and ANI-0335302.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 87–100, 2007.
c© IFIP International Federation for Information Processing 2007

88 T. Sun et al.

important in determining the applicability of many applications. In particular, knowl-
edge of how nodal mobility affects the workings of the ZigBee routing protocols is of
significance.

Without a doubt, mobility support is important to the proper functioning of many en-
visioned ZigBee applications. Since mobility is anticipated and unavoidable, adequate
mobility support is important in ensuring ubiquitous connection to/from the mobile de-
vices. In this study, our contribution is twofold. First, we dissected ZigBee routing and
its current support for device mobility. It is the goal of this study to identify the existing
provisions in accommodating ZigBee device mobility, and to analyze the adequacy of
these provisions in dealing with different mobility cases. Secondly, we ran a rich set
of preliminary simulations, illustrating the inefficacy of current standard in handling
mobility. Our results reveal that existing ZigBee provisions for mobility is inadequate,
and mobility problem was not thoroughly considered by the standard. Moreover, we
found that the current recovery mechanisms are not reliable, or responsive enough in all
mobility cases. Finally, we found that the situation worsens when there are multiple in-
stances of mobility in the ZigBee network, yet routing performance in ZigBee network
is closely tied to the ZigBee node types used.

The rest of this paper is organized as follows. In section 2, we summarize the IEEE
802.15.4 and the ZigBee specifications. Section 3 discusses the routing and address
allocation mechanism deployed in ZigBee mesh routing, and analyzes the response
of the routing protocol in basic mobility cases. Section 4 is an equitable treatment to
the ZigBee tree routing mechanism, where the behavior of tree routing is explained
and analyzed for basic mobility scenarios. Section 5 presents a rich set of preliminary
simulation results. Finally, in section 6, we discuss the tradeoff between the two routing
mechanism in dealing with mobility and conclude the paper.

2 Overview

2.1 IEEE 802.15.4

Based on the PHY and MAC layers specified by IEEE 802.15.4 WPAN standard [1],
the ZigBee specification establishes the framework for the Network and Application
layers. Specifically,at the MAC layer, IEEE 802.15.4 controls access to the radio chan-
nel using the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) or
the optional slotted CSMA/CA mechanism, as respectively utilized by the beaconless
and beaconed modes.

Two device types are specified within the IEEE 802.15.4 framework: full function
device (FFD) and reduced function device (RFD). An FFD generally have more re-
sponsibility in that they must maintain routing tables, participate in route discovery and
repair, maintain beaconing framework, and handle node joins. Moreover, a FFD have
the capability of communicating with any other devices within its transmission range.
On the other hand, a RFD simply maintains the minimum amount of knowledge to stay
on the network, and it does not participate in routing.

Evaluating Mobility Support in ZigBee Networks 89

2.2 ZigBee Network Layer

The ZigBee network layer defines how the network formation is performed (i.e., either
mesh topology or tree topology) and how the network address is assigned to each partic-
ipating ZigBee node. Note that the assigned network address is the only address that is
used for routing and data transmission in ZigBee networks. Three device types are de-
fined in ZigBee: ZigBee coordinator, ZigBee routers, and ZigBee end devices. A RFD
can only be a ZigBee end device; whereas a FFD can be either a ZigBee coordinator or
ZigBee router. The ZigBee coordinator is responsible for starting a new network. Zig-
Bee coordinator and routers are “routing capable”, while the ZigBee end devices can’t
participate in routing and have to rely on their corresponding ZigBee parent routers for
that functionality.

Every node in a ZigBee network has two addresses, namely a 16-bit short network
address and a 64-bit IEEE extended address. The 16-bit network address is assigned
to each node dynamically by its parent coordinator/router upon joining the network.
This address is the only address that is used for routing and data transmission. It is
analogous to the IP addresses that we use on the internet; whereas the extended address
is similar to the MAC address, which is a unique identification of each device and is
mostly fixed at the time the device is manufactured.

3 Mobility Support in ZigBee Mesh Topology

As pointed out in section 2, only coordinators/routers (FFDs) can actively participate
in mesh routing, end devices (RFDs) must rely on their parent nodes to perform mesh
routing on their behalves. Under the innate properties of IEEE 802.15.4 and ZigBee net-
works (i.e., the addressing structure and service assumptions), the performance bound
of ZigBee mesh routing is expected different to the ones from previous AODV studies.
We will see the effect of this recovery mechanism in more detail in section 5.

3.1 Mobile End Device

As mentioned earlier, ZigBee end devices are just simple devices without routing capa-
bilities. Therefore, problems arise whenever these end devices moves out of the range of
its parent router, and acquires a new network address from a new parent router, while the
source node is still sending data to the mobile end device. Since this end device can no
longer be found with its “old” address, data reception in this scenario will be halt com-
pletely, and can’t be recovered from any available ZigBee mesh routing mechanisms.
When the route cannot be found, a route error message will eventually be delivered to
the source node, and trigger the Device Discovery primitive in the application layer.
Once the source node discovers the new network address of the destination, the data
transmission would resume (after another route discovery procedure). For this simple
case, the data flow would only suffer the duration required for the source to receive the
route error and complete its device discovery process.

For the case where the mobile end node acquires a new network address while it is
sending data, data transmission will be temporally disrupted for the duration it takes for

90 T. Sun et al.

the mobile end node to find a new parent router to associate itself with. If the data flow
is two way, a route discovery and Device Discovery process would be triggered at the
receiver, and the disruption would be compounded, yet recoverable assuming that the
mobile end device doesn’t move out of range again.

3.2 Mobile Router

ZigBee routers actively participate in mesh routing, and provide functionalities that
maintain/repair routes whenever an existing route failed. With the built-in route recov-
ery mechanism (via route discovery and route error), ZigBee routers remains robust to
effects from most mobility cases regardless whether the node is sending or receiving
data. Once the router is assigned an initial network address, this is no explicit need to
change this address.

4 Mobility Support in ZigBee Tree Topology

For ZigBee tree topology, the network address is assigned based on a hierarchical tree
structure. As the root of the cluster tree, the ZigBee coordinator is responsible in defin-
ing the number children node a parent may have nwkMaxChildren(Cm), the max-
imum number of routers a parent may have as children nwkMaxRouters(Rm), and
the maximum depth of the network nwkMaxDepth(Lm). For a network of depth d,
the nth network address is allocated according to Eq. 2and 1.

Cskip(d) =

{
1 + Cm(Lm − d − 1) , Rm = 1

1+Cm−Rm−Cm(Rm)Lm−d−1

1−Rm
, else

(1)

An = Aparent + Cskip(d) ∗ Rm + n (2)

After network address is assigned, any node can then route packets to its parent and
direct children with the tree routing algorithm. Trivially, every other device in the net-
work is a descendant of the ZigBee coordinator and no device in the network is the
descendant of any ZigBee end device. Each node would check the destination address
against its own to determine if the destination is a descendent on the tree or if it should
be forwarded to its parent node. When a node changes its parent router due to mobility, a
new 16-bit network address will be automatically assigned to preserve the tree address-
ing structure. In many cases, simple mobility of a router can cause cascading address
changes across entire tree branches. As we will discuss further in the evaluation, the De-
vice Discovery service in application layer would be quite limited in accommodating
some of the network changes, resulting in various levels of performance penalty.

4.1 Mobile End Device

By design, if the end device is mobile while transmitting data, it should resume the
transmission as soon as it acquires its new network address. If the data flow is two way,
a route discovery and Device Discovery process will be triggered at the receiver. If the

Evaluating Mobility Support in ZigBee Networks 91

end device is receiving data, the data flow would eventually recover if the application
is successful in using the Device Discovery mechanism to rediscover the node’s new
network address. However, the Device Discovery mechanism would only work as in-
tended under very limited mobility scenario (i.e., only one or two nodes moving within
the network). As we will see in the subsequent section, when there are persistent or
multiple occurrences of mobility, the longer routes and slower throughput (from multi-
hopping) of tree routing tends to hinder the responsiveness of the described recovery
scheme, causing a big degradation to performance.

4.2 Mobile Router

For ZigBee tree topologies, new network addresses are assigned in accordance to Eq. 2,
to ensure the correct hierarchical tree structure. The stability of the addressing structure
is important for the proper delivery of packets. Therefore, when ZigBee router acquires
a new parent router and a new network address, it could potentially start a cascading
network address change to all of its descendant nodes on impacted branches, which
generally creates varying levels of inconsistency to the tree addressing scheme, thereby
reducing the routing protocol’s ability to function properly.

For the case that the mobile router moves out of the range of its original parent
router and acquires a new network address, data reception will be halted completely, and
cannot be recovered from any available ZigBee tree routing mechanisms. Sometimes,
these simple movements would also jolt drastic structural change to the descendent
nodes, influencing other existing flows. Even with the Device Discovery primitive in
the application layer, the tree topology encounters great difficulties in recovering the
path, since longer routes and slower throughput from tree routing tends to hinder the
responsiveness of the described recovery scheme as mentioned earlier.

If the mobile router was sending data while it changes parent router, it would re-
quire its old descendants to change their network address. Depending on the number of
impacted nodes, similar failure would be experienced as in the cases mentioned above.
Except, the mobile router would probably be able to continue the data transmission once
it acquires a new network address (in simple mobility scenarios). In any event, when
there are persistent or multiple occurrences of mobility, the problem with tree routing
would increase in complexity, and the tree routing will yield poor routing performances.

5 Evaluation

In this section, we present simulations results that illustrate the properties of ZigBee
mesh and ZigBee tree routing schemes. We use the NS-2 simulator with Samsung’s
IEEE 802.15.4 extension [6], and contribute the implementation of the ZigBee tree
routing and ZigBee mesh routing schemes according to the ZigBee standard version
1.0. The simulation is set to mimic the settings of a household/factory deployment.
Nodes are initially aligned in an equally spaced grid before a selected percentage of
nodes become mobile. Nodes move within the topology according to the random way-
point model [5], and all results are averaged across 10 independent trials of the same
configuration. For all of our simulations, the network used in our simulation consists of

92 T. Sun et al.

Table 1. General Simulation Parameters

Network Size 45m x 45m Traffic Type, Packet Size CBR, 127bytes
Number of Nodes 36 nodes Mobility Model Random Waypoint

Transmission Range 15 meters nwkMaxRouter(Rm) 10
Network Setup Time 30 seconds Number of Concurrent Data Flows 2
Simulation Duration 300 seconds nwkMaxDepth(Lm) 5
Transmission Rate 10 packets/sec nwkMaxChildren(Cm) 10

70% routers and 30% end devices, which are all randomly chosen. We use packet deliv-
ery ratio and relative routing overhead as our performance evaluation matrices. Packet
delivery ratio is averaged over the number of flows in the network to reflect the mean
per-flow delivery ratio. On the other hand, routing overhead is denoted by a normalized
value of the total overhead of the network with respect to the traffic in the network. The
parameters employed in the simulation are summarized in Table 1.

5.1 Scenarios with Varying Percentage of Mobile Nodes

This subsection studies the performance of the two ZigBee routing schemes when there
are varying amount of mobile nodes in the network. Mobile nodes move at a speed of

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

D
el

iv
er

y
R

at
io

Precentage of Mobile Nodes

Mesh Routing
Tree Routing

(a) packet delivery ratio

0

5

10

15

20

25

0 10 20 30 40 50

R
ou

tin
g

O
ve

rh
ea

d

Percentage of Mobile Nodes

Mesh Routing
Tree Routing

(b) relative routing overhead compared to the actual data throughput

Fig. 1. ZigBee router as mobile sender, data to stationary destination

Evaluating Mobility Support in ZigBee Networks 93

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

D
el

iv
er

y
R

at
io

Precentage of Mobile Nodes

Mesh Routing
Tree Routing

(a) packet delivery ratio

0

5

10

15

20

25

0 10 20 30 40 50

R
ou

tin
g

O
ve

rh
ea

d

Percentage of Mobile Nodes

Mesh Routing
Tree Routing

(b) relative routing overhead compared to the actual data throughput

Fig. 2. ZigBee end device as mobile sender, data to stationary destination

1m/s randomly. Two general mobility cases were simulated. In the first scenario, the
sender remains stationary while the receiver is mobile. In the second scenario, we keep
the receiver stationary while setting senders to be mobile. We repeat the same simula-
tions with two node types, i.e., ZigBee routers and end devices. Source and destination
are randomly chosen, but all networking settings remain the same for all simulations.
We vary the percentage of mobile nodes from 0 to 50% to observe the response from
the two routing protocols to increasing percentages of mobile nodes in the network.

From the results depicted in Fig. 1-a and 2-a, it is clear that the device type plays
a critical role in determining the delivery ratio for mobile senders. ZigBee routers can
typically transmit out more data, while ZigBee devices can only send out half of the
amount compare to the routers. Furthermore, the ZigBee end devices are more heavily
influenced by the percentage of mobile nodes in the network compare to the ZigBee
router. This is due to the fact the ZigBee end devices need to associate with a new parent
when it moves, the extra association time actually degrades the packet delivery ratio.
On the other hand, from Fig. 1-b and 2-b, we see that ZigBee routers actually incurs
more routing overhead compare to the end devices. The additional routing overhead is
from route repair messages that routers send/receive to repair the route.

94 T. Sun et al.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

D
el

iv
er

y
R

at
io

Precentage of Mobile Nodes

Mesh Routing
Tree Routing

(a) packet delivery ratio

0

5

10

15

20

25

0 10 20 30 40 50

R
ou

tin
g

O
ve

rh
ea

d

Percentage of Mobile Nodes

Mesh Routing
Tree Routing

(b) relative routing overhead compared to the actual data throughput

Fig. 3. ZigBee router as mobile receiver, data from stationary source

Additionally, in Fig. 1-a and 2-a, we see that mesh routing exhibits better packet
delivery ratio compared to tree routing. The performance gap is especially evident when
the mobile sender is a ZigBee Router. It is clear that the rigid routing scheme demanded
by tree routing is less robust to increasing amounts of mobility in the network, as it
lacks an effective route recovery method when a route fails. Thus, delivery ratio suffers.
When the network is experiencing multiple instances of mobility, it is apparent that the
application recovery mechanism has a minimum effect in repairing broken routes. As a
results, tree routing performs quite poor when the network comprises of 20% or more
mobile nodes. Yet, as seen in Fig. 1-b and 2-b, we see that tree routing incurs much
smaller amount of routing overhead compare to mesh routing.

As the destination of data streams, all ZigBee receivers encounters some perfor-
mance degradation (in terms of data delivery ratio) when it is mobile as illustrated in
Fig. 3-a and 4-a. Device type actually differentiates the services received in the two rout-
ing schemes. Mobile receiver would clearly benefit if it is a ZigBee router in mesh rout-
ing. Nonetheless, device type would remain indifferent when tree routing is deployed,
since movement in our tree topology would cause approximately the same amount of
change regardless whether the node is a router or a end device.

Evaluating Mobility Support in ZigBee Networks 95

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

D
el

iv
er

y
R

at
io

Precentage of Mobile Nodes

Mesh Routing
Tree Routing

(a) packet delivery ratio

0

5

10

15

20

25

0 10 20 30 40 50

R
ou

tin
g

O
ve

rh
ea

d

Percentage of Mobile Nodes

Mesh Routing
Tree Routing

(b) relative routing overhead compared to the actual data throughput

Fig. 4. ZigBee end device as mobile receiver, data from stationary source

In Fig. 3-a, mesh routing obviously performs much better than tree routing since
the route repair mechanism in mesh routing can repair some of the mobility induced
damages. Results also confirm the intuition that mesh routing consumes more overhead
when there are more mobile nodes in the network. It is also clear that tree routing
consistently consumes less overhead than mesh routing, regardless of the number of
mobile nodes in the network.

The only scenario that tree routing outperforms mesh routing is when ZigBee end
devices are receivers. In this scenario, ZigBee end devices suffer degraded performance
in mesh routing because it constantly acquires new network addresses, and the Device
Discovery service cannot recover the new network address in a timely manner. How-
ever, since the ZigBee end device would pick the lowest ID node as its initial parent,
tree routing tends to pick a parent node that is further away. Thus, when there are more
mobile nodes in the network, there is a good chance to get closer to its original parent
node. This explains the superior performance of tree over mesh routing in Fig. 4-a.

The results in this subsection suggests the suitability of mesh routing for ZigBee net-
work anticipating many instances of mobile nodes. Additionally, it shows that ZigBee
routers tend have better delivery ratio in most scenarios. Plus, it shows that tree routing

96 T. Sun et al.

is the more effective scheme for static ZigBee networks with low data rate applications,
due to its low overhead consumption.

5.2 Scenarios with Mobile Nodes of Varying Speed

Following the same methodology in the previous subsection, this subsection studies
the routing performance of the two ZigBee routing schemes when the mobile nodes in
the network are moving at varying speeds. The ZigBee network in question consist of
70% routers and 30% end devices, and 20% of the nodes in the network are selected
randomly as mobile nodes. Specifically, we evaluate for packet delivery ratio when the
nodes are moving from 1m/s to 5m/s in 1m/s increments.

Fig. 5-a and 6-a clearly show that the device type plays a critical role in deter-
mining the delivery ratio in mesh routing. ZigBee routers can typically transmit out
more data, while ZigBee devices can only send out half of the amount compare to
the routers. On the other hand, from Fig. 5-b and 6-b, we see that ZigBee routers
actually incurs more routing overhead compare to the end devices. The additional

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

D
el

iv
er

y
R

at
io

Speed of Mobile Nodes (m/s)

Mesh Routing
Tree Routing

(a) packet delivery ratio

0

5

10

15

20

25

30

0 1 2 3 4 5

R
ou

tin
g

O
ve

rh
ea

d

Speed of Mobile Nodes (m/s)

Mesh Routing
Tree Routing

(b) relative routing overhead compared to the actual data throughput

Fig. 5. ZigBee router as mobile sender, data to stationary destination

Evaluating Mobility Support in ZigBee Networks 97

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

D
el

iv
er

y
R

at
io

Speed of Mobile Nodes (m/s)

Mesh Routing
Tree Routing

(a) packet delivery ratio

0

5

10

15

20

25

30

0 1 2 3 4 5

R
ou

tin
g

O
ve

rh
ea

d

Speed of Mobile Nodes (m/s)

Mesh Routing
Tree Routing

(b) relative routing overhead compared to the actual data throughput

Fig. 6. ZigBee end device as mobile sender, data to stationary destination

routing overhead is from the various route repair messages that routers send/receive
to repair the route. We also see that as node speed increases, the delivery ratio
decreases.

Additionally, in Fig. 5-a and 6-a, we see that mesh routing exhibits better packet
delivery ratio than tree routing. Like in the previous subsection, the performance gap
is especially evident when the mobile sender is a ZigBee Router. This is again due
the ineffectiveness of tree routing’s rigid routing scheme, and ZigBee router’s abil-
ity to route for itself.The route repair mechanism in mesh routing makes them far
more robust to mobility then their tree routing counterparts. When network speed in-
creases, the application Device Discovery mechanism provided minimal help in re-
establishing the route. As a results, we witness the same amount of performance degra-
dation for the two tree routing scenarios. Yet, as seen in Fig. 5-b and 6-b, we see that
tree routing again incurs much smaller amount of routing overhead compare to mesh
routing.

In most scenarios, ZigBee receivers tend to encounters more severe performance
degradation when it is traveling at higher speeds, as shown in Fig. 7-a and 8-a. As in
the last subsection, device type actually differentiates the services received in the two

98 T. Sun et al.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

D
el

iv
er

y
R

at
io

Speed of Mobile Nodes (m/s)

Mesh Routing
Tree Routing

(a) packet delivery ratio

0

5

10

15

20

25

30

0 1 2 3 4 5

R
ou

tin
g

O
ve

rh
ea

d

Speed of Mobile Nodes (m/s)

Mesh Routing
Tree Routing

(b) relative routing overhead compared to the actual data throughput

Fig. 7. ZigBee router as mobile receiver, data from stationary source

routing schemes. Mobile receiver would clearly benefit if it is a ZigBee router in mesh
routing. Nonetheless, device type would remain relatively indifferent when tree routing
is deployed, for the same reason pointed out earlier.

As depicted in Fig. 7-a, mesh routing with ZigBee routers exhibited more resiliency
against high node speeds, even though it consumes more overhead than tree rout-
ing as illustrated in Fig. 7-b and 8-b. Like in the previous subsection, the only sce-
nario that tree routing outperforms mesh routing is when ZigBee end devices are re-
ceivers. The reason is the same as in the previous subsection, and it also illustrates
the inefficiency of the application Device Discovery mechanism in recovering the
route.

The overall results in this subsection suggest the suitability of mesh routing for
ZigBee networks anticipating high speed mobile nodes. It also shows that tree rout-
ing is more effective for static ZigBee network with low rate applications, due to its
low overhead consumption (and saves more energy). However, mesh routing is
clearly more robust to nodal mobility, which closes echoes the findings in previous
sections.

Evaluating Mobility Support in ZigBee Networks 99

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

D
el

iv
er

y
R

at
io

Speed of Mobile Nodes (m/s)

Mesh Routing
Tree Routing

(a) packet delivery ratio

0

5

10

15

20

25

30

0 1 2 3 4 5

R
ou

tin
g

O
ve

rh
ea

d

Speed of Mobile Nodes (m/s)

Mesh Routing
Tree Routing

(b) relative routing overhead compared to the actual data throughput

Fig. 8. ZigBee end device as mobile receiver, data from stationary source

6 Conclusion

In this study, we discussed ZigBee routing and its support for device mobility, and we
analyzed the adequacy of current provisions in dealing with different mobility cases.
Our evaluation results indicate that when network is static, both mesh and tree routing
schemes work as intended; however, ZigBee end devices experiences detrimental packet
losses in almost all mobility scenarios. This situation worsens under multiple instances
of mobility, and when mobile nodes travel at higher speeds. Yet, ZigBee router typi-
cally suffers less packet losses under mobile scenarios. This behavior is closely related
the fact that ZigBee router are routing capable, while the ZigBee end devices are not.
We also realized that the current recovery mechanism is inadequate in accommodating
multiple instance or rapid mobility. Additional design work is underway to resolve the
various problems pointed out in this paper.

References

1. Ieee 802.15.4. http://www.ieee802.org/15/pub/TG4.html
2. Zigbee specification v1.0 (June 2005)

http://www.ieee802.org/15/pub/TG4.html

100 T. Sun et al.

3. Jafari, R., Encarnacao, A., Zahoory, A., Dabiri, F., Noshadi, H., Sarrafzadeh, M.: Wireless
sensor networks for health monitoring. In: ACM/IEEE ICMUS (2005)

4. Korhonen, I., Parkka, J., Gils, M.V.: Health monitoring in the home of the future. In: IEEE
EMBM (2003)

5. PalChaudhuri, S., Boudec, J.-Y.L., Vojnovic, M.: Perfect simulations for random trip mobility
models. In: 38th Annual Simulation Symposium (2005)

6. Zheng, J., Lee, M.J.: A Comprehensive Preformance Study of IEEE 802.15.4. In: Sensor Net-
work Operations, ch. 4, pp. 218–237. IEEE Press, Los Alamitos (2006)

On Using Probabilistic Forwarding to Improve
HEC-Based Data Forwarding in Opportunistic

Networks�

Ling-Jyh Chen1, Cheng-Long Tseng2, and Cheng-Fu Chou2

1 Institute of Information Science, Academia Sinica
2 Department of Computer Science and Information Engineering, National Taiwan University

Abstract. In this paper, we propose the HEC-PF scheme, an enhancement of our
previous H-EC scheme for effective data forwarding in opportunistic networks.
The enhanced scheme modifies the aggressive forwarding phase of the H-EC
scheme by implementing a new Probabilistic Forwarding feature, which decides
whether to forward a message to a newly encountered node based on the deliv-
ery probability. Using simulations as well as realistic network traces, we evaluate
the performance of the proposed scheme in terms of delivery latency and com-
pletion ratio. The results show that the HEC-PF scheme outperforms the EC and
H-EC schemes in all test cases, and the performance gain is even more substan-
tial when network connectivity is extremely poor. By varying the parameters of
the HEC-PF scheme, we show that its completion ratio improves as the maximum
forwarding distance or the hop distance considered when calculating the delivery
probability increases. The effectiveness of the HEC-PF scheme makes it an ideal
solution that goes a long way toward ensuring effective data delivery in oppor-
tunistic networks.

Keywords: Opportunistic Networks; Probabilistic Forwarding; Erasure Coding.

1 Introduction

An opportunistic network is a type of challenged network that has the following charac-
teristics: (1) network contacts (i.e., communication opportunities) are intermittent; (2)
an end-to-end path between the source and the destination has never existed; (3) dis-
connection and reconnection are common occurrences; and (4) the link performance is
highly variable or extreme. Because of various disruptions and long delays, traditional
MANET and Internet routing techniques can not be applied directly in opportunistic
networks. Hence, with the development of numerous opportunistic networking applica-
tions, such as wireless sensor networks (WSN), underwater sensor networks (UWSN),
pocket switched networks (PSN), people networks, and transportation networks, it is
necessary to develop an effective data forwarding scheme that can better accommodate
the various characteristics of opportunistic networks.

� This work was funded by the National Science Council under grant numbers NSC 95-2221-E-
001-025.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 101–112, 2007.
c© IFIP International Federation for Information Processing 2007

102 L.-J. Chen, C.-L. Tseng, and C.-F. Chou

Several data forwarding schemes have been proposed for opportunistic networks
[5] [9] [12] [15] [16] [17] [19]. Such schemes can be divided into two main cate-
gories, replication-based and coding-based, according to their basic technical strate-
gies. Replication-based routing schemes are the most popular design choice for existing
opportunistic routing schemes. Basically, such schemes input multiple identical copies
of data into the network, and rely on node mobility to forward the data to the destination
[16]. A message is regarded as successfully delivered when at least one of the multi-
ple copies is received by the destination. Intuitively, if the number of replicas in the
network is sufficiently large, replication-based schemes should achieve the best delay
performance (i.e., the shortest delivery latency) in opportunistic networks. However, the
main drawback of this type of scheme is the tremendous traffic overhead associated with
flooding a network with data replicas. As a result, when network resources are limited
(e.g., the buffer space and network bandwidth), replication-based schemes will proba-
bly degrade performance reliability unless additional overhead reduction strategies are
in place to alleviate the traffic overhead (e.g., [5] [9] [12] [15]).

For coding-based routing schemes, a message (or group of messages) is transformed
into another format prior to transmission [17] [19]. The design principle of these
schemes is to embed additional information (e.g., redundancy [17] or a decoding al-
gorithm [19]) in the coded blocks such that the original message can be successfully
reconstructed with only a certain number of the coded blocks. More precisely, un-
like replication-based schemes, which rely on successful delivery of each individual
data block, coding-based schemes consider a block successfully delivered when enough
blocks are received to reconstruct the original data. As a result, coding-based schemes
are usually more robust than replication-based schemes when a network’s connectivity
is extremely poor; however, they are less efficient when the network is fairly connected
due to additional information embedded in the coded blocks.

In [7], Chen et al. proposed a hybrid scheme, called H-EC, which combines the
strengths of replication-based schemes and coding-based schemes by integrating their
respective aggressive forwarding technique and erasure coding technique. Hence, the
H-EC scheme not only remains robust when the network connectivity is extremely poor,
but also performs efficiently when the network is fairly connected. Even so, the perfor-
mance of the scheme depends to a large extent on the message scheduling algorithm
used in the aggressive forwarding phase. This aspect has not been discussed extensively
and algorithms have only been implemented in a First-Come-First-Served (FCFS) fash-
ion [3]. Thus, in this paper, we investigate effective message scheduling algorithms that
consider both the frequency and volume of contacts in a network’s history, and thereby
substantially improve the data forwarding performance of the H-EC scheme in oppor-
tunistic networks.

The remainder of the paper is organized as follows. In Section 2, we review related
works on opportunistic routing, and provide an overview of the H-EC scheme. In Sec-
tion 3, we propose the HEC-PF scheme, which employs the Probabilistic Forwarding
feature in the aggressive forwarding phase of the H-EC scheme. Section 4 presents a
comprehensive set of simulation results for various opportunistic network scenarios;
the results are also analyzed and explained in detail. We then present our conclusions
in Section 5.

On Using Probabilistic Forwarding to Improve HEC-Based Data Forwarding 103

2 Related Work and Overview of the H-EC Scheme

2.1 Related Work

Routing in an opportunistic network is challenging and completely different to conven-
tional network routing methods. In opportunistic networks, an ideal routing scheme has
to provide reliable data delivery, even when the network’s connectivity is intermittent
or when an end-to-end path is temporally unavailable. Moreover, since “contacts” in an
opportunistic network may appear arbitrarily without prior information, scheduled op-
timal routing methods (e.g., linear programming-based routing [11]) and mobile relay
approaches (e.g., Message Ferrying [20]) cannot be applied.

Currently, replication is the most popular design choice for opportunistic routing
schemes. For instance, the Epidemic Routing scheme [16] sends identical copies of a
message simultaneously over multiple paths to mitigate the effects of a single path fail-
ure, thereby increasing the possibility of successful message delivery. However, flood-
ing a network with duplicate data tends to be very costly in terms of traffic overhead
and energy consumption. To address the excess traffic overhead incurred by flooding
replicate data, the Controlled Flooding proposed in [9] reduces the flooding cost while
maintaining reliable message delivery.

Node mobility also impacts on the effectiveness of opportunistic routing schemes.
When network mobility differs from the well-known random way-point mobility model,
the overhead of epidemic- and/or flooding-based routing schemes can be further re-
duced by considering node mobility. For instance, the PRoPHET scheme [14] calcu-
lates the delivery predictability from a node to a particular destination node based on
the observed contact history, and forwards a message to its neighboring node if and
only if that neighbor node has a higher delivery predictability value. Leguay et al. [12]
revised this scheme by taking a node’s mobility pattern into account, i.e., a message is
forwarded to a neighbor node if and only if the neighbor node has a mobility pattern
similar to that of the destination node. The approach described in [12] shows that the
revised mobility pattern-based scheme is more effective than previous methods.

Another class of opportunistic network routing schemes is based on encoding tech-
niques, which transform a message into another format prior to transmission. For ex-
ample, the integration of network coding and epidemic routing techniques has been
proposed to reduce the number of transmissions required in a network [19], while [17]
proposes combining erasure coding and the simple replication-based routing method
to improve the data delivery in the worst delay performance cases in opportunistic net-
works. Following [17], an Estimation-based Erasure-Coding (EBEC) routing scheme
has been proposed to adapt the delivery of erasure coded blocks using the Average
Contact Frequency (ACF) estimate [13]. Moreover, [7] proposes a hybrid scheme that
combines the strength of erasure coding and the advantages of Aggressive Forwarding,
so that it is robust in worst delay performance cases, and performs efficiently in very
small delay performance cases.

2.2 H-EC: An Overview

We now present an overview of erasure coding schemes and the H-EC scheme [7],
which is a hybrid data forwarding scheme based on erasure coding.

104 L.-J. Chen, C.-L. Tseng, and C.-F. Chou

Fig. 1. The erasure coding-based data forwarding algorithm (EC). In this figure, one erasure coded
block (A) is split equally among four relays (n = 4).

Fig. 2. The A-EC scheme, i.e., EC with aggressive forwarding. In this figure, four erasure coded
blocks (A,B,C,D) are transmitted, with n = 4.

Fig. 3. The H-EC scheme. Under the scheme, two copies of four erasure coded blocks (A,B,C,D)
are transmitted: the first copy of EC blocks (the white blocks) is sent using the EC algorithm, and
the second copy (the gray blocks) is sent using the A-EC algorithm in the residual contact time.
Each coded block is split into 4 equal-sized sub-blocks (n = 4).

By adding redundancy, erasure coding improves the fault-tolerance without the over-
head of strict replication of the original data [18]. In a generic erasure coding scheme,
given a message of size M bytes, a replication factor of erasure coding r, and a coded
message fragmented into several blocks of equal-sized bytes b, the number of coded
blocks can be derived by N = M×r

b . Moreover, this message can be successfully re-
constructed as long as 1

r of the coded blocks is received.
An erasure code-based (EC) forwarding algorithm is proposed in [17]. In this

scheme, (see Fig. 1), the erasure coded blocks are split equally among n relays1, which
are only allowed to send messages to the destination directly (this is the well-known
“two-hop” scenario used in [8]). Each relay forwards the same number of coded blocks,
and there are no duplicates in a relay.

As reported in [17], the EC scheme achieves the most effective worst-case delay
performance with a fixed amount of overhead. However, the drawback of the scheme
is that it can not provide a good very small delay performance compared to other pop-
ular replication-based approaches. The reason for this inefficiency is because, if most
network contacts are much longer than the required time, the EC scheme tends to waste
the residual contact period; hence, it is ineffective, as illustrated in Fig. 1.

To resolve the above problem, [7] proposed an enhanced scheme called A-EC, i.e.,
EC with an aggressive forwarding feature, as shown in Fig. 2. Under this scheme, the
source sends as many coded blocks as possible during each contact period. It has been
shown that the A-EC scheme is better able to utilize network contacts; thus, it can

1 For simplicity, following [17], we assume N=n for all cases.

On Using Probabilistic Forwarding to Improve HEC-Based Data Forwarding 105

be expected to outperform the EC scheme for very small delay performance cases.
However, for worst delay performance cases, A-EC yields a poor delivery ratio and/or
a very large delivery delay when black-holes2 are present in the network [7].

Taking advantage of the strengths of the EC and A-EC schemes to achieve better
message delivery performance in both worst delay performance and very small delay
performance cases, Chen et al. [7] proposed a hybrid scheme, called H-EC, which is
illustrated in Fig. 3. In the H-EC scheme, two copies of EC blocks (constructed by
the erasure coding and replication techniques described earlier) are transmitted by the
sender. The first copy of EC blocks is sent in a similar way to the method used to send
blocks in the original EC scheme (the white blocks in Fig. 3), while the second copy is
sent using aggressive forwarding during the residual contact time after sending the first
EC block (the gray blocks in Fig. 3). For general opportunistic network scenarios (i.e.,
without black-hole nodes), the H-EC scheme utilizes each contact opportunity better
because of the aggressive forwarding feature; however, if black-hole nodes are present
in the network, the scheme’s performance is similar to that of the EC scheme, which
achieves better forwarding in worst delay performance cases.

The performance of the H-EC scheme depends to a large extent on the message
scheduling algorithm used in the aggressive forwarding phase, which is not discussed
in [7]. However, in this paper, we assess the impact of probabilistic message scheduling
algorithms on the performance of H-EC routing. To this end, we propose an extension
of the H-EC scheme, called HEC-PF, in the following section.

3 HEC-PF: H-EC with Probabilistic Forwarding

In this section, we propose a message scheduling algorithm, called Probabilistic For-
warding, for the aggressive forwarding phase of the H-EC scheme. The resulting
scheme is called HEC-PF. Unlike the H-EC scheme [7], the HEC-PF scheme does NOT
enter the aggressive forwarding phase unless a newly encountered node has a higher
likelihood of successfully forwarding the message to the destination node than the cur-
rent node. We describe the HEC-PF scheme in the following sub-sections.

3.1 Delivery Probability

The key issue for the HEC-PF scheme is how to estimate the likelihood of success-
fully transmitting a message from a given node to the destination node. Similar to the
PRoPHET scheme [14], the HEC-PF scheme estimates the delivery probability based
on the observed contact history. However, unlike PRoPHET, the HEC-PF scheme con-
siders the contact frequency in the history as well as the contact volume, which repre-
sents the proportion of time that the two nodes are in contact in the last T time units.
More specifically, if there are K nodes in the network, we denote the i-th node as Xi,
the j-th node as Xj , the aggregate contact volume between the node pair Xi and Xj in
the last T time units as tXi,Xj , and the delivery probability for the node pair Xi and Xj

with a distance of at most k-hops as P k
Xi,Xj

. The one-hop delivery probability from the

2 A node in a network is called a black-hole if it is either unreliable (e.g., it has very limited
battery power and/or buffer size) or it hardly moves towards the destination [7].

106 L.-J. Chen, C.-L. Tseng, and C.-F. Chou

source node (XS) to the destination node (XD) is given by the ratio of the aggregate
contact volume over the overall contact volume3, as shown in Eq. 1.

P 1
XS ,XD

=
tXS ,XD

∑K
i=1 tXS ,Xi

(1)

In addition, the two-hop delivery probability, P 2
XS ,XD

, can be derived by Eq. 2. The
equation is comprised of three components: the scaling constant, ω2 ∈ [0...1], which
decides the impact of two-hop message transfer on the overall delivery probability;
the likelihood value, 1 − P 1

XS ,XD
, which is the probability that a message can not be

transmitted directly from node XS to node XD (i.e., it is impossible to complete the
message delivery in one hop); and the sum of the two-hop transitive delivery probability
based on the transitive property, i.e., if node XS frequently encounters node Xi, and
node Xi frequently encounters node XD, then Xi is a good candidate relay node for
forwarding messages from node XS to node XD.

P 2
XS ,XD

= ω2(1 − P 1
XS ,XD

)
∑

1≤i≤K
i�=S,i�=D

(P 1
XS ,Xi

P 1
Xi,XD

) (2)

Similarly, the three-hop delivery probability can be estimated by Eq. 3 and the k-
hop delivery probability can be derived by Eq. 4. Finally, the delivery probability of
transferring a message from node XS to node XD is given by summing the delivery
probabilities of all k cases, as shown by Eq. 5.

P 3
XS ,XD

= ω3(1 − P 1
XS ,XD

− P 2
XS ,XD

) ×
∑

1≤i,j≤K
i�=S,i�=D
j �=S,j �=D

(P 1
XS ,X1

P 1
X1,X2

P 1
X2,XD

) (3)

P k
XS ,XD

= ωk

(

1 −
k−1∑

i=1

P i
XS ,XD

)

×

∑

1≤ai≤K,
ai �=S,ai �=D,

ai �=aj ;∀1≤i,j≤k

(

P 1
XS ,Xa1

(
k−2∏

i=1

P 1
Xai

,Xai+1

)

P 1
Xak−1 ,XD

)

(4)

PXS ,XD =
k∑

i=1

P i
XS ,XD

(5)

Note that deciding an adequate value for k involves a tradeoff. On the one hand, the
larger the value of k, the more accurately we can approximate the delivery probability;
on the other hand, using a large k is very likely to incur an enormous storage and
computation overhead. An ideal solution would be able to adapt its k settings to the
properties of the network. For simplicity, we set k to a constant value in the simulations,
and defer a detailed discussion and evaluation of this issue to a future work.

3 If i == j, tXi,Xj = 0.

On Using Probabilistic Forwarding to Improve HEC-Based Data Forwarding 107

3.2 Probabilistic Forwarding

We now describe the HEC-PF scheme in detail. As mentioned earlier, the scheme in-
corporates a new Probabilistic Forwarding feature that decides whether to forward a
message to a newly encountered node based on the delivery probability estimate, rather
than on a first-come-first-served basis. The HEC-PF scheme is better able to deliver a
message successfully because it tends to utilize relay nodes that have higher delivery
probabilities.

More precisely, suppose that node Xi holds a message from the source node XS for
transmission to the destination node XD, and the message has not been relayed more
than H times so far. There are two cases where Xi could accidentally encounter another
node Xj (assuming Xj �= XD) if there is time remaining after Xi sends out one block
of the first copy of the EC blocks. First, if Xi is the source node, Xi must make a
decision about whether to enter the aggressive forwarding phase by comparing the two
delivery probabilities, PXi,XD and PXj ,XD . If PXi,XD > PXj ,XD , Xi will enter the
aggressive forwarding phase in the same way as the original H-EC scheme; otherwise,
it will follow the EC scheme and not enter the aggressive forwarding phase.

In the second case (i.e., Xi is not the source node), Xi first checks whether the next-
to-be-sent block was sent by the source node during the aggressive forwarding phase
(i.e., whether it belongs to the second copy of the EC blocks). If it was, Xi forwards
the block to Xj as long as Xj has a higher delivery probability than Xi of successfully
forwarding the block to XD (i.e., PXj ,XD > PXi,XD); otherwise, the block belongs to
the first-copy of the EC blocks, and Xi forwards it to Xj automatically, i.e., without
checking the delivery probability.

4 Evaluation

We use a set of simulations to evaluate the delay and completion ratio performance
of the HEC-PF scheme in opportunistic networks. We implement the HEC-PF scheme
by extending the H-EC codes [3] and run simulations in DTNSIM [2], a Java-based
DTN simulator. Similar to the scenarios described in [17], messages are generated at a
Constant Bit Rate (CBR) of 12 messages per day for 160 days (i.e., M = 12 × 160 =
1, 920), and the size of each message is 1,000 bytes. For all EC based schemes, the code
block size b is set to 125 bytes, and the other two parameters, r and n, are set to 2 and 16
respectively. In addition, under the HEC-PF scheme, the sliding time window T (used
to estimate the delivery probability) is set to 1,000 seconds; and the scaling constant ωi

is set to 0.25 for i = 2...5. The simulation results represent the average performance of
200 simulation runs. In each run the source and destination pair was randomly selected
from all the participating nodes.

We evaluate three network scenarios. The first is generated according to the power-
law distribution by setting both the inter-contact time and the contact duration of the
networks as power-law distributed random variables with coefficient equal to 0.6 (fol-
lowing [10]). There are 34 participating nodes. The other two scenarios are based on
realistic campus wireless network traces, namely, the iMote [1] and UCSD [4] traces,
which are publicly available for research purposes. Table 1 outlines the basic properties
of the three network scenarios.

108 L.-J. Chen, C.-L. Tseng, and C.-F. Chou

Table 1. The properties of the three network scenarios

Trace Name Power-Law iMote UCSD
Device N/A iMote PDA

Network Type N/A Bluetooth WiFi
Duration (days) 16 3 77

Devices participating 34 274 273
Number of contacts 25,959 28,217 195,364

Avg # Contacts/pair/day 2.89205 0.12574 0.06834

The UCSD trace is client-based and records the availability of WiFi-based access
points (APs) for each participating portable device (e.g., PDAs and laptops) on the
UCSD campus. Similar to [6] [7] [10], we assume that two participating devices in ad
hoc mode encounter a communication opportunity (i.e., a network contact) if and only
if they are both associated with the same AP at the same time.

The iMote trace is a human mobility trace collected at the 2005 IEEE Infocom con-
ference. It was aggregated from 41 Bluetooth-based iMote devices, which were dis-
tributed to the student attendees for the duration of the 3-day conference. Each iMote
device was pre-configured to periodically broadcast query packets to find other Blue-
tooth devices within range, and record the devices that responded to the queries. In ad-
dition to the distributed iMote devices, another 233 devices were recorded in the trace.
They may have been other Bluetooth-enabled devices used during the conference. For
simplicity, we assume there is a network contact between two Bluetooth devices if there
exists a query-and-response interaction between them.

4.1 Evaluation I: Two-Hop Scenario

In the first set of simulations, we evaluate the delay performance of the HEC-PF scheme
for message delivery in opportunistic networks. Three network scenarios are exam-
ined via simulations, with H set to 2 (i.e., the conventional two-hop scenario used
in [7] [17]). The k parameter of the HEC-PF scheme is set to 2 (i.e., we consider
the transitive property of message delivery with a distance of up to two hops). Fig.
4 depicts the average data latency distribution results in Complementary CDF (CCDF)
curves.

From Fig. 4, we observe that the HEC-PF scheme consistently outperforms the H-EC
and EC schemes in all test scenarios. The reason is that HEC-PF employs the Proba-
bilistic Forwarding feature, which decides whether to forward a message to a newly
encountered node based on the delivery probability estimates, rather than on the first-
come-first-served (FCFS) basis used in the original H-EC scheme. As a result, HEC-PF
is better able to make use of nodes that are more likely to encounter the destination
node, and thereby achieve better message delivery performance.

We also observe that the completion ratio, i.e., the percentage of messages success-
fully transmitted before the end of the simulation, degrades as the network connectivity
(i.e., the average number of network contacts per node pair, per day) decreases. For
example, although the HEC-PF scheme achieves approximately 99% completion ratio
in the Power-Law scenario, it can only achieve about 80% in the iMote scenario and

On Using Probabilistic Forwarding to Improve HEC-Based Data Forwarding 109

0

0.2

0.4

0.6

0.8

1

0 5000100001500020000250003000035000400004500050000

C
C

D
F

Latency (seconds)

EC
HEC

HEC-PF

(a) Power-Law Scenario

0

0.2

0.4

0.6

0.8

1

0 50000 100000 150000 200000 250000

C
C

D
F

Latency (seconds)

EC
HEC

HEC-PF

(b) iMote Scenario

0

0.2

0.4

0.6

0.8

1

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

C
C

D
F

Latency (seconds)

EC
HEC

HEC-PF

(c) UCSD Scenario

Fig. 4. Distribution (CCDF) of average latency performance of the EC, H-EC, and HEC-PF
schemes (N = 16, r = 2, k = 2, and H = 2)

110 L.-J. Chen, C.-L. Tseng, and C.-F. Chou

50% in the UCSD scenario. The reason is that the two-hop forwarding strategy is not
sufficient to deliver all messages in the limited simulation time because the network’s
connectivity is poor. Another observation is that the performance gain of the HEC-PF
scheme (compared to the H-EC scheme) is not significant. This implies that the cal-
culation of the delivery probability (with k = 2 in this case) cannot provide sufficient
information to make a decision on whether to forward a message in the aggressive
forwarding phase of the HEC-PF scheme. The findings motivate us to investigate the
impact of the HEC-PF parameters on the performance of message delivery in oppor-
tunistic networks. We present the evaluation in the next subsection.

4.2 Evaluation II: Variable H Scenarios

In the second set of evaluations, we evaluate the performance of the HEC-PF scheme in
the UCSD scenario with various maximum forwarding distance settings (H =2, 3, 4, 5).
Recall that the connectivity of this scheme is deemed to be poor. Similar to the previous
evaluation, we set the k parameter of the HEC-PF scheme to 2. The average data latency
distribution results are shown as CCDF curves in Fig. 5.

The results in Fig. 5 show that the CCDF curve falls as the value of H increases.
More specifically, at the end of the simulation, the HEC-PF scheme improves the com-
pletion ratio from 48% to 62% as H is increased from 2 to 5. The reason is that the
larger the setting of H , the greater the likelihood that a message will be delivered to
the destination node eventually. Of course, when a large H is employed in the HEC-PF
scheme, an extensive amount of one-hop data forwarding is required; thus, more energy
will be consumed in the network (as shown in Table 2, the transmission overhead of the
HEC-PF scheme increases substantially as the value of H increases). Again, an ideal
solution for HEC-PF should adapt its H value to the properties of the network in order
to compensate for the above tradeoff. We defer a detailed discussion and evaluation of
this issue to a future work.

0

0.2

0.4

0.6

0.8

1

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

C
C

D
F

Latency (seconds)

HEC-PF (H=2)
HEC-PF (H=3)
HEC-PF (H=4)
HEC-PF (H=5)

Fig. 5. Distribution (CCDF) of average latency performance of the HEC-PF scheme in the UCSD
scenario with various H settings (N = 16, r = 2, and k = 2)

On Using Probabilistic Forwarding to Improve HEC-Based Data Forwarding 111

0

0.2

0.4

0.6

0.8

1

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

C
C

D
F

Latency (seconds)

HEC-PF (k=1)
HEC-PF (k=2)
HEC-PF (k=3)
HEC-PF (k=4)

Fig. 6. Distribution (CCDF) of average latency performance of the HEC-PF scheme in the UCSD
scenario with various k settings (N = 16, r = 2, and H = 5)

Table 2. Transmission overhead of HEC-PF
with various H values. (Unit: MBytes)

Scenario H=2 H=3 H=4 H=5
PowerLaw 7,527 9,747 13,088 15,455

iMote 2,324 3,200 4,020 4,818
UCSD 5,048 10,327 13,857 17,309

Table 3. Transmission overhead of HEC-PF
with various k values. (Unit: MBytes)

Scenario k=1 k=2 k=3 k=4
PowerLaw 15,062 15,455 15,899 16,234

iMote 4,523 4,818 4,897 4,950
UCSD 15,668 17,309 21,197 22,018

4.3 Evaluation III: Variable k Scenarios

Here,weevaluate theperformanceof theHEC-PFschemein thepoorlyconnectednetwork
scenario (i.e., the UCSD scenario) with various k values (k = 1...5). The configurations
of the evaluation are the same as previously, except that themaximum forwarding distance
H is set to 5. Fig. 6 depicts the average data latency distribution results in CCDF curves.

From Fig. 6, it is evident that the CCDF curve falls as k increases, which means that,
given the same H setting, the completion ratio of message delivery increases as the hop
distance (used to estimate the delivery probability) increases; however, the transmission
overhead of the HEC-PF scheme only increases moderately as the value of k increases,
as shown in Table 3. The figure also shows that the performance gain of the completion
ratio decreases as k increases, which indicates that the completion ratio tends to con-
verge. It is also worth noting that k must be configured less than H when estimating the
delivery probability, since it is impossible to deliver a message successfully with a hop
distance larger than the maximum forwarding distance.

5 Conclusion

We have proposed a scheme called HEC-PF that extends the basic H-EC scheme for
data forwarding in opportunistic networks. The HEC-PF scheme incorporates a novel
feature, called Probabilistic Forwarding feature, which decides whether to forward a
message to a newly encountered node based on the delivery probability estimate in the
aggressive forwarding phase. As a result, the scheme can find relays that are more likely

112 L.-J. Chen, C.-L. Tseng, and C.-F. Chou

to transmit a message to the destination node based on the historical record of network
contacts. Using simulations as well as realistic network traces, we evaluated the per-
formance of the proposed scheme in terms of its delivery latency and completion ratio.
The results show that it outperforms the EC and H-EC schemes in all test cases, and the
performance gain is even more significant when the network connectivity is extremely
poor. In addition, by varying the values of the parameters of the proposed scheme, we
have shown that its completion ratio improves as the maximum forwarding distance or
the considered hop distance of the delivery probability increases. Work on developing
mechanisms to determine the HEC-PF parameters that can adapt to the properties of a
network is still ongoing. We will report on the results in the near future.

References

1. Crawdad project. http://crawdad.cs.dartmouth.edu/
2. Delay tolerant network simulator. http://www.dtnrg.org/code/dtnsim.tgz
3. H-ec module for dtnsim simulator.

http://nrl.iis.sinica.edu.tw/DTN/download/
4. Ucsd wireless topology discovery project. http://sysnet.ucsd.edu/wtd/
5. Burgess, J., Gallagher, B., Jensen, D., Levine, B.N.: Maxprop: Routing for vehicle-based

disruption-tolerant networking. In: IEEE Infocom (2006)
6. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility

on the design of opportunistic forwarding algorithms. In: IEEE Infocom (2006)
7. Chen, L.-J., Yu, C.-H., Sun, T., Chen, Y.-C., Chu, H.h.: A hybrid routing approach for oppor-

tunistic networks. In: ACM CHANTS (2006)
8. Grossglauser, M., Tse, D.: Mobility increases the capacity of ad-hoc wireless networks. In:

IEEE Infocom (2001)
9. Harras, K.A., Almeroth, K.C., Belding-Royer, E.M.: Delay tolerant mobile networks

(dtmns): Controlled flooding in sparse mobile networks. In: IFIP Networking (2005)
10. Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Pocket switched networks

and human mobility in conference environments. In: ACM WDTN (2005)
11. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: ACM SIGCOMM (2004)
12. Leguay, J., Friedman, T., Conan, V.: Dtn routing in a mobility pattern space. In: ACM WDTN

(2005)
13. Liao, Y., Tan, K., Zhang, Z., Gao, L.: Estimation based erasure-coding routing in delay tol-

erant networks. In: IWCMC (2006)
14. Lindgren, A., Doria, A.: Probabilistic routing protocol for intermittently connected networks.

Technical report, draft-lindgren-dtnrg-prophet-01.txt, IETF Internet draft (July 2005)
15. Lindgren, A., Doria, A., Schelen, O.: Probabilistic routing in intermittently connected net-

works. ACM Mobile Computing and Communications Review 7(3), 19–20 (2003)
16. Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Technical

Report CS-2000-06, Duke University (2000)
17. Wang, Y., Jain, S., Martonosi, M., Fall, K.: Erasure coding based routing for opportunistic

networks. In: ACM WDTN (2005)
18. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: A quantitative compar-

ison. In: IEEE IPTPS (March 2002)
19. Widmer, J., Boudec, J.-Y.L.: Network coding for efficient communication in extreme net-

works. In: ACM WDTN (2005)
20. Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach for data delivery in sparse

mobile ad hoc networks. In: ACM MobiHoc (2004)

http://crawdad.cs.dartmouth.edu/
http://www.dtnrg.org/code/dtnsim.tgz
http://nrl.iis.sinica.edu.tw/DTN/download/
http://sysnet.ucsd.edu/wtd/

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 113–122, 2007.
© IFIP International Federation for Information Processing 2007

Employment of Wireless Sensor Networks for
Full-Scale Ship Application

Bu-Geun Paik1, Seong-Rak Cho1, Beom-Jin Park1, Dongkon Lee1,
 Jong-Hwui Yun2, and Byung-Dueg Bae2

1 Maritime & Ocean Engineering Research Institute, KORDI, 104 Shinseong St.,
 Yuseong-gu, Daejeon, 305-343, Korea

{ppaik,scho,baracude,dklee}@ moeri.re.kr
2 Korea Maritime University, 1 Dongsam-dong, Youngdo-ku, Busan, 606-791, Korea

{jhyun,captcos}@ hhu.ac.kr

Abstract. In this study, basic experiments regarding the wireless sensor
network were conducted on a 3,000-ton-class training ship as the first step in
applying the ubiquitous technology to a real ship. Various application fields of
the technology in terms of the provision of safety and convenience on a ship
would be extracted through these experiments. To efficiently adopt the
ubiquitous technology for ship application, it is necessary to identify the state-
of-the-art ubiquitous technology and to prepare countermeasures against the
harsh environment of a ship. Especially, the characteristics of the wireless
sensor network were investigated at the test bed ashore as well as on a real ship
to figure out the complementary items before full-scale ship application.

Keywords: ubiquitous, ship, WSN (wireless sensor network), Zigbee,
monitoring.

1 Introduction

During ship operation on the seas, it has different requirements according to its type
and purpose. A commercial ship transports various kinds of cargo, such as containers,
logs, ore, crude oil, and LNG (liquefied natural gas), to the destination port within a
given time. Comfort and convenience are expected of a passenger ship. Military ships
should have mobility and the capabilities that are necessary for it to be able to carry
out its mission. Since a ship stays on the seas most of the time during its operation,
greater convenience must be provided to its crew and passengers so that the efficiency
and safety of its operation could be ensured.

A number of ship management technologies aimed at increasing the efficiency and
safety of a ship have been developed and proposed by many researchers. The EU
(European Community) has developed intelligent hull-monitoring systems to reduce
the risk of structural failure, spills into the sea and damage to cargo, and to improve
passenger safety and comfort [1]. Nguyen and Nelson [2] discussed an approach to
integrating data collection and analysis of ship machinery for the assessment of the
conditions and operational performance of the ship’s equipment. Nielsen et al. [3]

114 B.-G. Paik et al.

introduced the concept of the onboard management of wave-induced structural loads
and ship motions through the measurement of relative wave motions, bending
moment, and so on. Recently, Cho et al. [4] reported the ubiquitous sensor network
technology for ship application and related basic experiment results.

The services for the crew and passengers of ships lag behind those for people ashore.
On land, there are many opportunities to enjoy the ubiquitous technology and to have a
convenient and safe life on account of it, such as through home automation or home
network systems [5], tracking systems [6], security or safety systems, and health care
systems [7]. For the crews and passengers of ships on the seas, however, it is not easy to
acquire the benefits of ubiquitous technology because of several restrictions.

Most ship owners or shipping companies are not willing as of yet to provide
comfort and convenience to their respective crews at the expense of higher
operational costs, although the rate of automation and the level of safety have
increased in the latest ships. Moreover, the aging of the currently operated ships could
also make efficient operations difficult. For example, significant man hours are used
in checking scattered spare parts on a ship and in manually recording a maintenance
log. Much time and hard work is required in preserving and maintaining the ship’s
cargo because a few crew members are assigned to accomplish tasks related to the
ship’s cargo. The ubiquitous technology can be applied in various areas of ship
operations so as to promote the latter’s efficiency.

In this study, the wireless sensor network was employed as a ubiquitous
technology on a real ship, and the ship’s environment for such technology was
investigated. The Zigbee platform was chosen for the sensor network field of the
WSN system. In addition, several problems regarding real-ship application were
identified, and basic experiments about the characteristics of WSN were conducted at
the test bed ashore to provide reference data for the appropriate design of the WSN
for a real ship. Especially, practical items concerning the communication depth of
WSN and power consumption were discussed for the WSN design in a real ship.
Through the WSN experiments in the main-engine room of the real ship, the increase
of the communication depth was found to be necessary. The power consumption tests
were carried out in the test bed and expected to provide a reference data for node
deployments in a real ship.

2 Characteristics of Ships and of the WSN Technologies

A ship operates in a very harsh environment. Many steel plates are cut or welded
together to make a block, and then a ship is constructed by putting many of these
blocks together. This means that a ship is a big structure made mainly of steel.
Besides this, the main engine of the ship transfers significant power to the propeller
through a long shaft, for the propulsion of the ship. As the deckhouse, a superstructure
on the upper deck of a ship, is located above the main-engine room, the crew
members inside the deckhouse suffer from the vibration and noises induced by the
propeller or main engine. Most of all, the ship motions, such as pitching, rolling, and
heaving, can cause considerable inconvenience to the crew members and passengers
according to the sea conditions. If the ubiquitous technology would be applied in
ships, this kind of operational environment should be taken account of.

 Employment of Wireless Sensor Networks for Full-Scale Ship Application 115

The most well-known ubiquitous technology is the RFID tag. The RFID tag, which
has a specific identification code, is attached to an object, and various services (e.g.,
location finding [8], remote control, management, and communications between
objects) are made possible by it with the use of radio waves, which produce an
awareness of the surrounding environment. The price of RFID tags using the ultra-
high frequency of 900 MHz or the microwave of 2.4 GHz has recently been lowered,
and the price of RFID readers is going down as well. Although the RFID tag may
ensure the safety and security of a ship’s crew members and passengers (those
carrying an RFID tag), it is very difficult to reliably recognize an RFID tag carried by
a person who is moving about on the ship because of the essential characteristics of
high frequency wave.

Another ubiquitous technology is WSN (wireless sensor network), which has been
receiving considerable attention along with RFID. The WSN has a structure where
several sensor networks are connected to an external network through a gateway. The
sensor nodes send data to a sink node nearby, where the data from each node are
accumulated before being transmitted to a gateway. The data transferred from the
gateway can also be transmitted using satellite. The WSN technology has achieved
significant growth because of the ad-hoc network technology and the routing protocol
standard. Especially, wireless communication technologies such as WLAN (wireless
LAN), Zigbee, and Bluetooth came into the spotlight in terms of the construction of
efficient wireless networks. In other words, wireless communication has some
problems to be solved for the successful ship application, such as the fact that it
makes use of multipass and a radio wave screen due to the steel structure in a ship. As
these problems can reduce the reliability of data transmission or recognition, it is
necessary to prepare backup plans such as variations in network topologies and the
addition of repeaters or relay antennas.

3 Full-Scale Ship Tests Using the WSN

3.1 Data Delivery Ratio for Zigbee

The particulars of the ship that was chosen for this study are shown in Table 1.
Hannara, a 3,000-ton-class training ship, has relatively many cabins because it was
designed to be sailed to train many students. Fig. 1 shows photo of the ship Hannara.
The deckhouse of Hannara consists of the following, arranged vertically (from the
bottom to the top): the bottom deck, which houses the main-engine room; the second
deck, for the accommodations of students; the shelter deck, for the accommodations
of the crew, the boat deck, for the accommodations of faculty members; the training
deck, for navigation training; and the bridge deck, which is used as a wheel house.

The preliminary WSN tests were conducted when the ship was moored to the port
and when all the equipments in the main-engine room, except for the electric
generator, were not being operated. The wireless communication tests were done in
one cabin at the shelter deck, which is the middle deck of the ship. The door of the
cabin is shown in Fig. 2. It was made of steel but its surface was covered with smooth
materials. Data transmission tests were carried out using two ZPAs (Zigbee Protocol
Analyzers), one sending 100 10-byte packets and the other receiving those packets.

116 B.-G. Paik et al.

The RF (radio frequency) strength, indicating the RSSI(received signal strength
indication) as well as the number of packets, was measured to evaluate the
transmission quality. We performed the measurements 10 times at each case. When
the sending ZPA (located within the cabin) and the receiving ZPA (located outside the
cabin) were 1 m away from the door, a 98~100% delivery ratio (= received packet
number/sent packet number) and an RSSI of -27~-30 dBm were found, which are not
bad for wireless communication. Here, dBm is an abbreviation for the power ratio in
decibel (dB) of the measured power referenced to one milliwatt (mW). Zero dBm
equals one milliwatt. The delivery ratio and RSSI were 76% and -37 dBm,
respectively, when the receiving ZPA was at an 8 m distance from the cabin door.
Although the cabin door was closed, wireless communication was found to be
possible when a sensor node is arranged near the door because the cabin door has a
ventilation window at its lower part as well as a small gap between the wall and the
door itself, as shown in Fig. 2.

Fig. 1. Hannara for full-scale ship tests

The tests regarding delivery ratio were also conducted in the corridor fronting the
cabin, with a width of 1.5 m and a length of about 40 m. The sending ZPA was at the
fixed location near one end of the corridor, and the receiving ZPA was moved to the
other end of the corridor, 5 m away from the sending ZPA. The test results regarding
the averaged delivery ratio and RF strength are shown in Table 2, and a photo of the
corridor is shown in Fig. 3.

Table 2 shows that the wireless communication network will be on if two sensor
nodes are within the line of sight, even at a distance of 40 m. In this experiment, as each
ZPA was positioned 1.5 m from the bottom, interference from crew members or
passengers passing through the corridor is unavoidable. If the basic data about the
possible interference from a person passing through the corridor would be prepared in
the future, the optimized location of the sensor node or router without any interference
would be found, and this could be used in designing the WSN for a real ship.

 Employment of Wireless Sensor Networks for Full-Scale Ship Application 117

 Fig. 2. Door of the cabin Fig. 3. Corridor in the shelter deck

The next stage was to measure the data delivery ratio at the stairs and between
decks. The stairs from the shelter deck to the boat deck had a height of about 3 m and
had steel walls with a thickness of over 15 mm, providing a sort of shielding space
from the microwave. The entrance door to the stairs at the shelter deck was opened,
and the sending ZPA was positioned at the upper corner of the entrance. The
receiving ZPA, on the other hand, was positioned at the top of the stairs. The
transmission ratio was 100%, and the RSSI value was -10 dBm, indicating very good
communication. When the receiving ZPA at the boat deck was moved to different
locations to remove it from the line of sight, the delivery ratio and RSSI value were
100% and -14 dBm, respectively, at a distance of 2 m from the boat deck entrance.
Even when the receiving ZPA at the boat deck was located just above the sending
ZPA at the shelter deck, the delivery ratio and RSSI value were 98% and -21 dBm,
respectively

Table 1. Particulars of the ship Hannara

Length (m) 102.7

Width (m) 14.5

Height (m) 7

Tonnage (ton) 3640

Speed (knot) 15 (max. 17)

Main Engine 4,000HP diesel engine

The entrance door to the boat deck was always open, but the entrance door to the
second deck, below the shelter deck, was made of steel and did not have any
ventilation window. A delivery ratio of 63% and an RSSI of -46 dBm were obtained

118 B.-G. Paik et al.

Table 2. Wireless Communication Tests for the Long Corridor in the Shelter Deck

Distance (m) Averaged delivery Ratio (%) Averaged RF Strength (dBm)

5 98 -13

10 100 -12

15 94 -20

20 100 -17

25 100 -15

30 98 -27

35 100 -23

40 100 -25

when the receiving ZPA was beyond the entrance door to the second deck, and when
the steel door was closed. From these experiments, the wireless communication
network was found to be on when the steel door of the entrance to each deck was
open. In addition, the closing of the entrance door to each deck would seriously
reduce the quality of the wireless communication through the stairs even if there was
a small gap between the entrance door and the side walls. Therefore, the plans should
be established in such a way as to ensure that the wireless communication would not
be interrupted, by using some bypass antennas or replacing the wireless network with
the wired network at the troubled region.

3.2 WSN Tests in Main Engine-Room

The basic WSN tests were conducted in the main-engine room, which had several
equipments and was considered very important in the monitoring of the ship’s
environmental conditions. The main engine was stopped, but the electric generator
was operated. Fig. 4 shows the main-engine room viewed from the main-engine
control room, and the laptop computer and sink node were placed on the control
console. Since various equipments such as pumps or filters, as well as the main
engine, were arranged in a complex way inside the main-engine room, it was very
important to properly employ the routers and sensor nodes. In the basic experiments,
since there were no advance reference data about the delivery ratio or RSSI according
to the microwave diffraction, the routers and sensor nodes were employed at places
on the line of sight. A schematic diagram of the sensor network field is shown in Fig.
5. The sink node, indicating the gateway, was placed at the top of the console, whose
height was 1.7 m, inside the control room. Router 1 was placed on the top of an
equipment that was 6 m away from the sink node and that had a height of 1.7 m.
Router 2 was placed on the top of a cylindrical steel structure that was 7 m away from
router 1 and that was near the stairs leading to the second deck. Router 3 was placed
at the entrance door to the second deck, and was about 4 m away from router 2.
Finally, the sensor nodes were positioned at the appropriate places based on the
communication depth, and they communicated with each other from the main-engine

 Employment of Wireless Sensor Networks for Full-Scale Ship Application 119

control room to the utility room of the 2nd deck by hopping. Sensor nodes 1 and 3
measured the temperature and humidity simultaneously. The intensity of illumination
was measured by sensor nodes 2 and 4. Router 2 had sensor nodes 1 and 2 as its
children, while router 3 had sensor nodes 3 and 4 as its children. The communication
depths of routers 1 and 2 were 1 and 2, respectively. The child of each router had a
depth one step smaller than the router’s depth. The empty space in the second deck
pertains to the path of the large exhaust pipes for the main engine. After the operation
of the WSN, it was confirmed that the wireless communication worked well and that
it could be useful for the monitoring of equipment or for fire prevention.

Main
engine

Stairs

Control room

Door

Sink node

Window

Router 1

Router 2
Sensor node 1

Sensor node 2

 Fig. 4. Control room for main-engine Fig. 5. Employment of WSN at the bottom
 deck (top view)

Several problems were found, although the basic experiments on the WSN that were
conducted on a real ship were generally successful. The first problem was the
communication depth of the WSN. Router 3 could allow its children to have only a
fourth depth because the total depth of this WSN was four. Although the ship Hannara
has a considerably small main-engine room, the monitoring of both the bottom and
second decks was done partially due to the restricted communication depth of the WSN.
In other words, the equipment and environment at the right side of the main-engine
room can be monitored, but the monitoring of the equipment and environment at the left
side is nearly impossible. In the second deck, the worst situation occurred from the
viewpoint of the monitoring of equipment and environment. Therefore, it would be
better to monitor only one deck in the case of the WSN with a small depth. To monitor
two decks simultaneously, it is necessary to increase the depth of the WSN.

The second problem was related to the battery consumption of the sensor nodes. As
most of the companies that are producing WSN modules design and manufacture
these through approximate estimation, without accurate information regarding battery
consumption, useful reference data are certainly necessary. There are some parts of
the monitoring process that require a short sensing period, but the other parts may
require a rather long sensing period. Power consumption tests were found to be
necessary in terms of the sensing period. Especially, as the use of gas sensors for fire
prevention will require significant power consumption, it would be desirable to adopt
a regular power service.

120 B.-G. Paik et al.

The third problem that was found concerns microwave diffraction. In the present
study, the routers and sensor nodes were placed within the line of sight because there
were no reference data about the diffraction. This, however, is not efficient for the
WSN design because the communication depth can be consumed in vain to avoid
obstacles within the line of sight. The basic data related to microwave diffraction are
necessary for the WSN design together with the consideration of multipath effect in a
ship.

The last problem that was found concerns placement. Although the main engine
was not actually operated, there were parts of the main engine that had a high
temperature at the bottom deck. As the positioning of the routers and sensor nodes
near the parts of the main engine with a high temperature would result in damages on
the WSN modules, the placement of the modules should be carefully considered. In
addition, high vibration and noises as well as high-temperature parts should be treated
with caution when the main engine is being operated.

4 Investigation of the WSN Characteristics at the Test Bed

4.1 Battery Consumption Tests

It is necessary to investigate the characteristics of the sensor node for the appropriate
application of it to a real ship. Although the sensor node of the present WSN needs
low power instead of regular power, the lowest battery limit for its normal operation,
and the life of the battery, should be checked in advance. Especially, if the crew must
frequently replace each battery with a new one during a long-term voyage, which is
expected to last for over 10 days, the crew would be annoyed and might no longer
want to use the WSN system. Thus, basic data concerning the time of a battery
replacement, as well as the battery consumption, will be helpful for the application of
the WSN to a ship.

In the case of the use of a sensor node encouraged by Zigbee alliance, the request
from the sink or coordinator can change the sleep mode into the wake mode, and vice
versa. However, as this method requires that each sensor node be ready to
continuously recognize requests from the sink, the sensor node does not completely
realize low power consumption. The sensor nodes that were used in this study have a
micro clock outside their RF and MCU chips, which would allow them to synchronize
the operation modes and to realize low power consumption because only the micro
clock would be awakened, and the other chips would continue being in the sleep
mode. In spite of the sensor nodes’ realization of low power consumption, the
instability of the WSN system due to its fast power consumption should be considered
at the operation mode with a short sleeping period. In this study, battery tests related
to the sensor nodes were conducted at the test bed on land.

To investigate the power consumption rate of each battery, the remaining voltage
in the battery was measured for the temperature and gas sensor nodes with an 8 sec
sleeping period. The voltage of the battery was initially 3.4 V, and the voltage value
was measured continuously for about 100 hr from 2 p.m. The lowest voltage limits of
the temperature and gas sensor nodes were 2.73 V and 2.23 V, respectively. The
communication was interrupted because the RF module stopped operating when the

 Employment of Wireless Sensor Networks for Full-Scale Ship Application 121

remaining voltage in the battery became lower than the minimum voltage required.
Fig. 6 shows the remaining voltage and temperature measured according to the time
variation. The power of the battery was consumed independently of the temperature
value, and the remaining voltage in the battery had a smooth and stable time history.
In addition, since the temperature sensor node sensitively detected the ambient
temperature, it can be said that the temperature environment can be controlled in the
future by monitoring the temperature as part of context awareness. In the case of the
gas sensor node, it excessively consumed the power of the battery from the beginning
of the gas monitoring. The remaining voltage started from about 2.9 V and reached
the minimum voltage required within 40 hr, as shown in Fig. 7. The sleeping time of 8
sec. was too short for the gas sensor node to be appropriately operated, and a time
period of over a minute would be required for a much longer operation. Consequently,
it is inappropriate for the gas sensor node to have the ability of low power
consumption for the monitoring of natural gas, methane, butane, and other gases to
prevent an explosion or fire in a real ship. The gas sensor node with regular power,
indicated by a power adaptor, would instead be desirable for the real application of
the WSN system.

Time(hour)

B
at

te
ry

va
lu

e
(V

)

T
em

p
er

at
ur

e
(o C

)

0 25 50 75 100
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0

5

10

15

20

25
Battery voltage
Temperature14:00

 Time(hour)

B
at

te
ry

va
lu

e
(V

)

A
rb

itr
ar

y
(p

pm
)

0 10 20 30 40
2.0

2.5

3.0

3.5

4.0

0

10

20

30

40

50

60

70

80

90

Battery voltage
Arbitrary

14:00

 Fig. 6. Temperature sensor node Fig. 7. Gas sensor node

When the sleeping time of the temperature sensor node became 64 sec, the
remaining voltage was 2.88 V after about 205 hr. Based on its relation with the
voltage consumption data of the 8-sec period, the life of the battery was predicted to
be about 15 days. The power consumption characteristics of the battery should be
understood beforehand because the ship owner or crew would be afraid to use the
WSN system with sensor nodes whose battery has a short life.

5 Conclusion

In the present study, a monitoring system was introduced for the abnormal operation
of equipment and for fire prevention in dangerous regions, which are important
application fields of the WSN technology. Several realistic problems were found from
the basic WSN tests that were conducted on a real ship. The regular wireless
communication is generally possible within a ship; however, the reference data

122 B.-G. Paik et al.

regarding the communication depth, the power consumption rate of the battery in a
sensor node, and the placement of the RF modules should be obtained more for the
WSN design of a full-scale ship. In addition, the enduring time of each sensor node
should be investigated carefully considering the multipath effects to provide a real
ship with a useful WSN system besides the battery consumption tests at the test bed
on land.

Acknowledgments. This research was accomplished with support from the inherent
research project entitled “Development of smart operation technologies for
exploration fleets based on the ubiquitous concept (PE0116A).”

References

1. MARINTEK., Intelligent hull-monitoring systems for the reduced risk of structural failure,
spill into the sea, and damage to cargo, and for improved passenger safety and comfort
(HULLMON+). G3RD-CT-2000-00329, EU Framework Programme (2000)

2. Nguyen, T.V., Nelson, H.W.: A systems approach to machinery condition monitoring and
diagnosis. In: NDIA: Proceedings of the 4th Annual Systems Engineering Conference
(2001)

3. Nielsen, J.K., Pedersen, N.H., Michelsen, J., Nielsen, U.D., Baatrup, J., Jensen, J.J.,
Petersen, E.S.: Sea sense: real-time onboard decision support. Annual Report, Force
Technology (2006)

4. Cho, S.R., Lee, D.K., Paik, B.G., Yoo, J.H., Park, Y.H., Park, B.J.: A study on USN
technologies for ships. In: Proceedings of Ubiquitous Intelligence and Computing, July 11-
13, 2007, Hong Kong, China (2007)

5. Hakem, N., Misson, M.: Study of the throughput of the wireless home automation network
using the encapsulation of two medium-access methods. In: Proceedings of Communication
Systems and Networks, September 9-12, 2002, Spain (2002)

6. Oppermann, L., Broll, G., Capra, M., Benford, S.: Extending authorizing tools for location-
aware applications with an infrastructure visualization layer. In: Proceedings of Ubiquitous
Computing, September 17-21, 2006, Orange County, CA, USA (2006)

7. Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G., Kapur,
N., Wood, K.: SenseCam: a retrospective memory aid. In: Proceedings of Ubiquitous
Computing, September 17-21, 2006, Orange County, CA, USA (2006)

8. Yun, K.H., Choi, S.W., Kim, D.J.: A robust location tracking system using the ubiquitous
RFID wireless network. In: Proceedings of Ubiquitous Intelligence and Computing, Wuhan,
China, September 3-6, 2006 (2006)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 123–133, 2007.
© IFIP International Federation for Information Processing 2007

Improving the Performance of the Wireless Data
Broadcast by the Cyclic Indexing Schemes

Long-Sheng Li, Ming-Feng Chang, and Gwo-Chuan Lee

Department of Computer Science and information Engineering,
National Chiayi University,

No.300 Syuefu Rd., Chiayi 60004, Taiwan, R.O.C.
sheng@mail.ncyu.edu.tw, mfchang@csie.nctu.edu.tw,

gclee@nuu.edu.tw

Abstract. Wireless data broadcast is an effective approach to disseminate
information to a massive number of users. Indexing techniques for broadcasting
data can reduce the battery power consumptions of mobile terminals by
decreasing the tuning time. The organization of the indexes affects the
efficiency of data searching. We investigate how the degree of the index node
affects the tuning time, and thus minimize the power consumption of user’s
terminals. We proposed a performance measurement for the tuning time and a
cyclic indexing algorithm. The numerical results suggest the degree of an index
node be 3 when the access probabilities of the data tend to be uniformly
distributed so that the expected tuning time is minimal. When the access
distribution of the data nodes is skewer, the tuning time can be minimized by
setting the degree in the index node 2.

Keywords: Broadcast, wireless, tuning time, tuning cost, access time, the Hu-
Tucker algorithm.

1 Introduction

Wireless data broadcast is an efficient technology to overcome the limited bandwidth
in the ubiquitous computing. Wireless data broadcast over radio channels allows users
to access data simultaneously at a cost independent of the number of users. It is a
powerful way to disseminate data to a massive number of users in the ubiquitous
computing. A centralized server periodically broadcasts the data to a large number of
mobile terminals through a wireless medium. The mobile terminals receive the
broadcasts and filter out the data that is not desired [2]. This service is especially
useful for disseminating data that are commonly accessed, such as traffic information
for navigation system and real-time stock information. The location-dependent web
service can also utilize wireless data broadcast. One disadvantage of the wireless data
broadcast is that the mobile terminals can only wait for the requested data.

Power-efficient wireless communication is another important issue for the wireless
data broadcast. A simple way to reduce the power consumption is to add auxiliary

124 L.-S. Li, M.-F. Chang, and G.-C. Lee

information to enable the mobile terminals to receive only the data the user needs. A
mobile terminal can be three power modes: transmission mode, receiving mode, and
doze mode.

There are two basic approaches for users to access data through radio channels [8].
One is push-based scheme, where the clients retrieve data by only listening to a
certain channel in the receiving mode. The clients cannot inform the broadcast server
about what they need due to the lack of uplink communication channels from the
users to the server. The other approach is pull-based scheme where the clients send
requests to retrieve data. There is an uplink channel through which a client can send
requests for specific data items to the broadcast server. The broadcast server may
arrange the broadcast sequence according to the request received. In the power
management view, the client saves power by avoiding transmissions and waking up
from the doze mode only when necessary. The push-based scheme is a better strategy
to overcome the limited battery power.

To evaluate the efficiency of the wireless broadcasting, two criteria are often
used: access time and tuning time [1]. The access time is the average time from the
moment a client requests data identified by a primary key to the point when the
requested data are received by the client. The access time determines the response
time of data access. The tuning time is the time spent by a client listening to the
channel. The tuning time determines the power consumed by the client to retrieve
the requested data. Indexing techniques insert auxiliary information indicating
when each data item will be broadcasted to reduce the tuning time [1][2][4][5].
After receiving the index, a client waits for the requested data most of time in the
doze mode in which low power is consumed and only wakes up to receive data
when the requested data is coming. Therefore, the tuning time can be reduced and
the battery power is conserved.

2 The System Architecture

A broadcast server broadcasts the data to the clients by radio channels. The clients
receive the broadcast data and the requested data are filtered. To consume less power
of the clients, the broadcast server inserts indexes before the broadcast data to indicate
the offsets to the requested data. The clients receive the indexes and go to doze mode.
When the requested data are broadcasted, the client wakes up to the receiving mode
and receives the requested data. Moreover, to provide efficient search of the indexes,
an alphabetic Huffman tree is used for the indexing tree. The clients using this scheme
should tune to the beginning of the indexes to get the offset to the requested data. The
waiting time between the start of tuning and the beginning of the indexes is half of a
broadcast cycle in average. This is referred to the distributed indexing scheme [1].

To reduce the access time of the distributed indexing scheme, the broadcast
bandwidth is spilt into several physical channels or logical channels [9]. All data are
assigned into a data channel. The indexes of the same level are proposed to occupy on
the same channel. Fig. 1 shows the indexing tree and the channel assignment of the
broadcast data.

 Improving the Performance of the Wireless Data Broadcast 125

I

I1 I2

I3 D1 D2 D3

D4 D5

I I I I I I I I I

I2 I1 I2 I1 I2 I1 I1 I2 I1

I3 I3 I3 I3 I3 I3 I3 I3 I3

D4 D5 D1 D2 D3 D4D1 D2 D3

C1

C2

C3

C4

Fig. 1. The indexing tree and the channel assignment of the broadcast data

The distributed indexing scheme assumed the access probabilities of the data items
are the same. Shivakumar and Venkatasubramanian released the assumption [9]. Let n
be the number of data items. Every data item has the popularity probability to indicate
the expected number of access to the data items. We assume the popularity
probabilities of the data items be f1, f2,…, fn. If the tuning time for the data item i is Ti,
the average tuning time is

() ()∑∑ ==
× n

i ii

n

i i fTf
11

/
.

The tuning time Ti is dependent on the depth of the data item in the indexing tree.
The problem to construct an indexing tree to minimize the average tuning time is
similar to the Huffman coding, but the alphabetic ordering of the data items is
preserved. Hu and Tucker proposed an algorithm to optimize the alphabetic-ordered
Huffman code [11][12]. Shivakumar and Venkatasubramanian suggested a k-ary Hu-
Tucker algorithm to minimize the average tuning time, but didn’t describe the
algorithm clearly [9].

An open problem is remained unsolved in the k-ary Hu-Tucker algorithm. For
some n, it is impossible to construct a tree that the branches of all internal nodes are
filled with k nodes. The k-ary Hu-Tucker algorithm constructs the internal nodes with
2 to k branches, but doesn’t specify exact rules to construct the internal nodes. A
strategy to determine the branches of the internal nodes of an indexing tree to obtain
the minimal average tuning time is needed for the k-ary Hu-Tucker algorithm.

The tuning time is determined only by the depth of the indexing tree. If we increase
the branches of the index, the tuning time is reduced. However, increasing
the branches should increase the capacity of the index. For the wireless broadcasting,
the indexes can be broadcasted on the index channels. The size of the index represents
the bandwidth requirement of the radio channel. In wireless communications, a radio
channel is partitioned into slots of constant size. The 3rd generation personal
communication service provides the function to assign the fixed bandwidth of the
channel to a dedicated service [8]. Therefore, the size of the indexes should be the
same to fit in a time slot. The tuning time should count the number of indexes
received and the size of the index. Assume the depth of the data node i is di, and the
degree of the index is k. β represents the length of the key and the offset. The average
tuning time can be expressed as:

126 L.-S. Li, M.-F. Chang, and G.-C. Lee

∑
∑

∑
=

=

= −=
−

= n

i iin

i i

n

i ii
fdk

f

fdk
T

1

1

1)1(
)1(

β
β . (1)

3 The Proposed Alphabetic Huffman Algorithms

Huffman tree and minimize the average tuning time. For n data nodes, it may not be
possible to construct an index tree where all indexes have exact k downward
branches. That is, empty branches are remained in some indexes. We call this
category of index as the incomplete index. In our proposed algorithm, we gather those
empty links in one index of the index tree, i.e., there is only an incomplete index in
the tree. Under this assumption, the number of the non-empty links of the incomplete
index can be determined from the number of data nodes, n, and the degree, k. Let a %
b represent the remainder of a/b, and k1 be the number of the non-empty links of the
incomplete index. k1 can be expressed as

⎩
⎨
⎧

≠=−
==−−+

=
1,0 and)1(% for ,

1or 0 and)1(% for),1(
1 bbknb

bbknkb
k . (2)

Using the techniques of the binary Hu-Tucker tree, we construct the k-ary index
tree by merging k nodes with the least access probability into an index node of the
index tree. The access probability of the index is the sum of the access probabilities of
its k children. The number of the non-empty links of the incomplete index is
calculated first. It is due to that we reduce the average tuning time by merging nodes
with less access probability into an index in the lower level of the tree. This algorithm
will be referred to as the k-ary Incomplete-index First Alphabetic Huffman Algorithm
(IFAH). The algorithm is shown in the following.

Step 1. Let S=(N1, N2, …, Nn), the ordered list consists of all data nodes sorted by
search key in increasing order. Ni=Di.

Step 2. Calculate the number of the non-empty links k1 of the incomplete index using
Equation 2.

Step 3. Construct the incomplete index node.
 ● Find k1 consecutive nodes in S whose sum of access probabilities is

minimum.
● Replace the k1 consecutive nodes with an index node in S. The access
probability of the index node equals to the sum of the access probabilities of
the replaced nodes.

Step 4. If |S|=1, then go to Step 7.
Step 5. Construct the k-degree index nodes.
 ● Find the k “consecutive” nodes, but index nodes can be bypassed, in S that

have the minimum sum of access probabilities.
 ● Replace the k “consecutive” nodes with a new index node in S.
Step 6. If |S|=1, then go to Step 7.
 Else go to Step 5.
Step 7. Determine the level of each data node in the index tree.

 Improving the Performance of the Wireless Data Broadcast 127

Step 8. Reconstruct the index tree according to the levels of the data nodes.
 ● Initialize the ordered list S as in Step 1.
 ● Find k1 consecutive data nodes whose levels are the same. The levels of k1

consecutive data nodes must be the maximum among the remaining nodes.
 ● Combine the k1 consecutive nodes to an index node. Replace the k1

consecutive nodes with the index node in S.
 ● Find k consecutive nodes whose levels are the same and the maximum

among the remaining nodes, and combine the k consecutive nodes at the
highest level first. Then, the nodes on the next-to-highest level are combined.

 ● The process continues until there is only one node left and its level must
 be 0.

Fig. 2 shows an example index tree obtained by the IFAH. The boxes represent the
data nodes and the numbers in the boxes represent the access probabilities of the data
nodes. The circles represent the index nodes and the numbers in the circles represent
the combined access probabilities of the linked nodes. i is the key for the data node
Di. The IFAH constructs index node I1 first, because D2 and D3 have the minimum
sum of access probabilities. In constructing index node I2, index node I1 is bypassed,
because D1, D4, and D5 are the 3 “consecutive” nodes that have the minimum sum of
access probabilities. The index nodes construction process continues until only one
node is left in S. We assign level 0 to the root. According to the links of the indexes,
we assign the level values to all index nodes and data nodes. Then, the index tree is
reconstructed from the highest level of the data nodes.

47
5 47

3
47
4 47

6 47
1 47

7 47
8

47
13

47
5

47
3

47
4

47
6

47
1

47
7

47
8

47
13

D1 D2 D3 D4 D6 D7 D5 D8

47
7

47
12

47
22

47
47

reconstruction

(a) The index tree before reconstruction (b) The index tree after reconstruction

D1

D2 D3

D4 D5 D6 D7

D8

level=2 3 3 2 2 2 2 1

level=0

level=1

level=1

level=2 I1

I2

I3

I4

Fig. 2. An example of the IFAH

The format of an index is as follows,

Key 1 Offset 1 Key 2 Offset 2 Key 3 Offset 3

Key i is the boundary key value for searching requested data. If the key of the
requested data is larger or equal to Key i and less than Key (i+1), Offset i is the offset
for the index or data slot of the lower level in the index tree.

128 L.-S. Li, M.-F. Chang, and G.-C. Lee

Note that the index tree in Fig. 3 places D1 in its left-most leaf, i.e., the index tree
starts from D1, the first data node. However, a k-ary alphabetic tree does not
necessarily start from D1; it can starts from any data node. Fig. 3 shows the index
trees starting from different data nodes. The numbers on the links under the index
nodes are the boundary key values of the index nodes. Fig. 3 (a) is an example of k-
ary alphabetic tree starting from D1. Fig. 3 (b) shows an example of k-ary alphabetic
tree starting from D2; the data node before the D2 is rotated to the end of the ordered
list. In this example, we show how to retrieve data node D1. The boundary key values
of the root index are 2, 5, and 6. The key of D1 is less than 2. Therefore, we chose the
offset of boundary key value 6 to obtain the index of the next level. The index of the
next level shows the offset of the requested data node D1. This shows that a k-ary
alphabetic tree can start from any data nodes. That is, the alphabetic order of the data
nodes in the index tree can be treated as a cycle. The average tuning times are 5.62 in
Fig. 3 (a) and 4.49 in Fig. 3 (b), respectively. We apply the rotatability to improve the
IFAH. The new algorithm will be referred to as the k-ary Cyclic Incomplete-index
First Alphabetic Huffman Algorithm (CIFAH). The CIFAH modifies Step 3 and 5 of
the IFAH. In CIFAH, we treat the ordered list as a cycle and find the minimum sum
of access probabilities.

1

1 4

2

2 6

127
1 127

32 127
4

127
8 127

64 127
2

127
16

(a) 62.5=T

127
32

127
4

127
8

127
64

127
1 127

2
127
16

(b) 49.4=T

D1 D2 D3 D4 D5 D6 D2 D3 D4 D6 D7 D1

D7 D5

4
7

3
2

6
5

6
5

1
7 4 3

Fig. 3. The index trees with different alphabetic orders

4 The Numerical Analysis

To simplify the analysis of the tuning cost of the proposed alphabetic Huffman
algorithms, we made the following assumptions:

 There is no fault in the broadcasting or reception.
 The initial probe is uniformly distributed in the broadcast cycle.

First, consider a special case where the access probabilities of the data nodes are
identical, and the optimal index tree is a full k-ary tree that has no incomplete index.
Let k be the degree in each index, and d be the depth of the index tree. The number of
data nodes is 1−= dkn . The average tuning time is)1(−= dkT . If k could be any real

number, the average tuning time can be minimized when 0=
dk

Td .

 Improving the Performance of the Wireless Data Broadcast 129

...71828.20
)

ln

ln
(

==⇒== ek
dk

k

nk
d

dk

Td .

Since k is a natural number, the result suggests that the average tuning time may be
minimized when the degree of the index is 3.

Release the limitation of the full k-ary tree, we assume the probability distributions
of all data nodes are uniformly distributed. That is, nffff n /1321 ===== L and

⎡ ⎤nd klog= . The index tree is a full k-ary tree when dkn = . For
dd knkk <≤+− 2 , all leaves are at the same level (level d). The average tuning

time is)1(−= dkT . For 132 +−≤≤+− kknkk dd , there are one leaf at level (d-

1) and (n-1) leaves at level d. The average tuning time is ndnkT /)1)1((−−= . For

2243 +−≤≤+− kknkk dd , there are two leaves at level (d-1) and (n-2) leaves at
level d. The average tuning time is ndnkT /)2)1((−−= . For

)1()1()1(1111 −+−−≤≤++− −−−− dddddd kkkknkkkk , there are k-1 leaves at level (d-1)

and (n-k+1) leaves at level d. The average tuning time is nkdnkT d /))1()1((1 −−−= − .

Therefore, if iikknikik dd +−≤≤+++−)2()1(,we have

nidnkT /))1((−−= , for i=0, 1, …, kd-1-1.

The average tuning time can be expressed as

n

k

nk
dnk

T

d

)
1

)1((⎥
⎦

⎥
⎢
⎣

⎢
−
−−−

= , where ⎡ ⎤nd klog= (3)

0.0

5.0

10.0

15.0

20.0

25.0

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

The number of data items

Th
e

 a
ve

ra
g

e
 tu

n
in

g
co

st

branches=2

branches=3

branches=4

branches=5

branches=6

Fig. 1. The average tuning time for data with the uniform distribution

Fig. 4 shows the tuning time as functions of the number of data nodes and the
degree of the index node. The access probabilities of the data nodes are all equal. The
number of the data nodes varies from 2 to 1000. The five curves, in the figure,

130 L.-S. Li, M.-F. Chang, and G.-C. Lee

represent the average tuning time for the cases where the degrees are 2, 3, 4, 5, and 6,
respectively. The average tuning time increases as the number of data nodes increases
due to the increasing height of the index tree. The tuning time increases as the degree
of the index is larger than 3. Therefore, when the access probabilities are uniformly
distributed, the index nodes of degree 3 tend to minimize the average tuning time.

Consider the case where the access probabilities are non-uniformly distributed. We
assume the distribution of the access probabilities is Zipfian [9][14][13]. For n data
nodes, the access probability of a data node Di is as follows,

∑ =
×

=
n

i

rri
ii

f

1
/1

1

,

where r is the rank of the distribution.
Note that, the larger the rank r is, the skewer the probability distribution is. In

addition, fi decreases as i increases. In this sector, we use the rank r to set the access
probabilities of data nodes. Then, reorder the sequence of the data nodes using a
random number generator. The number of possible sequence orders is n!. Therefore, it
is impossible to evaluate all possible sequence orders for a large number of data
nodes. To simplify the computation, the sequence order is randomly generated. In our
experiments, we generate 10000 random sequences for each Zipfian distribution, and
then generate the index tree for each random sequence order, and calculate the
average tuning time.

Fig. 5 shows the results of the average tuning time for different ranks of Zipfian
distribution. For a small rank (e.g., r=0.2) and a large number of data nodes, the
minimum average tuning time can be obtained when the degree is 3. The results are
consistent with that of the uniform distribution. It is because that a smaller rank for
Zipfian distribution results in the less skew probabilities distribution. For a large rank
(e.g., r=2) in Zipfian distribution, the minimal average tuning time is found when the
degree is 2. This is because the large number of branches increases the tuning time of
every data node in the index tree. Consider the index trees of a given degree. The
skewer the access probability distribution is, the less the tuning time is. This is

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 100

The number of the data items

T
h

e
 a

ve
ra

g
e

 tu
n

in
g

 ti
m

e 2
3
4
5
2

r =0.2
r =1.0
r =2.0

Fig. 2. The average tuning time of different number of the branches with r=0.2, 1.0, and 2.0
with the IFAH

 Improving the Performance of the Wireless Data Broadcast 131

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 100

The number of the data items (r =0.2)

T
he

 a
ve

ra
ge

 tu
ni

ng
 ti

m
e

2
3
4
5

IFAH
CIFAH

4

6

8

10

12

14

10 20 30 40 50 60 70 80 90 100
The number of the data items (r =1.0)

T
he

 a
ve

ra
ge

 tu
ni

ng
 ti

m
e

2
3
4
5

IFAH
CIFAH

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

The number of the data items (r =2)

T
he

 a
ve

ra
ge

 tu
ni

ng
 ti

m
e

2
3
4
5

IFAH
CIFAH

Fig. 3. The average tuning time of the IFAH and CIFAH

because as the access distribution gets skewer, fewer data nodes commands more
access probability. The data nodes of large access probabilities trends to be placed at
the lower levels of the index tree. As a result, the tuning time decreases.

Fig. 6 shows that the average tuning time of the CIFAH is less than that of the
IFAH. The CIFAH is an efficient algorithm in reducing the average tuning time. It is
because we can find the minimum tuning time from the selected nodes in the cycle
sequence to build low cost indexes in the index tree. The improvement ratio of the
CIFAH with large rank r is larger than that with small rank. This is because there are
data nodes of larger access probabilities for the skewer access probabilities
distributions. The CIFAH has the capability to find an ordered list for the data nodes

132 L.-S. Li, M.-F. Chang, and G.-C. Lee

to construct an index tree that places those frequently accessed data nodes in the
lower level. Therefore, the improvement ratio of the tuning time increases.

5 Conclusions

In this paper, we proposed indexing schemes to obtain minimal tuning time in the
wireless broadcast system. The IFAH is an algorithm similar to the Hu-Tucker
algorithm in organizing the indexes. To reduce the tuning time, the CIFAH can
improve the IFAH by rotating the sequence of the data nodes.

From the experiments, we have the following results for the indexing schemes.

 If the access probabilities of the data are uniformly distributed, the tuning time
is minimal when the degree of the index node is 3.

 For the data nodes whose access probabilities are Zipfian distributed, the
tuning time increases as the number of the data nodes increases. It is because
that the depth of the index tree increases as the number of the data nodes
increases.

 The CIFAH can effectively reduce the tuning time when the access
probabilities are of Zipfian distribution, since it is more likely to find
consecutive nodes with less access probability to be merged into an index
node in the rotatable data cycle.

 For the Zifian distribution, the improvement ratio of the CIFAH increases as
rank r increases, i.e., the distribution gets more distorted. It is because skewer
access probabilities let the CIFAH have more chances to find k consecutive
nodes of less tuning access probability in the rotatable broadcast cycle to
construct an index node in the index tree.

 The tuning time increases as the degree of the index increases, since index of
large degree increases the tuning time of every data node in the index tree.

We provide the cyclic indexing construction schemes to reduce the average tuning
time. To reduce the tuning time, the degree of the index in the index tree is suggested
to be 2 or 3. The frequencies of the broadcasted data may not be uniform in a
broadcast cycle. In the future, we can schedule the broadcast sequence according the
access probabilities and a new indexing scheme is required to reduce the tuning time.

References

1. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Energy Efficiency Indexing on Air. In:
Proceedings of the International Conference on SIGMOD, pp. 25–36 (1994)

2. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Data on Air: Organization and Access.
IEEE Transactions on Lnowledge and Data Engineering 9(3), 353–372 (1997)

3. Su, C.-J., Tassiulas, L.: Joint Broadcast Scheduling and User’s Cache Management for
Efficient Information Delivery. Wireless Networks 6, 279–288 (2000)

4. Lee, W.C., Lee, D.L.: Using Signature Techniques for Information Filtering in Wireless
and Mobile Environments. Distributed and Parallel Databases 4(3), 205–227 (1996)

 Improving the Performance of the Wireless Data Broadcast 133

5. Lee, C.K., Leong, H.V., Si, A.: A Semantic Broadcast Scheme for a Mobile Environment
Based on Dynamic Chunking. In: 20th International Conference on Distributed Computing
Systems, pp. 522–529 (2000)

6. Saran, H., Shorey, R., Kumar, A.: Policies for Increasing Throughput and Decreasing
Power Consumption in Bluetooth MAC. In: 2000 IEEE International Conference on
Personal Wireless Communications, pp. 90–94 (2000)

7. Lo, S.-C., Chen, L.P.: An Adaptive Access Method for Broadcast Data under an Error-
Prone Mobile Environment. IEEE Transactions on Knowledge and Data
Engineering 12(4), 609–620 (2000)

8. Hu, J.-H., Yeung, K.-L., Feng, G., Leung, K.-F.: A Novel Push-and-Pull Hybrid Data
Broadcast Scheme for Wireless Information Networks. In: 2000 IEEE International
Conference on Communications, vol. 3, pp. 1778–1782 (2000)

9. Shivakumar, N., Venkatasubramanian, S.: Energy-Efficient Indexing For Information
Dissemination In Wireless Systems. ACM-Baltzer Journal of Mobile Networks and
Nomadic Applications 1, 433–446 (1996)

10. Peng, W.-C., Chen, M.-S.: Dynamic Generation of Data Broadcasting Programs for a
Broadcast Disk Array in a Mobile Computing Environment. In: CIKM 2000. Proc. Of the
ACM 9th International Conf. on Information and Knowledge Management, pp. 6–11
(November 2000)

11. Hu, T.C., Tucker, A.C.: Optimal computer search trees and variable-length alphabetic
codes. SIAM Journal Applied Math. 21(4), 514–532 (1971)

12. Knuth, D.E.: Dynamic Huffman Encoding. Journal Algorithms 6(2), 163–180 (1985)
13. Li, W.: Random texts exhibit Zipf’s law-like word frequency distribution. IEEE Trans.

Information Theory 36(6), 1842 (1992)
14. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley Press,

Cambridge, Massachusetts (1949)
15. 3GPP TS 25.324: Radio Interface for Broadcast/Multicast Services.

Revisiting Fixed Priority Techniques

Nasro Min-Allah1,2,3, Wang Yong-Ji3, Xing Jian-Sheng1,3, and Junxiang Liu3

1 Graduate University, Chinese Academy of Sciences, Beijing 100039, P.R. China
2 Department of Computer Sciences, COMSATS University, 44000, Pakistan

3 Institute of Software, Chinese Academy of Sciences, Beijing 100080, P.R. China
{nasar,ywang,jiansheng,liu}@itechs.iscas.ac.cn

Abstract. Discrete scheduling is preferred over continuous scheduling
for preemptive scheduling problems, however, classical continuous
schedulability tests can not work effectively with discrete scheduling.
This area of integrating discrete scheduling with continuous schedula-
bility tests remains unexplored. Two contributions are made in this pa-
per; firstly, an empty-slot method is introduced and extended to discrete
schedulability analysis and secondly, an efficient exact feasibility test
is proposed that has lower complexity in contrast to current feasibility
tests in terms of reducing the number of scheduling points, where task
feasibility is analyzed.

Keywords: Real-Time Systems, Fixed priority Scheduling, Discrete
Scheduling, Rate Monotonic Analysis, Time Demand Approach.

1 Introduction

Preemptive scheduling- a task may be preempted and resumed at some later
stage- has become a mature field and a lot of literature is available [1], [2],
[5]. Real-time systems implement preemptive scheduling through the priority
scheme: higher priority job preempts a lower priority job. The system at each
time instant assigns a priorities to active jobs and allocates the processor to the
one acquiring the highest priority.

Currently, two approaches are available to implement preemptive scheduling
algorithms in hard real-time systems: event-driven and timer-driven [6]. As long
as preemption is concerned it can only occur at specified discrete time intervals
for timer-driven approach, while for event-driven approach, preemptions occur
when external interrupts arrive. In both case, interrupts are handled only, when
current instruction is executed and system status is stored for later reference.
As each instruction consumes a fixed number of CPU’s clock time, a preemp-
tion only occurs at specified discrete time interval for event-driven approach.
So it is a reasonable abstraction that preemptions occur only at discrete time
intervals for hard real-time systems [7]. It is the preemption that makes schedul-
ing either continuous or discrete. As integer values are easier to be implemented
and operated than real numbers, discrete scheduling is preferred over continuous
scheduling in hard real-time computer systems.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 134–145, 2007.
c© IFIP International Federation for Information Processing 2007

Revisiting Fixed Priority Techniques 135

Schedulability analysis is crucial for hard real-time systems to maintain system
timing constraints. A lot of work has been done on Rate Monotonic (RM) and
Deadline-Monotonic (DM) analysis [4], [9], [13], [16], [17]. However, most of
the work done is focused on i) continuous schedulability analysis and ii)their
complexity is pseudo-polynomial (in exact form). In this paper, we categorically
address the above issues in Section 2 and 3, respectively.

In [10], Santos et al. proposed an empty-slot method and applied it to analyze
the schedulability of communication tasks in real-time LANs. However, their task
system is restricted to implicit-deadline and the execution time of each task must
be equal to 1. Subsequently, Santos and Orozco [11] extended this method to
MTSP (Multiple Tasks-Single Processor) systems and removed the restriction
on the execution time of tasks but the task system is still restricted to implicit-
deadline and the method is applicable to the RM schedulability analysis only.

Up to now, there has been no general method for analyzing discrete schedula-
bility. We address this issue in Section 2. where we first analyze the empty-slot
method and extend it for general discrete schedulability analysis. Then we ana-
lyze the discrete schedulability with a more general, constrained-deadline, syn-
chronous task system and propose a new discrete schedulability test, which can
be applied to all static-priority scheduling algorithms. This paper also presents a
novel technique to handle the complexity of exact tests by reducing the number
of inequalities which are needed to be tested otherwise for determining system
feasibility, in Section 3. Finally, conclusions are drawn in Section 4.

2 Discrete Scheduling by Empty-Slot Method

2.1 Empty-Slot Method

Empty-slot method [10] is an appropriate approach for general discrete schedu-
lability analysis. The main idea is: time is slotted and the duration of one slot
is taken as unit of time. For any task τi, its parameters ci, pi and di are mu-
tually commensurable and are assumed to be positive integers. Slot 1 is the
first slot. Initially, all slots are empty. Each task acquires its slots according to
the scheduling algorithm. Authors in [10] represented a node by a task, which
must transmit its messages in one slot. The network is specified as a task set
τ = (1, p1), ..., (1, pn). The expression Wn(t) =

∑i−1
h=1� t

p1
� gives this worst case

of load in the interval [0, t]. Set τ is said to be non-saturated iff Wn(M) < M ,
where M denotes the least common multiple of all tasks. It has been proved
that τ is RM schedulable iff for i = 2, ..., n,

∑i−1
h=1� t

ph
� < 1 and pi ≥ e1(i−1) =

least t : t = 1 +
∑i−1

h=1� t
pn

�, where e1(i−1)denotes the first empty slot of the
higher priority i−1 tasks. There exist some constraints on the above task model
i.e. tasks must have transmission time (execution time) equal to 1 and deadline
equal to period.

Santos et al. extended this method to MTSP systems and the constraints on
execution times were weakened by assuming any integer values [11]. However,
the task model is still implicit-deadline synchronous. τ is RM schedulable iff ∀i ∈

136 N. Min-Allah et al.

2, ..., n,
∑i−1

h=1
ch

ph
< 1 and pi ≥ ec(i−1), where ec(i−1) denotes ci-th empty slot of

the higher priority i−1 tasks. From the above results, it is a reasonable conjecture
that a similar result can be obtained for constraint-deadline synchronous task
model when the timing constraint ∀i, di = pi is weakened with ∀i, di ≤ pi .

2.2 Discrete Static-Priority Schedulability Analysis

Preliminary Results. Let N denotes a natural number and N+ = N − {0}.
Let us define the function:

f(t) =
n∑

i=1

ci�
t

pi
� (1)

Since f(t) gives the maximum load in the interval [1, t]. Some conclusions can
be drawn:
A. f(t2) − f(t1) is the workload in the interval [t1, t2]
B. f(t+1)−f(t) is the workload generated at the beginning of slot t+1 . If the sys-
tem is schedulable and f(t+1) > f(t), then the interval [t+1, t+(f(t+1)−f(t))]
is full. If f(t + 1) = f(t) then slot t + 1 can be empty.
C. if f(t) ≥ t, slot t is full, otherwise slot t could be either full or empty.
It is obvious that f(t) is non-decreasing monotonically. We can prove the follow-
ing lamma :

Lamma 1

f(t1 + t2) = f(t1) + f(t2) − j, j ∈ {0, 1, ...,
n∑

i=1

ci} (2)

Proof. As

�(a + b)/c� =
{

�a/c� + �b/c�
�a/c� + �b/c� − 1 ∀a, b, c ∈ N+

� (a + b)
c

� = �a

c
� + �b

c
� − j, j ∈ 0, 1

thenf(t1 + t2) =
n∑

i=1

� t1 + t2
pi

�ci

=
n∑

i=1

{� t1
pi

�ci + � t2
pi

�ci − jici}

=
n∑

i=1

� t1
pi

�ci +
n∑

i=1

� t2
pi

�ci −
n∑

i=1

jici

= f(t1) + f(t2) − j

where j =
∑n

i=1 jici, as ji ∈ {0, 1}, j ∈ {0, 1, ...
∑n

i=1 ci}. We can see that τ
repeats its behavior every M slots and to study its behavior it suffices to analyze
it in the interval [1, M] ≤ M . If τ is schedulable, the workload generated by τ

Revisiting Fixed Priority Techniques 137

in the interval [1, M] must execute to completion, therefore f(M) ≤ M is a
necessary condition for τ to be schedulable. If M − f(M) > 0, then it gives
the number of empty slots in the interval [1, M] and the system is said to be
non-saturated. If M − f(M) = 0 , the system has no empty slots in the interval
[1, M] and is called saturated.

Theorem 1. For a non-saturated system under any static-priority scheduling
algorithm, the i-th empty slot ei is the minimum value such that t = i + f(t),
t ∈ [1, +∞], ∀i ∈ N+.

Proof. As ei is the i-th slot, there are i−1 empty slots in the interval [1, ei −1].
Since ei is empty, workload generated by all tasks in the interval [1, ei − 1] can
execute to completion. Therefore, f(ei−1) = (ei−1)−(i−1) = ei−i. No workload
is generated at the instant ei, f(ei) = (ei − 1), namely ei = i + f(ei). Here we
prove that ei is the minimum t|t = i+f(t). Since ∀t < ei, there are at most i−1
empty slots in the interval [1, t], then f(t) ≥ t − (i − 1) > t − 1 =⇒ t < i + f(t).
Therefore, ei is the minimum t|t = i + f(t).

Theorem 2. For a non-saturated system under any static-priority scheduling
algorithm, there is

ei+1 − ei ≤ ea, ∀i ∈ N, a ∈ N+ (3)

Proof. To prove Theorem 2 it suffices to prove ∀i, ei+a ∈ [ei + 1, ei + ea]. Since
ei is empty, the workload generated in the interval [1, ei−1] has been dealt with.
According to Lemma 1 and conclusion A, the workload is:
W = f(ei + ea) − f(e)i) = f(ei) + f(ea) − j − f(ei) = f(ea) − j
From Theorem 1, there is f(ea) = ea − a, so W = ea − a − j. The difference
between the workload and the length of the interval is no less than a, so there
are at least a empty slots in the interval. Therefore, ei+a ∈ [ei + 1, ei + ea].

2.3 Discrete Static-Priority Schedulability Test

Theorem 3. If task set τn−1 is static-priority schedulable, when added a new
low priority task τn, then τ is static-priority schedulable if and only if τn−1 is
non-saturated and Dn ≥ ecn(n−a).

Proof. First we prove the sufficient condition: Task τn generates workload at
instant 1, pn + 1, 2pn + 1, and so on. To check the schedulability of τ it suffices
to check if there are enough empty slots left to execute task τn in the interval
[kpn + 1, kpn + dn]. From Theorem 2, we know that ecn(n−1) ≥ ei+cn(n−1) −
ei(n−1) . If there are empty slots in the first interval [1, dn] to execute task
τn to completion, there must be enough empty slots in the following intervals
[pn + 1, pn + dn], [2pn + 1, 2pn + dn], and so on. As dn ≥ ecn(n−1) , there are
enough empty slots in the interval [1, dn], to execute task τn to completion, so
τ is schedulable. Next we prove the necessary condition. If τ is static-priority
schedulable, then τn−1 obviously is non-saturated and schedulable. As task τn’s
priority is the lowest, there must be dn ≥ ecn(n−1). From the theorem above, we
can easily get the following theorem.

138 N. Min-Allah et al.

Theorem 4. A task set τ is static-priority schedulable if and only if for i =
2, ..., n,

i−1∑

j=1

� ci

pi
� ≤ 1 and di ≥ eci(i−1) (4)

Proof. This schedulability test includes two parts. The first one guarantees that
τi−1 is non-saturated and consequently it can incorporate another task, τi. The
second part guarantees that there are sufficient slots to execute task τi to com-
pletion before its deadline. We refer to this test as empty-slot static-priority
(ESSP) schedulability test in rest of the paper. For each task, we calculate and
check if it’s the ci-th empty slot of the higher priority i−1 tasks. The maximum
number of times to calculate free slot for each task is dn . So the time complexity
of ESSP is O(n×dn). As dn increases with n in the worst case, the time complex-
ity depends not only on the dimension n of the problem but also the magnitude
dn of the data involved, so the time complexity of ESSP is pseudo-polynomial.

2.4 Comparisons with Classical Continuous Schedulability Tests

Audsley et al. [9] proposed a necessary and sufficient schedulability test for RM
scheduling:

∀i, 1 ≤ i ≤ n, WRi ≤ di (5)

WRi is the worst-case response time of τi and is given by the smallest x ∈ N+

that satisfies the following recursive equation.

WR0
i =

i∑

j=1

cj (6)

WRl+1
i = ci +

i−1∑

j=1

�WRl
i

pj
�cj (7)

The above procedure stops when the same value is found for two successive it-
erations of l, or when the deadline di is exceeded. Its time complexity is pseudo-
polynomial[12]. For simplicity, we only compare ESSP with the technique pre-
sented in [9]. ESSP exhibit similar behavior as classical test, though they are
obtained with different methods. Compared with the classical test, ESSP has
many advantages. First, integer number is easy to be operated with than real
number. Secondly, ESSP can easily solve many practical problems: Given τ ,
which is non-saturated and static priority schedulable, determine

– Whether S(n + 1) is also schedulable? (by adding a new low priority task)
– Up to what extent the execution time of a task in τ can be expanded while

keeping the system feasible?
– What is the value of the execution time of the task that saturates the system?

Revisiting Fixed Priority Techniques 139

Although the time complexity of ESSP is pseudo-polynomial i.e. O(n × dn),
normally dn may not necessarily increase with n and the time performance of
ESSP may not necessarily be so. Further more, we improve it to handle on-line
admission control by the following methods:

(1) If τn−1 is non-saturated, then S(i)|i = 1, ..., n − 2 is also non-saturated.
(2) For di ≥ eci(i−1) to hold, eci(i−1) = mint|t = c+ i+

∑i−1
j=1 cj� t

pj
� ≥

∑i
j=1 cj ,

we can check this inequality from the slot
∑i

j=1 cj instead of 1.
(3) If ci +

∑i−1
j=1 cj� t

pj
� = t∗ > t , then the next slot to be checked is t∗.

(4) For each task, the number of ceiling calculations is not dn, but increases from
∑i

j=1 cj to dn.

Thus, the number of effective operations needed for ESSP is much less than
n × dn. From the above analysis, we can see that ESSP is more convenient to
be used and more efficient to tackle practical problems than classical continuous
schedulability tests.

3 Enhanced Deasibility Analysis

3.1 Previous Results on Exact Test

Time Demand Approach. For validating feasibility problem, both necessary
and sufficient condition (NSC) based tests are proposed in literature [4], [8],
[9], [13], [14], [17]. Recently, authors in [3], [4] extended the work illustrated in
[8] by proposing an exact feasibility test that reduces the number of scheduling
points. Our results show that reducing the number of scheduling point does not
necessarily means lowering the number of inequalities in actual.

To determine whether a task can meet all its deadlines, we compute the total
demand for processor time by a task τi at time t, as

Wi(t) = ci +
i−1∑

j=1

� t

pj
�cj (8)

A periodic task τi is feasible if we find some t ∈ [0, di] satisfying

Li = min
0<t≤di

(Wi(t) ≤ t) (9)

As t is a continuous variable, there are infinite numbers of points to be tested.
The entire task set τ is feasible iff

L = max
1≤i≤n

{ min
0<t≤di

Wi(t)
t

} ≤ 1 (10)

The first attempt to limit the infinite number of points in interval t ∈ [0, t] is
made by authors in [8]. The authors in [8] show that Wi(t) is constant, except at

140 N. Min-Allah et al.

finite number of points when tasks are released, called rate monotonic scheduling
points. Consequently, to determine whether τi is schedulable, we need to compute
Wi(t), only at multiples of τi ≤ τj , 1 ≤ j ≤ i. specifically, let

Si = {apb|b = 1, ..., i; a = 1, ...,
di/pb�} (11)

We conclude that an dividual task is feasible iff the following equation is true.

Li = min
t∈Si

Wi(t)
t

≤ 1 (12)

Li is needed to be analyzed only at a finite number of points i.e. Si. In rest of the
paper, we represent this technique by TDA (Time Demand Approach). For any
task τi , the number of elements in set Si is of particular interest. Every element
means testing an inequality constraint for finding schedulability of τi at run time.
The number of elements in Si becomes huge especially when ratio pn/p1 is large
[3]. Clearly, an efficient technique would be the one which is capable of reducing
the number of inequalities testing during online feasibility analysis.

Hyper-Planes Exact Test. To reduce scheduling points, E. Bini and G. C.
Buttaazo provided a formulation, called Hyper-planes Exact Test (HET) recently
in [3], [4] that reduces scheduling point for τi from set Si to a reduced set Hi(t).
For any task τi, their test begins with pi and expands its search space by

Hi(t) = Hi−1(

t

pi
�di) ∪ Hi−1(t) (13)

where H0(t)={t}.

3.2 Deadline Monotonic Analysis Improved

The necessary and sufficient condition (NSC) for the schedulability of τ1 is that
c1 ≤ p1. Using Equation 8, it is equally important for a low priority task to be
tested in interval [0, p1] despite the fact that there is a fair chance of not fulfilling
the cumulative workload constituted by current task because interference from
the higher priority tasks (τi+1 to τn) is also added to computation demands of
current task τi. We avoid this redundancy of points by proposing that when the
time demand for task τi is not fulfilled at some point t, then

i∑

j=1

� t

dj
�cj + clower > t (14)

is always true, where clower is the execution demand of tasks whose priority is
lower than τi, since clower > 0 ∀clower ∈ [ci+1, ...cn].

To reduce the intended search space, we present some definitions and theorems,
which eventually lead us to the main contribution of this section (Theorem 8).

Theorem 5. -For any given periodic tasks set τ , scheduled by DM, task τi has
a set of DM scheduling points Si : Si ⊆ Si+1

Revisiting Fixed Priority Techniques 141

Proof. To prove this theorem, we must prove that if there exists a scheduling
point t ∈ Si, then t ∈ Si+1 also holds good. For an arbitrary element of Si,
it follows that t = apb, where a ∈ {1, ...,
di/pj�}, j ∈ 1, ..., i and b ∈ 1, ..., i.
According to DM, tasks priorities are inversely proportional to their deadlines,
tasks τi has higher priority than τi+1 as di+1 ≥ di, so it can be seen that
a ∈ {1, ...,
di+1/pj�}, j ∈ 1, ..., i + 1 and b ∈ 1, ..., i + 1, hence t ∈ Si and
therefore Si ∈ Si+1 holds true.

Definition 1 (False Point). DM scheduling point t, is said to be false point
for any task τi if it satisfies the inequality constraint:Wi(t) > t.

Theorem 6. Given a set of n periodic tasks {τ1, ..., τn } scheduled by DM, every
false point for τi must also be a false point for τi+1.

Proof. According to the definition of false point for task τi ;Wi(t) > t, thus for
task τi+1

Wi+1(t) =
i+1∑

j=1

� t

di
�cj =

i∑

j=1

� t

di
�cj + � t

di+1
�ci+1

= Wi(t) + ci+1 > Wi(t) (15)

As ci+1 > 0, therefore Wi+1(t) > t and hence t is also a false point for τi+1.

Theorem 7. Given a set of n periodic tasks {τ1, ..., τn } scheduled by DM, every
false point for τi is also a false point for task having priority lower than τi.

Proof. This theorem can be directly deduced from Theorem 6.

Theorem 8. Given a set of n periodic tasks {τ1, ..., τn }, τi can be feasibly
scheduled for all tasks phasings using DM iff

Li = min
t∈Zi

Wi(t)
t

≤ 1 (16)

where Zi = Si − Xi−1. By extension X0 = ∅.

Proof. From Theorem 7, we known that, if t is a false point for τi−1 then it
must also be a false point for τi. Consequently to calculate Li, we confine our
search to a reduced set Zi ⊆ Si, by excluding all chained points.

The whole set τ is feasible iff

L = max
1≤i≤n

Li ≤ 1 (17)

We replace Si by Zi, which immediately reflects the reduced complexity of
our technique Zi ⊆ Si; allows us to search reduced number of inequalities for
determining task feasibility. We use the term Deadline Monotonic Analysis Im-
proved (DMAI) to refer our scheme hereafter in this paper. The effectiveness of
DMAI becomes more prominent when it is applied to a large task set.

142 N. Min-Allah et al.

3.3 Experimental Results

In this section, we evaluate the performance of DMAI. In order to make a com-
parison with DMAI, both TDA and HET are also implemented. For our experi-
ments, we generate random task periods in the range of [10, 1000] with uniform
distribution. Similarly, for corresponding task execution demands, random val-
ues are taken in the range of [1, pi], also with uniform distribution. Together, a
series of periodic tasks is generated by varying the range from of 5 to 30 with
increase of 5 tasks and average is taken after 200 iterations. Results are obtained
under varied system utilization, however, due to space limitations, only two are
shown for each experiment in the following. The work is compared, in light of
two performance evaluation criteria i.e. the number of DM scheduling points
used and, the number of inequalities tested , which is the intended contribution
of this paper.

Number of Scheduling Points. In this section, we demonstrate the effec-
tiveness of DMAI in terms of reducing the number of scheduling points. Fig. 1
provides a comparison among the tests by counting the number of points that are
actually utilized before feasibility is concluded. We analyzed all tests by varying
system utilization from ln(2) to 1.0. When tasks set size increases i.e. n → ∞
more inequalities are needed to be tested as pn/p1 is becoming larger. It is found
that HET uses union operator and has implicit tendency for testing repeated val-
ues from intended search space obtained with Equation 13, we plot only unique
values here. It can be seen that both HET and DMAI have effectively reduced
the number of scheduling points as compared to TDA. This improvement is due
to generally reduced sets (Hi−1(pi) ⊆ Si) and (Zi ⊆ Si) required for any task τi

by HET and TDA respectively.

Number of Inequalities. In this important experiment, we extract the num-
ber of inequalities, which are being tested by all necessary and sufficient tests
discussed earlier in Section 3.1 and 3.2 respectively. We observe that the number
of inequalities tested is directly influenced by variation in system utilization. As

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

Tasks number

P
oi

nt
s

te
st

ed

TDA
HET
DMAI

(a) utot ≤ ln(2)

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

Tasks number

P
oi

nt
s

te
st

ed

TDA
HET
DMAI

(b) utot ≤ 1.0

Fig. 1. Effect of utilization on average number of scheduling points

Revisiting Fixed Priority Techniques 143

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Tasks number

In
eq

ua
lit

ie
s

te
se

d

HET
TDA
DMAI

(a) utot ≤ ln(2)

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

1600

1800

Tasks number

In
eq

ua
lit

ie
s

te
se

d

HET
TDA
DMAI

(b) utot ≤ 1.0

Fig. 2. Advantage of straight forward approaches over recursive technique

shown in Fig. 2, the little variation in behavior of HET under varied system
utilization is mainly due of its dependency on task periods. In contrast, both
DMAI and TDA equally exploit the execution demands of individual tasks and,
are more inclined towards total system utilization. On one hand, for feasible
task set having utot ≤ ln(2) both DMAI and TDA converges early, while on
the other, more points are needed to be analyzed for higher utilization when
utot ≤ 1 . Clearly, the improved performance of DMAI is due to (Zi ⊆ Si) which
is a direct conclusion of Theorem 8 and, suppresses others in terms of testing
reduced number of inequality constraint as shown in Fig. 2. It can be seen that,
both TDA and HET use repeated points. This fact is witnessed by the difference
in Fig. 1 and Fig. 2; there is a mismatch between number of scheduling points
and inequalities tested for TDA and HET. As mentioned earlier, though HET
reduces the number of scheduling points in theory, it looses its effectiveness at
run time by scanning redundant points from the search space due to its recursive
implementation. In our approach, there is a direct mapping between Fig. 1 and
Fig. 2.

4 Conclusions and Future Work

We first introduced a schedulability analysis method using empty-slot for dis-
crete scheduling. The method is then applied to static-priority scheduling and a
new efficient discrete schedulability test is proposed. The analysis confirms that,
empty-slot method is an efficient discrete schedulability analysis method and,
can be generalized to allow more general task model, in particular when tasks
may have deadlines larger than periods. The analysis can also be applied to
the case in which task synchronization must be considered or when the priority
ceiling protocol is used.

In addition to above, we have proposed DMAI, a state of the art solution
for testing online feasibility of real time systems employing DM scheduling,
which has much lower complexity than current feasibility tests. We evaluated
the correctness and goodness of DMAI by means of mathematical proofs and

144 N. Min-Allah et al.

simulation results. The experiment aimed at testing the algorithm under differ-
ent performance conditions and comparing its results with previous solutions.
The experimental results obtained show the effectiveness of DMAI in provid-
ing an efficient online analysis for periodic tasks, and validated our theoretical
results.

Acknowledgments

This work is jointly supported by COMSATS Institute of Information Technol-
ogy under faculty development program, the National Natural Science Founda-
tion of China (Grant Number: 60373053) and the research collaboration between
the Chinese Academy of Sciences and the Royal Society of the United Kingdom
(Grant Number: 20030389, 20032006).

References

1. Liu, J.W.S.: Real Time Systems. Prentice Hall, Englewood Cliffs (2000)
2. Krishna, C.M., Shin, K.G.: Real-Time Systems. McGrawHill, New York (1997)
3. Bini, E., Buttazzo, G.C.: The Space of Rate Monotonic Schedulability. In: Pro-

ceedings of the 23th IEEE Real-Time Systems Symposium, pp. 169–177 (2002)
4. Bini, E., Buttazzo, G.C.: Schedulability Analysis of Periodic Fixed Priority Sys-

tems. IEEE Transactions on Computers 53(11), 1462–1473 (2004)
5. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard

real-time environment. J. of the ACM 20(1), 40–61 (1973)
6. Katcher, D.I., Arakawa, H., Strosnider, J.K.: Engineering and analysis of fixed

priority schedulers. IEEE Trans. On Software Engineering 19(9), 920–934 (1993)
7. Baruah, S., Mok, A., Rosier, L.: Algorithms and complexity concerning the preemp-

tive scheduling of periodic, real-time tasks on one processor. Real-Time Systems 2,
301–324 (1990)

8. Lehoczky, J.P., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In: Proceedings of the IEEE
Real-Time System Symposium, pp. 166–171 (1989)

9. Audsley, N.C.: Deadline monotonic scheduling, Report YCS.146, Depart. of Com-
put.Sci., University of York (1990)

10. Santos, J., Gastaminza, M.L., Orozco, J., Picardi, D., Alimenti, O.: Priorities and
protocols in hard real-time LANs. Computer and Commun. 14(9), 507–514 (1991)

11. Santos, J., Orozco, J.: Rate monotonic scheduling in hard real-time systems. In-
formation Processing Letters 48, 39–45 (1993)

12. Audsley, N.C., Burns, A., Richardson, M.F., Wellings, A.J.: Hard real-time schedul-
ing: the deadline monotonic approach. In: Proceedings of 8th IEEE Workshop on
Real-Time Operating Systems and Software, pp. 133–137 (1991)

13. Sjodin, M., Hansson, H.: Improved response-time analysis calculations. In: Pro-
ceedings of the 19th IEEE Real-Time Systems Symposium, pp. 399–409 (1998)

14. Joseph, M., Pandya, P.: Finding response times in a real-time system. The Com-
puter Journal 29(5), 390–395 (1986)

Revisiting Fixed Priority Techniques 145

15. Leung, J.Y.T., Whitehead, J.: On the Complexity of Fixed-Priority Scheduling of
Periodic. Real-Time Tasks Performance Evaluation 2, 237–250 (1982)

16. Kuo, T.-W., Mok, A.K.: Load Adjustment in Adaptive Real-Time Systems. In:
Proceedings of the IEEE Real-Time Systems Symposium, pp. 160–171 (1991)

17. Manabe, Y., Aoyagi, S.: A feasibility decision algorithm for rate monotonic and
deadline monotonic scheduling. Real-Time Systems 14(2), 171–181 (1998)

18. Tindell, K.W., Bums, A., Wellings, A.J.: An extendible approach for analyzing
fixed priority hard real-time tasks. Real-Time Systems Journal 6, 133–151 (1994)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 146–157, 2007.
IFIP International Federation for Information Processing 2007

A Server-Side Pre-linking Mechanism for Updating
Embedded Clients Dynamically

Bor-Yeh Shen1 and Mei-Ling Chiang2

1 Department of Computer Science,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

byshen@cs.nctu.edu.tw
2 Department of Information Management,

National Chi-Nan University, Puli, Taiwan, R.O.C.
joanna@ncnu.edu.tw

Abstract. To allow embedded operating systems to update their components
on-the-fly, dynamic update mechanism is required for operating systems to be
patched or added extra functionalities in without the need of rebooting the
machines. However, embedded environments are usually resource-limited in
terms of memory size, processing power, power consumption, and network
bandwidth. Thus, dynamic update for embedded operating systems should be
designed to make the best use of limited resources. In this paper, we have
proposed a server-side pre-linking mechanism to make dynamic updates of
embedded operating system efficiently. Applying this mechanism can reduce
not only memory usage and CPU processing time for dynamic update, but also
data transmission size for update components. Power consumption can be
reduced as well. Performance evaluation shows that compared with the
approach of Linux loadable kernel modules, the size of update components can
be reduced about 14-35% and the overheads in embedded clients are minimal.

Keywords: Embedded System, Operating System, Dynamic Update, Modules,
LyraOS.

1 Introduction

Dynamic update allows operating systems to update their components on-the-fly
without rebooting the whole systems or stopping any system services. This opens up a
wide range of opportunities: fixing bugs, upgrading services, improving algorithms,
adding extra functionalities, runtime optimization, etc. Although many operating
systems have already supported different kinds of mechanisms to extend their kernels,
they usually do not aim at resource-limited environments. For instance, Linux uses a
technique called loadable kernel modules (LKMs) [1]. By using this technique, Linux
can load modules, such as device drivers, file systems, or system call to extend the
kernel at run time. However, LKMs may take lots of overheads in embedded
environments. Since embedded systems are usually resource limited, in order to keep
the added overheads minimal while providing dynamic update in an embedded
operating system, we propose the server-side pre-linking mechanism which is a

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 147

client-server model similar to the server-side linking mechanism proposed in the
operating system portal (OSP) framework [2]. Unlike the OSP framework, our server-
side pre-linking mechanism does not have to negotiate between client and server to
know the starting address of components on client hosts. Besides, we can perform
component linking on the server-side before components are requested by clients.
Thus, we can also save the components processing time on server hosts.

To demonstrate the feasibility of our proposed dynamic component update and
component protection mechanisms, we have designed and implemented this
mechanism in LyraOS [3] operating system. LyraOS is a research operating system
designed for embedded systems, which uses component-oriented design in the system
development. However, just like many embedded operating systems such as eCos [4]
and MicroC/OS-II [5], LyraOS can be only statically configured at source-code level,
so system cannot be updated or extended on-the-fly. Performance evaluation shows
that the loader size under LyraOS is only about 1% and 7% as compared with the
Linux loadable kernel module of the Linux 2.4 and the Linux 2.6. The component
sizes under LyraOS are only about 14-35% of the Linux loadable kernel module. The
component loading time also takes a few milliseconds. The component invocation
time also adds only a few overheads caused by providing dynamic component
exported interface and memory protection for un-trusted components.

Although our proposed dynamic component update and component protection
mechanisms are implemented in LyraOS operating system, we believe that these
experiences can serve as the reference for other component-based embedded
operating systems that require an efficient and safe mechanism to dynamically update
their components.

The rest of this paper is organized as follows. Section 2 introduces the LyraOS
operating system. Section 3 introduces the related work. Section 4 details the design
and implementation of our dynamic update mechanism. Section 5 shows our
performance evaluation results and Section 6 concludes this paper.

2 LyraOS

LyraOS [3] is a component-based operating system which aims at serving as a
research vehicle for operating systems and providing a set of well-designed and clear-
interface system software components that are ready for Internet PC, hand-held PC,
embedded systems, etc. It was implemented mostly in C++ and few assembly codes.
It is designed to abstract the hardware resources of computer systems such that low-
level machine dependent layer is clear cut from higher-level system semantics. Thus,
it can be easily ported to different hardware architectures [6].

Figure 1 shows system architecture of LyraOS. Each system component is
complete separate, self-contained, and highly modular. Components in LyraOS can be
statically configured at source-code level. In addition to being light-weight system
software, it is a time-sharing multi-threaded microkernel. Threads can be dynamically
created and deleted, and thread priorities can be dynamically adjusted.

148 B.–Y. Shen and M.–L. Chiang

Fig. 1. LyraOS system architecture

3 Related Work

Linux Loadable Kernel Modules (LKMs) [1] are object files that contain codes to
extend the running kernel. They are typically used to add support for new hardware,
file systems, or for adding system calls. When the functionality provided by an LKM
is no longer required, it can be unloaded. Linux uses this technology to extend its
kernel at run time. However, Linux modules can be removed only when they are
inactive. Another problem of LKMs is its space overheads. It needs additional kernel
symbol table in client site and additional symbol table in loadable modules due to
dynamic symbol linking. Dynamic symbol linking also takes lots of time during
module loading. Our approach can eliminate these overheads. Besides, the LKMs
require privilege permission to perform kernel modules loading. All of these modules
are located in the kernel level and have the same permission as kernels. Thus,
operating systems may crash because a vicious module is loaded in the kernel.

In operating system portal (OSP) [2], all the dynamically loadable modules are
located on the server host. A user-level process is responsible for loading, linking and
transmitting these modules to the clients. A kernel-level module manager is installed
on the client to make the client kernel extensible. The server-side linking mechanism
proposed in OSP is similar to our server-side pre-linking mechanism. Unlike the OSP
framework, our server-side pre-linking mechanism can perform component linking on
the server-side previously before components are requested by clients. We do not
have to know the starting address of components on each client host because
components will be relocated by client’s relocation hardware. Thus, the components
processing time on server hosts can also be saved since we do not need to link
components for each request of clients.

SOS [7] is a dynamic operating system for mote-class sensor nodes. It uses
dynamically loadable software modules to create a system supporting dynamic
addition, modification, and removal of network services. The SOS kernel provides a

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 149

set of system services that are accessible to the modules through a jump table in the
program memory. Furthermore, modules can also invoke functions in another module.
The SOS kernel provides a dynamic function registration service for modules.
Modules can register functions that they provide with the SOS kernel. The kernel
stores information regarding the dynamic functions in a function control block (FCB)
data structure. Processes can use a system call to subscribe a function.

4 Design and Implementation

According to the implementation of our component-based LyraOS operating system,
an updatable unit may be a set of functions and global variables or an encapsulation of
data members and methods. In both cases, software developers usually need to define
a clear interface to the unit or make the unit inherit the interface from a virtual base
class. Originally, other components should invoke the unit only through the static
interface.

In this research, we implement our proposed dynamic component update
mechanism in LyraOS. In our system, components are executable and linkable format
(ELF) [8] files and components can be a set of functions, global variables, or C++
classes. Components do not have to use static interface. The only one thing that
updatable components need to do is to register their exported methods to the
component manager. Then, the external components will invoke these methods
through the component manager.

Additionally, to make our system more flexible and safe, we separate all of the
updatable components into two groups, trusted components and un-trusted
components. In order to avoid un-trusted components causing our system crash, we
divide the original LyraOS from single mode into user and kernel modes. Trusted
components are located in kernel mode and can invoke system services directly. Un-
trusted components are located in user mode and run in different protection domains
enforced by hardware memory protection. Components permit system services
invocation and communicate with other components only through the system call
invocation when they are un-trusted.

In our system, all the dynamically updatable components are located on the server
host and are pre-linked. A component server running on the server-side is responsible
for loading and transmitting these pre-linked components to the embedded clients. A
dynamic loader called LyraLD within the operating system kernel on the embedded
client is responsible for downloading and installing pre-linked components. A
component manager manages all of the components on the client-side and provides an
interface for client-side applications to add, remove, or invoke components. For
example, if an embedded client wants to add a new functionality, the embedded client
will send a request through the component manager interface to the LyraLD. LyraLD
will send a request to a remote component server to download a new component. The
component server will respond with a pre-linked component which provides the
functionality requested. Finally, the LyraLD will download and install this component
directly without the need of linking or relocation.

150 B.–Y. Shen and M.–L. Chiang

4.1 Server-Side Pre-linking

Since embedded environments are usually resource-limited, we implement the server-
side component pre-linking mechanism to keep the imposed overheads minimal while
providing dynamic component update in an embedded operating system.

As mentioned above, components in our design and implementation have been
linked on the server-side before components are requested by embedded clients.
These components are linked according to their types (i.e., trusted or un-trusted) and
symbol tables of embedded clients. The trusted component will be linked with the
kernel symbol of the embedded client while the un-trusted one will be linked with
the user library symbol table of the client. Especially, we do not need to know where
the component will reside in the client-side memory (i.e., the starting address of the
component). All of the updatable components will be linked at the same starting
virtual address through the linker script we defined. Then the components will be
relocated by the client-side relocation hardware that we will describe later. Because
the updatable components can be linked in a prior time, we can save the component
processing time on the server-side when components are requested.

Figure 2 shows our server-side pre-linking architecture. In our system, there is a
component server on the server-side responsible for handling client requests. The
component server on the server host receives request from the embedded client
kernels and performs tasks as follows. If a pre-linked component is found in the pre-
linked component storage, the component server will send the pre-linked component
to the embedded clients immediately. Otherwise, the component server will link the
components on demand.

The merits of our approach can be summarized as follows. The server-side
component pre-linking can save not only the memory and the disk storage on
embedded clients but also the component transmitting time because we downgrade
the sizes of updatable components. Besides, it eliminates the need for clients to
perform dynamic linking. Furthermore, the power consumption of embedded devices
can be also decreased.

Fig. 2. Server-side pre-linking architecture

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 151

4.2 Client-Side Loading

We develop a dynamic component loader called LyraLD and a component manager in
LyraOS to perform dynamic component loading and component management. Both
the LyraLD and the component manager reside in the kernel level. Currently, the
LyraLD use the trivial file transfer protocol (TFTP) [9] to download pre-linked
components from the component server.

Figure 3 shows the steps of client-side component loading and installing. First, the
component manager receives an invocation request to load a new component. Second,
the component manager checks whether the component exists or not. If the
component is not found in the client-side, the component manager will call LyraLD to
send a request to a remote component server to download this component. Third, the
LyraLD downloads a pre-linked component image returned from the remote
component server to the client-side memory. Fourth, after the LyraLD reads the pre-
linked component image’s header from the memory address where the image is
located, the LyraLD will verify the pre-linked component image, initialize component
environments, and move each section of the image to the virtual address that the ELF
header specified. Finally, the LyraLD will jump to the entry address of the component
image to execute the component’s initialization function that registers the component
exported methods to the component manager.

Table 1 shows our component manager API. Components can be added, removed,
updated, and invoked through these APIs. In order to provide dynamic component
exported interface, the register method can register the component exported methods
to the component method vector table when a component is loaded. As a component
is downloaded and loaded into memory, the LyraLD will get the entry point address
from the header of the component and then jump to this address to perform the
registration of component’s methods.

function entry(Opt, Addr)

switch(Opt)
begin

case REGISTER:
CM::Register(1, functionA);
CM::Register(2, functionB);
//
break;

case IMPORT:
// convert and import
// component states from Addr
break;

case EXPORT:
// export states of this component
// return address of export states
break;

end

end function

Fig. 3. Client-side loading Fig. 4. Component interface

152 B.–Y. Shen and M.–L. Chiang

Table 1. Component manager API

Methods Descriptions

CM::Add(name, ver)
The CM::Add() method adds a new component name with version ver
from a remote component server and returns component’s ID.

CM::GetCID(name, ver)
The CM::GetID() method returns component ID of component name
(version ver).

CM::Invoke(cid, mid, arg)
The CM::Invoke() method invokes a method mid of a component cid
and passes arguments arg through the component manager.

CM::Register (mid, fptr)
The CM::Register() method registers method’s ID mid and its address
fptr to the component manager.

CM::Remove(cid) The CM::Remove() method removes component whose ID is cid.

CM::Update(old, new)
The CM::Update() method updates a component from component ID
old to component ID new.

Figure 4 shows our component interface. This function would be implemented by
developers and will be linked as the entry point of updatable components during
server-side pre-linking. Every updatable component has to implement this interface to
register its methods and transfer its states. As the component jumps to the entry point,
the component will invoke the register method to register its exported methods to the
component manager. Therefore, other components can invoke these methods through
the component manager without using static component interface. When we want to
remove a component, all of the component information including current states of the
component and function pointers of the component exported methods should be
removed. Methods in Table 1 provide a component communication interface. In our
system, components must communicate with each other through the component
manager. This is because we provide dynamic component exported interface in our
system and these interfaces of components are managed by the component manager.

4.3 Component Relocation

The component relocation in our system implementation takes advantage of the ARM
fast context switch extension (FCSE) mechanism [10]. The FCSE is an extension in
the ARM MMU. It modifies the behavior of an ARM memory translation. This
modification allows our components to have their own first 32MB address space.
Thus, we make each component have its own address space and relocate in the first
32MB of memory. As shown in Figure 5, there is only one page table in our system.
The 4GB virtual address space is divided into 128 blocks, each of size 32MB. Each
block can contain a component which has been compiled to use the address ranging
from 0x00000000 to 0x01FFFFFF. Each block is identified with a 7-bit PID (Process
ID) register. Through the FCSE mechanism, we can switch between components’
address spaces by changing the PID register and do not have to flush caches and
TLBs. The same functionality can be achieved by other architectures which provide
paging and an address space identifier (ASID) found on many RISC processors such
as Alpha, MIPS, PA-RISC, and SPARC.

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 153

Fig. 5. Relocation by FCSE mechanism

However, there is a critical problem about communication among components.
Since every component has an address space itself, we cannot pass component a
pointer type argument that is pointed to another address space. Due to this reason, we
use a shared memory mechanism to resolve this problem. A memory region which is
greater than 32MB is reserved to store data that the argument points to. This is due to
the fact that if an address is greater than 32MB, it will not be modified by FCSE. This
means that the address space of components from 32MB to 4GB is shared. This also
allows components to directly access our kernel core or user libraries which are out of
the first 32MB without changing PID or page tables.

4.4 Component Protection

The ARM architecture provides a domain mechanism [10] to make different
protection domains running with the same page table. We use this mechanism to
make each un-trusted component have its own protection domain. A domain access
control register (DACR) can be used to control the access permissions of components.
Currently, each un-trusted component’s first descriptors of the page table in our
system are associated with one of the sixteen domains and its own DACR status. The
DACR describes the status of the current component with respect to each domain.
Since trusted components are the components that have been verified, they can use
the same protection domain as kernel core and run in the kernel mode. However,
although un-trusted components run in the user mode, they may also have vicious

154 B.–Y. Shen and M.–L. Chiang

codes to affect other un-trusted components. Therefore, they should locate in different
protection domains and use the client access types. Thus, we can avoid the situation
that the current un-trusted components will be affected as we load a new un-trusted
component into our system. Although ARM only supports 16 domains which may be
less than the number of un-trusted components concurrently in our system, we can
apply other approaches such as domain recycling [11,12] to resolve this problem.

5 Performance

This section presents the performance evaluation of the proposed dynamic component
update mechanism implemented in LyraOS. We compare the space overheads of our
architecture with the Linux loadable kernel modules. The experimental environment
consists of a client and a server host that are connected via a 100 Mbits/sec Ethernet.
The server host is a Pentium 4 3.2GHz PC with 1GB RAM, running Linux 2.4.26.
The client host is an ARM Integrator/CP920T development board with 128 MB
RAM, running LyraOS 2.1.12.

5.1 Comparison of Space Overheads

Table 2 shows the loader sizes of the client kernel. We compare the size of LyraLD to
the sizes of Linux LKMs linker/loader under kernel version both 2.4 and 2.6. The
fundamental difference between Linux 2.4 and Linux 2.6 is the relocation and linking
of kernel modules are done in the user level or kernel level. Loadable kernel modules
in Linux are ELF object files which can be loaded by a user program called insmod.
In Linux 2.4, insmod does all the work of linking Linux kernel module to the running
kernel. While the linking is done, it generates a binary image and then passes it to the
kernel. In Linux 2.6, the insmod is a trivial program that only passes ELF objects
directly to the kernel, and then the kernel does the linking and relocation. In Table 2,
the Linux 2.4 module linker/loader shows the static and dynamic size of the insmod
program on Linux 2.4.26. The Linux 2.6 module linker and module loader were
measured from the object files of kernel/module.c and kernel/kmod.c in the Linux
2.6.19 source tree. All symbols in these programs and object files have already been
stripped. From the table we can see that, the size of LyraLD is less than 1% of the
module linker/loader under Linux 2.4 and is about 7% of the module linker/loader
under Linux 2.6.

Table 2. Sizes of loaders

Loader Object Code Size

Linux 2.4 module linker/loader
618,712 bytes
133,140 bytes

(static linked)
(dynamic linked)

Linux 2.6 module linker
Linux 2.6 module loader

14,088 bytes
2,060 bytes

(kernel/module.o)
(kernel/kmod.o)

LyraLD (LyraOS loader) 1,140 bytes

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 155

Table 3. Kernel and symbol sizes

Items Size
LyraOS kernel image
LyraOS kernel symbol table

35,752 bytes
24,850 bytes

Linux 2.6.19 kernel image (vmlinux)
Linux 2.6.19 kernel image (zImage)
Linux 2.6.19 symbol table

1,219,296 bytes
1,181,932 bytes
505,487 bytes

Table 4. Component overheads

Components Linux LyraOS Ratio
Task scheduler

Interrupt handler
Timer driver
Serial driver

Signal
Semaphore

4280 bytes
7544 bytes
4424 bytes
5640 bytes
7768 bytes
4116 bytes

 604 bytes
1612 bytes
 992 bytes
1324 bytes
2736 bytes
 632 bytes

(14%)
(21%)
(22%)
(23%)
(35%)
(15%)

Table 5. Component loading and pre-linking time

Components Client-side
Loading

Server-side Pre-
linking

Task scheduler
Interrupt handler

Timer driver
Serial driver

Signal
Semaphore

20.31ms
31.17ms
39.86ms
30.44ms
22.04ms
20.32ms

26ms
25ms
35ms
32ms
29ms
28ms

In addition, to perform the dynamic linking, Linux also requires the kernel symbol

table to be stored on the client host. The size of the symbol table is dependent on the
client-side kernel. From Table 3 we can see that, the kernel symbol table of LyraOS is
about 24 Kbytes in our system. It occupies almost 70% of the LyraOS kernel size.
The kernel symbol table of Linux 2.6.19 in our system is about 494 Kbytes. It
occupies about 40% of the Linux kernel size.

Table 4 shows the component space overheads of the task scheduler, the interrupt
handler, the timer driver, the serial driver, the signal, and the semaphore component in
LyraOS and Linux. In this table, the column of Linux shows the sizes of ELF object
files of these components under the Linux LKMs approach. The column of LyraOS
shows the size of pre-linked images of these components under the LyraOS server-
side pre-linking approach. The numbers in parentheses are the ratios of component
overheads under LyraOS to those under the Linux LKMs. From the table we can see
that, the sizes of components under the LyraOS approach are only about 14-35% of
the sizes under the Linux LKMs approach. This is because the LKMs mechanism

156 B.–Y. Shen and M.–L. Chiang

contains more overheads for dynamic linking, such as symbol tables, string tables,
relocation data, and other data structures.

5.2 Component Loading/Pre-linking Time

Table 5 shows the component client-side loading and server-side pre-linking time of
those components we described above. The component loading only takes a few
milliseconds. From the Table 4 and Table 5, we can see that the component loading
time is not related to the sizes of the components. This is because the loader has to
initialize some of the ELF sections. For example, BSS is a memory section where un-
initialized C/C++ variables are stored. If there is a BSS section in a component, it
needs to clear to zero while the component is loaded into memory. Besides, from the
server-side pre-linking time we can see that embedded clients save lots of linking time
when new components are loaded since the linking has been done previously on the
server. We should know that the server-side pre-linking runs on a Pentium4 3.2GHz
machine, and the frequency of ARM920T processors is only about 200MHz. It could
cause large overheads if the component linking is performed on the embedded clients.

5.3 Component Invocation Time

In Figure 6, we invoke a method of each component we described above. “Direct
Invocation” measures the invocation time of the direct component invocation. That is,
direct component invocation invokes methods directly without calling the component
manager and system calls. “Trusted Component” measures the invocation time of the
trusted component invocation through the component manager. “Un-trusted
Component” measures the invocation time of the un-trusted component invocation
through the system call and the component manager. From the figure we can see that,
it only adds a few overheads by providing dynamic component exported interface and
memory protection for un-trusted components. Besides, relocation by hardware also
keeps the overhead of switching between components’ address space minimal.

0

10

20

30

40

50

60

70

80

90

Semaphore Signal Serial driver Timer driver Interrupt handler Task scheduler

Components

In
v
o
c
at
io
n
 T
im
e
(μ
s
)

Direct Invocation Trusted Component Un-trusted Component

Fig. 6. Component invocation time

 A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically 157

6 Conclusion

In this paper, we have proposed a server-side pre-linking mechanism to make an
embedded operating system more extensible. The embedded operating system can be
updated dynamically without the need of dynamic linker and symbol table. Besides,
the dynamic component exported interface can make component developers change
component exported interfaces easily. Furthermore, to make the system more flexible,
components are separated into trusted components and un-trusted components, which
run in different protection domains enforced by hardware memory protection.

After applying the proposed mechanisms in our target embedded operating system,
LyraOS, the performance evaluation shows that the loader size under LyraOS is only
about 1% and 7% as compared with the Linux loadable kernel module of the Linux
2.4 and the Linux 2.6. The component overhead under LyraOS is only about 14-35%
of the Linux loadable kernel module. The component loading time also takes only a
few milliseconds. The component invocation time also adds a few overhead caused by
providing dynamic component exported interface and memory protection for un-
trusted components.

References

1. Linux Loadable Kernel Module HOWTO, http://www.tldp.org/HOWTO/Module-
HOWTO/

2. Chang, D.-W., Chang, R.-C.: OS Protal: an economic approach for making an embedded
kernel extensible. Journal of Systems and Software 67(1), 19–30 (2003)

3. LyraOS, http://163.22.34.199/joannaResearch/LyraOS/index.htm
4. eCos, http://sources.redhat.com/ecos/
5. MicroC/OS-II, http://www.ucos-ii.com/
6. Cheng, Z.Y., Chiang, M.L., Chang, R.C.: A Component Based Operating System for

Resource Limited Embedded Devices. In: IEEE International Symposium on Consumer
Electronics, Hong Kong (2000)

7. Han, C.-C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A Dynamic Operating System
for Sensor Nodes. In: Proceedings of the 3rd International Conference on Mobile Systems,
Applications and, Services, Seattle, WA, USA (2005)

8. Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification,
Version 1.2, http://www.x86.org/ftp/manuals/tools/elf.pdf

9. The TFTP Protocol (Revision 2), http://www.ietf.org/rfc/rfc1350.txt
10. Seal, D.: ARM Architecture Reference Manual, 2nd edn. Addison-Wesley, Reading (2001)
11. Wiggins, A., Heiser, G.: Fast Address-Space Switching on the StrongARM SA-1100

Processor. In: Proceedings of the 5th Australasian Computer Architecture Conference,
Canberra, Australia (2000)

12. Wiggins, A., Tuch, H., Uhlig, V., Heiser, G.: Implementation of Fast Address-Space
Switching and TLB Sharing on the StrongARM Processor. In: Proceedings of the 8th
Asia-Pacific Computer Systems Architecture Conference, Aizu-Wakamatsu City, Japan
(2003)

Real-Time Scheduling Under Time-Interval

Constraints�

Fábio Rodrigues de la Rocha and Rômulo Silva de Oliveira

Graduate Program in Electrical Engineering
Federal University of Santa Catarina, Florianópolis, Brazil

{frr,romulo}@das.ufsc.br

Abstract. This paper presents a new task model where jobs are divided
into segments A, B and C. Segment B has a specific time-interval where
it should execute to fulfill some application constraints. We consider the
execution of B as valid if performed inside that time-interval, otherwise,
its contribution may be valueless to its task. We adapt some scheduling
approaches from the literature and present a feasibility test in terms of
expected QoS for our scheduling problem.

Keywords: Real-Time, Scheduling, Task Model, Time-Interval, QoS.

1 Introduction

In most scheduling problems the main interest is to ensure that the task dead-
line will not be missed. In these cases, the deadlines as well as the periods are
embedded constraints in the problem definition with a direct correspondence in
physical world. As the years pass by, new task models, scheduling algorithms and
feasibility tests were created to expand the algorithmic knowledge available to
both the researcher and the system developer. The DM [1], RM [2] and EDF [2]
are some well-known algorithms to assign priorities frequently using the peri-
odic task model. In this model, every task τi has a fixed period Ti, a worst-case
execution time Wi and a relative deadline Di [2] (in many cases Di = Ti).

The deadline for a task τi is a time-limit to τi finish its computation. As long
as the computation ended before the deadline, the result is timely correct and its
finishing time is unimportant. Although many applications can be represented
by that model, there are some situations in which tasks have special constraints
unachieved by periodic task models and mainly by the concept of deadline [3].
In some application, tasks demand part of their code to run inside a specific
time-interval. The time-interval is a time window inside which the execution
must take place and its start time is usually computed online. We present some
real-world examples where we can have a time-interval.

① In embedded systems, tasks can send messages using an embedded protocol
controller such as i2c, RS232, USB, CAN. In low cost microcontrollers, during the
data transmission the CPU is kept busy moving data from memory to controller
� This research was supported by CNPq and CAPES.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 158–169, 2007.
c© IFIP International Federation for Information Processing 2007

Real-Time Scheduling Under Time-Interval Constraints 159

port and waiting for the response/end of transmission. Therefore, both the tasks
and the data transmission must be scheduled. Moreover, the data transmission
is non-preemptive and sometimes has to be delivered inside a time-interval.

② In ad hoc mobile systems the transmission of packets can be subject to
route constraints. Assume that at time t1 a source device S has a packet to
transmit to a destination X . There is a chance that the radio signal from device
S cannot reach the destination (there is no feasible route between the source
and the destination X at time t1). In these cases, the packet could be dropped
due to a limited buffer space in S. A better solution would schedule the packet
transmission to a future time t2 when there will be a feasible route. However, as
the routes dynamically change, time t2 is only known during run-time.

None of these use cases show a time-limit as the main concern. In fact, they
present examples where computations must take place inside a time-interval
and maybe inside an inner ideal time-interval where the execution results in the
highest benefit. In such cases, the concept of deadline as well as a periodic model
are inappropriate to model applications. Unfortunately, by the lack of theoretical
study and suitable task models, applications are implemented with conventional
schedulers leading to a lack of predictability.

We present a new task model to fulfill a gap in the real-time literature. In our
task model, tasks may request that part of their computations execute inside
a time-interval to fulfill applications constraints. The start of this time-interval
is adjusted on-line and the computations performed before or after the time-
interval may be useless for applications purposes. Inside the time-interval, there
is an ideal time-interval where the execution results the highest benefit. The
benefit decreases before and after the ideal time-interval according to time-utility
functions. We integrate and modify some scheduling approaches from the real-
time literature in order to obtain a solution for our scheduling problem. As
a result, we created an offline feasibility test which provides an accept/reject
answer and a minimum and maximum expected benefit for tasks.

Related Work
A classic approach to obtain a precise-time execution is achieved through a time-
driven scheduler [4]. However, that approach does not work in face of dynamic
changes in task properties [5] such as the start time of our time-interval. The
subject of value-based scheduling is studied in many papers. In [6] the authors
give an overview of value based-scheduling, their effectiveness to represent adap-
tive systems and present a framework for value-based scheduling. A study about
scheduling in overload situations is presented in [7]. In that paper, tasks have a
deadline and also a quality metric. The scheduler performance is evaluated by
the cumulative values of all tasks completed by their deadlines and the paper
shows that in overload situations scheduling tasks by its value results in better
performance. In [8] a task model is composed by tasks with a mandatory and
an optional part that increases the benefit as the task executes. However, it is
acceptable to execute only the mandatory parts. Also, the optional part is un-
related to a specific time to execute. The Time Utility Function model in which
there is a function to assign a benefit obtained according to the task’s completion

160 F. Rodrigues de la Rocha and R. Silva de Oliveira

time is presented in [9] and an extension is presented in [10] with the concept of
Joint Utility Function in which an activity utility is specified in terms of other
activity’s completion time. Differently from these work about task rewarding,
our reward criteria is connected to the specific moment the job executes instead
of its finish time or the amount of computation performed. An on-line interval
scheduling problem in which a set of time-intervals are presented to a scheduling
algorithm is presented in [11]. The time-intervals are non-preemptive, have start
and end times and cannot be scheduled either early or late. As a future work,
the authors discuss a slightly different problem in which the release times are
more general and a task could request a given time-interval to be delivered in a
determined time as in our problem. The time-interval would be allowed to slide
slightly to accommodate other tasks. In the Just in Time Scheduling an earlier
execution of a task is as bad as a later execution. The scheduling algorithm tries
to minimize the earliness and tardiness (E/T). An overview of E/T problems
and a polynomial algorithm for problems with non-execution penalties is pre-
sented in [12]. Similarly as in our model, in [13] tasks can adjust during run-time,
when the next activation should execute to fulfill some applications constraints.
A previous version of our work was presented in [14].

Organization
This paper is organized as follows. Section 2 presents the time-interval model.
Section 3 presents a scheduling approach and section 4 presents some experi-
mental evaluations. Section 5 presents the conclusions and future work.

2 Time-Interval Model

We propose a task model in which a task set τ is composed by tasks τi, i ∈
{1 . . . n}. Tasks τi are described by a worst-case execution time Wi, period
Ti, a deadline Di and Ti = Di. Each τi consists of an infinite series of jobs
{τi1,. . . ,τij ,. . . }, the jth such job τij is ready at time (j − 1) · Ti, j ≥ 1 and must
be completed by time (j − 1) · Ti + Di or a timing fault will occur. We define
by segment a sequential group of instructions inside τi (as shown in Fig. 1).
Task τi is composed by three segments named Ai, Bi and Ci. We denote the
first index of a segment as the task and the second index as the job, thus the
first job of segment Ai is named Ai1, the second job is Ai2 and so on for all
segments. The worst-case execution time of Ai is WAi , of Bi is WBi and of Ci is
WCi . The sum of the worst-case execution time of all segments is equal to the
worst-case execution time of task τi (WAi+WBi+WCi=Wi). We assume that
there is a precedence relation among segments Ai ≺ Bi ≺ Ci.

The execution of segments Ai, Bi and Ci is subject to the deadline of task τi,
Di which in this sense is an end-to-end deadline. Segment Ai is responsible for
performing its computations and it may require or not the execution of segment
Bi. Hence, the arrival time of segment Bi is determined on-line by segment Ai.
In case segment Bi is required to execute, segment Ci (which is a housekeeping
code) will also execute. Therefore, even though the execution of segment Ai is
periodic with period Ti, segments Bi and Ci are sporadic. In case neither Bi

Real-Time Scheduling Under Time-Interval Constraints 161

.....

.....

segment Ai segment Bi segment Ci
End segment(A)
Start segment(B)

End segment(B)
Start segment(C)..

Task τi

Start segment(A)

End segment(C)

Execution

segment Bi

segment Ai

segment Ci

Instructions

Fig. 1. Task τi with Segments

nor Ci are required to execute, segment Ai can execute up to the deadline Di.
Otherwise, as soon as segment Bi concludes, segment Ci is released to run. As
we consider an uniprocessor system, segments cannot overlap in time.

2.1 QoS Metric

The execution of segment Bij is also subject to a time-interval [si,j , ei,j] which
is defined by segment Aij during run-time and can change for each job τi,j ,
i.e: segment Bij must execute inside this time-interval to generate a positive
benefit. The length of [si,j , ei,j] is constant and named ρi. Inside the time-
interval [si,j , ei,j], there is an ideal time-interval [dsi,j , dei,j] with constant
length named ψi where the execution of segment Bij results in the highest ben-
efit to τi (WBi ≤ ψi ≤ ρi).

The functions in Fig. 2 and 3 were made to represent ordinary applications
requirements and so they also represent different real-time constraints. Figure 3
represents a strict benefit where the segment Bi must execute inside the ideal
time-interval [dsj , dej], otherwise the benefit is −∞, meaning a catastrophic con-
sequence. Figure 2 represents a cumulative benefit where the benefit decreases
from maximum (inside the ideal time-interval) to zero at the time-interval limits.
The choice of a particular function for a task is an application constraint which
also determines the values of si,j ,ei,j ,dsi,j and dei,j .

In those figures, the y axis represents the benefit v and the x axis is the
activate time t. The segment Bij is presented as running with its worst-case
execution time (WBi), starting at startbj and ending at endbj . The benefit v(t)
as a function of time is given by the equations in each figure. Equation 1 shows the
QoS value as the cumulative benefit by the execution of segment Bij inside the
time-interval. The range in [0%, 100%] represents the percentage of the maximum
benefit. The maximum benefit is only achieved when Bi runs all its code inside
the ideal time-interval [dsi,j , dei,j]. The goal is to maximize the QoS for each
job Bi. In case Bi is not required there is no QoS value to account.

QoS(Bi,j , startBi,j , endBi,j) =

∫ endBi,j

startBi,j
v (t) dt

endBi,j − startBi,j

· 100 (1)

162 F. Rodrigues de la Rocha and R. Silva de Oliveira

v (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, t < sj or t > ej

1, dsj ≤ t ≤ dej

1 −
(

dsj−t

dsj−sj

)
, sj ≤ t < dsj

1 −
(

t−dej

ej−dej

)
, dej < t ≤ ej

0

1
v

deidsj

sj
endbj

Bi

t

WBi

startbj

ej

Fig. 2. Cumulative Benefit

v (t) =
{

−∞, t < dsj or t > dej

1, dsj ≤ t ≤ dej

0

1
v

ej = dej

t

Bi

WBi

dsj dej

sj ej
startbj

endbj

sj = dsj

Fig. 3. Strict Benefit

Besides its time constraints, the time-interval problem may also present con-
straints regarding exclusive access during segment B execution inside the time-
interval. The nature of the resource under segment B control imposes access
constraints to ensure the consistence during resource’s operation. We assume
that during the execution inside the ideal time-interval the CPU is busy con-
trolling the resources. In this paper we consider segment B as non-preemptive,
which fulfills the access constraints. Therefore, the execution of Bi from task
τi cannot be preempted by other task τj . The start of Bi may be postponed,
however, once started it cannot be disturbed.

3 Scheduling Approach

For implementation purposes, it is natural to represent the segments in our model
as a set of subtasks. Therefore, we map all the segments of task τi into subtasks
keeping the same names Ai, Bi and Ci. Subtasks Ai and Ci are scheduled using
a preemptive EDF scheduler by its capacity to exploit full processor bandwidth.
A distinction is made to subtask Bi, which is non-preemptive and scheduled in
a fixed priority fashion. In a broad sense, when a task τi is divided into subtasks
each subtask possesses its own deadline and the last subtask has to respect the
task’s deadline, in this case an end-to-end deadline Di. Even though the task τi

has a deadline equal to period (Di = Ti), the subtasks require inner deadlines,
which must be assigned using a deadline partition rule.

The first challenge in our scheduling approach is the deadline partition
among subtasks. The time-interval definition states that segment Bi must start
adjusted by Ai. The minimum time to release Bi is a problem constraint and
this value may be used as a deadline for the previous segment. Therefore, in
the time-interval problem the deadline partition rule is determined using the
problem constraints. We assume a lower bound and an upper bound for the
release time of segment Bi [Bmini, Bmaxi] and set the deadline DAi = Bmini

and DBi = Bmaxi +ρBi as in Fig. 4. The time interval in which the segment Bi

can be active is [Bmini, DBi] and named time-window. The second challenge is
the release time of subtasks. It is necessary to enforce in the schedulability test

Real-Time Scheduling Under Time-Interval Constraints 163

Bmaxi

interval to release Bi

DCi

Bmini

Ai

Ci

DBi
Bi

strict benefit

Bi

Fig. 4. Limits to Release Bi

that a subtask must be release only after a predetermined time. In this situation,
we apply offsets [15] to control the release of subtasks and an offset oriented test
to fulfill the requirement. The third challenge is the non-preemptive aspect
of subtask Bi. The feasibility test must ensure that the execution of the non-
preemptive subtask cannot be preempted by any other subtask. In this aspect,
in [16] it is proposed a schedulability test to verify the schedulability of tasks in
the presence of non-preemptive tasks with the higher priorities.

3.1 Offline Feasibility Test

We verify the schedulability of a task set τ splitting the problem in two parts.
In the first part we test the schedulability of subtasks Ai and Ci in face of
non-preemptive interferences by subtasks Bi. A negative answer (reject) means
that all task set is unfeasible. In contrast, a positive answer (accept) means that
all subtasks Ai and Ci will finish up to their deadlines even though suffering
interference by non-preemptive subtasks. The second part applies a test based
on response-time to verify if the strict subtasks Bi are schedulable. A negative
answer means all task set is unfeasible. Otherwise, all strict subtasks Bi will
execute inside their ideal time-intervals and receive the maximum QoS value.
Using the same response-time test, we determine the minimum and maximum
QoS value which can be achieved by all cumulative subtasks Bi.

Feasibility Test for Subtasks A and C. The feasibility of test of subtasks
A and C is performed using the processor demand approach [17]. The processor
demand of a task in a time-interval [t1, t2] is the cumulative time necessary to
process all k task instances which were released and must be finished inside this
time-interval. We assume gi(t1, t2) as the processing time of τi.

The processor demand approach works by observing that the amount of pro-
cessing time requested in [t1, t2] must be less than or equal to the length of the
time-interval. Therefore, ∀t1, t2 g(t1, t2) ≤ (t2 − t1).

Lets assume a function ηi(t1, t2) as the number of jobs of task τi with release
and deadline inside [t1, t2]. ηi(t1, t2) = max{0, � t2+Ti−Di−Φi

Ti
	−
 t1−Φi

Ti
�}. Where

Ti is the period of task i, Φi is the offset (phase) of task i and Di is the deadline
of task i. In Fig. 5 the only jobs accounted by ηi are jobs τi,2 and τi,3. Job τi,1
has a release time before t1 and τi,4 has a deadline after t2.

164 F. Rodrigues de la Rocha and R. Silva de Oliveira

τi,1

t1

τi,2 τi,3 τi,4

t2

Fig. 5. Jobs of τi

The processor demand inside the time-interval is equal to the number of jobs
which were activated and must be completed inside the time-interval multiplied
by the computation time Wi. Therefore, gi(t1, t2) = max{0, � t2+Ti−Di−Φi

Ti
	 −

 t1−Φi

Ti
�}Wi and the processing demand for all task set is :

g(t1, t2) =
n∑

i=1

max

{

0,

⌊
t2 + Ti − Di − Φi

Ti

⌋

−
⌈

t1 − Φi

Ti

⌉}

Wi (2)

The schedulability of an asynchronous task set with deadline less than or equal
to period can be verified by ∀t1, t2 g(t1, t2) ≤ (t2 − t1). In asynchronous task
sets the schedule must be verified up to 2H + Φ [18] where H is the hyper-
period (H = lcm{T1, T2, . . . , Tn}) and Φ is the largest offset among tasks (Φ =
max{Φ1, Φ2, . . . , Φn}). Hence, the schedulability test must check all busy periods
in [0, 2H + Φ], which has an exponential time complexity O(H2) [19].

Accounting the Interference of Subtasks B
In [16] Jeffay and Stone have shown a schedulability condition to ensure the
schedulability of EDF in the presence of interrupts. Basically, they assume in-
terrupts as higher priority tasks which preempt every application task. Therefore
the interrupt handler interference is considered as a time that is stolen from the
application tasks. So, if tasks can finish before their deadlines even suffering the
interference from the interrupt handler, the task set is schedulable. The task
set is composed by n application tasks and m interrupt handlers. Interrupts are
described by a computation time CH and a minimum time between jobs TH .
The processing time for execute interrupts is f(L).

Theorem 1. A set τ of n periodic or sporadic tasks and a set ι of m interrupt
handlers is schedulable by EDF if and only if

∀L ≥ 0 g(0, L) ≤ L − f(L)

where the upper bound f(L) is computed by:

f(0) = 0

f (L) =

{
f(L − 1) + 1, if

∑m
i=1

⌈
L

THi

⌉
CHi > f(L − 1)

f(L − 1), otherwise
(3)

The proof is similar to the proof in [17]. The difference is that in any interval of
length L, the amount of time that the processor can dedicate to the application
tasks is equal to L − f(L).

Real-Time Scheduling Under Time-Interval Constraints 165

Using this method, subtask Bi is modeled as an interrupt handler, subtasks
Ai and Ci are implemented as EDF subtasks and the feasibility checked using
Theorem 1. The Theorem to account for interrupt handlers as expressed by Jeffay
and Stone assumes a synchronous task set with deadlines equal to periods.

We extend this Theorem using the processor demand approach to represent
asynchronous systems and deadlines less than periods. In this case, subtasks Ai

arrives at time zero (ΦAi = 0) and Ci arrives at time ΦCi . We assume that at
a specific time an interrupt starts Bi (using the designation in [16]). To ensure
subtask Ci runs only after subtask Bi, subtask Ci has the offset set to ΦCi = DBi .
We assume F (t1, t2) as the processor demand due to interrupts in [t1, t2]. The
new feasibility test in which all subtasks Ci have offsets and subtasks Bi are
modeled as interrupts is: ∀L ≥ 0 g(t1, t2) ≤ (t2 − t1) − F (t1, t2)

Subtasks B have a time-window during which can be active. So, applying [16]
is pessimistic due to the accounting of interrupts where they cannot execute. An
improvement is obtained by inserting an offset ΦHi as in

∑m
i=1
L−ΦHi

THi
�CHi to

represent the fact an interrupt cannot happen before Bmin. Algorithm 1 has
complexity O(H2). Unfortunately, in the worst case (where all periods are prime
numbers) the hyper-period is the product of all periods

∏n
i=1 Ti. Therefore, in

practical situations the algorithm can be applied only when task periods result
in a small hyper-period.

Algorithm 1. Feasibility test - first test

for all t1 such that 0 ≤ t1 ≤ 2H + Φ do
for all t2 such that t1 ≤ t2 ≤ 2H + Φ do

g(t1, t2) =
∑n

i=1 max{0, � t2+Ti−Di−Φi
Ti

� − � t1−Φi
Ti

�}Wi

F (t1, t2) = f(t2) − f(t1)
if g(t1, t2) > (t2 − t1) − F (t1, t2) then

return nonfeasible
end if

end for
end for
{It is feasible. Apply the second test}
return feasible

Feasibility Test Based on Response-Time. Differently from subtasks Ai

and Ci which are scheduled by EDF, our scheduling approach assigns a fixed
priority to all subtasks Bi according to a heuristic rule. The heuristic rule has
two metrics, criticality and slide factor. In the first metric, tasks can be strict
or cumulative. Subtasks with the strict criticality correspond to a group of sub-
tasks with higher priorities than subtasks with cumulative criticality. Inside each
group, priorities are given inversely proportional to the sliding factor computed
as sfi = ψ

WBi
. The sliding factor is related to the capacity to slide inside the

ideal time-interval and obtain the highest QoS value.
We intend to verify the schedulability of Bi computing its response-time (rt),

assuming that all subtasks Bi are always released at dsj as shown in Fig. 6. In

166 F. Rodrigues de la Rocha and R. Silva de Oliveira

β

DBi

Response-Time rt(Bi)

WBi

sj ej

dsj

ψ

dej

rt(Bi) QoS

rt ≤ ψ 100%
rt ≥ β + WBi

0%
ψ < rt < β + WBi

QoS(Bi, rt(Bi) − WBi
, rt(Bi))%

Fig. 6. QoS Value According to the rt

the same figure, we use β to describe the time-interval between the release at
dsj up to ej . In subtasks with cumulative criticality (as shown in Fig. 2) it is
possible to finish after the ideal time-interval, resulting in a lower QoS value. In
contrast, subtasks with a strict criticality (Fig. 3) demand the execution inside
the ideal time-interval i.e: it is necessary to verify if in the worst possible scenario
rt(Bi) ≤ ψ. Note that in a strict subtask Bi, sj = dsj , dej = ej.

The response-time can be divided into worst-case response-time (wcrt) and
best-case response-time (bcrt). The wcrt provides the worst possible scenario for
the execution of Bi and in this sense the QoS value is the minimum possible. On
the other hand, the bcrt provides the best possible scenario for Bi resulting in
the maximum QoS value. Computing the wcrt and the bcrt of subtask Bi makes
it is possible to obtain a QoS value as shown in Fig. 6. Therefore, applying
the wcrt of a subtask Bi as a response-time in Fig. 6 results in the minimum
possible QoS value. In contrast, applying the bcrt as a response-time results in
the maximum possible QoS value. The first line in the table inside Fig. 6 covers
the case where all Bi runs inside the ideal time-interval. The second line covers
the case where the execution takes place outside the time-interval and the third
line covers the case where part of Bi runs inside the time-interval.

Computing the Response-Time
The worst-case response time of non-preemptive sporadic subtasks can be de-
termined by the sum of three terms.

wcrtBi = WBi + max
j∈lp(i)

(WBj) +
∑

j∈hp(i)

WBj (4)

The first term in (4) is the worst-case execution time of subtask Bi. The
second term is the maximum blocking time due to subtasks running at moment
Bi is released. We account this value as the maximum execution time among
the subtasks Bj with a lower priority (lp) than Bi, leaving the interference of
higher priority (hp) subtasks for the next term. The last term is the maximum
blocking time due to subtasks Bj with higher priorities. We account this value
adding all subtasks Bj with higher priorities than Bi.

Unfortunately, in some situations the time-windows, in which Bi and Bj can
be activate may not overlap. In this case, it is impossible for Bj to produce
interference upon Bi, even though it has a higher priority. For instance in Bi

(W = 2, T = 50, Bmin = 10, Bmax = 20, D = 30, prio = 1) and Bj (W = 5 ,
T = 50, Bmin = 35, Bmax = 45, D = 55, prio = 2). The time-windows do not

Real-Time Scheduling Under Time-Interval Constraints 167

a) no interference

BminBj
BmaxBj

DBj

b) interference

Bi

BmaxBi
BminBi

DBi

ΩBminBj
BmaxBj

DBi
BminBi

Bi

BmaxBi

Ω DBj

Fig. 7. Interference of Bj upon Bi

overlap, so there is no interference between Bj and Bi (Fig. 7 item a). However,
if we change BminBj = 15, BmaxBj = 35, DBj = 45 the time-windows overlap
and there is interference between Bi and Bj to account (Fig. 7 item b).

We extend (4) to take into account only the subtasks which produce interfer-
ence (represented as I) upon Bi (5). The Ω in (6) gives the smallest time-length
between the earliest release time of Bi and Bj . If Ω is smaller than the distance
between [DBi , BminBi], the time-windows overlap resulting in interference ac-
counted as the worst-case execution time of Bj .

wcrtBi = WBi + max
j∈lp(i)

(I(Bj ,Bi)·WBj
) +

∑

j∈hp(i)

I(Bi,Bj)·WBj
(5)

I(Bi,Bj) =
{

1, if(Ω < (DBi − BminBi))
0, otherwise

Ω = BminBj − BminBi +
⌈(

BminBi − BminBj

gcd(TBi , TBj)

)⌉

· gcd(TBi , TBj) (6)

The best-case response time for subtasks Bi occurs when Bi does not suffer
any interference from other subtasks Bj . As a result, bcrtBi = WBi .

4 Experimental Evaluation

In this section we illustrate the effectiveness of the proposed feasibility test
comparing its result with a simulation performed on the same task set.

Our experiment is composed by three tasks (τ1,τ2,τ3), each of them subdi-
vided into three subtasks. The worst-case execution times, periods, deadlines
and offsets are presented in Table 1. Also, it show the specific parameters of
subtasks B such as criticality, priority, ρ,ψ,Bmin and Bmax. The results of the
offline test can be seen in Table 2. The subtask B2 (with strict criticality) always
runs inside the ideal time-interval, resulting in the maximum QoS. The other
two subtasks have cumulative criticality and present a minimum QoS of 41.6%
and 25.0% respectively. Due to a pessimistic test, the wcrt shown in Table 2
is an overestimation of the actual values. Therefore, we should expect that the
actual minimum QoS might be higher than the values given by the offline test.

We simulate the same task set for 10.000 time units, assuming the release
time uniformly chosen between Bmin and Bmax (Table 3). Subtasks Bi and Ci

are required in 90% of τi activations. The simulation shows a consistent result
where the minimum QoS values are equal or higher than the values given by the

168 F. Rodrigues de la Rocha and R. Silva de Oliveira

Table 1. Example With Three Tasks

τ subtask Wi Di Ti Φi criticality prio ρ ψ Bmin Bmax

τ1

A1 4 10 40 0
B1 6 31 40 11 cumulative 3 12 10 10 20
C1 2 40 40 31

τ2

A2 3 20 40 0
B2 2 34 40 20 strict 1 8 8 20 26
C2 2 40 40 34

τ3

A3 2 15 60 0
B3 6 31 60 18 cumulative 2 14 8 15 20
C3 1 60 60 31

Table 2. Offline Feasibility Results

subtask wcrt bcrt min QoS max QoS

B1 14 6 41.6% 100.0%
B2 8 2 100.0% 100.0%
B3 14 6 25.00% 100.0%

Table 3. Simulation Results

subtask wcrt bcrt min QoS max QoS

B1 14 6 41.6% 100.0%
B2 7 2 100.0% 100.0%
B3 13 6 41.6% 100.0%

offline test. Thus, the offline test can guarantee that during its execution no task
will ever obtain a lower QoS than computed using the offline test.

5 Conclusions and Future Work

This paper presented a useful model for a class of real-world problems which
by the lack of theoretical study, are implemented with conventional schedulers
resulting in lack of predictability. We applied some approaches from the real-time
literature with adaptations to our scheduling problem to create an offline test
which providing an accept/reject answer for tasks with critical benefit constraints
and a minimum/maximum expected benefit for non-critical tasks. As a future
work, we intend to investigate the scheduling problem where the B segments are
preemptive and need exclusive access upon resources.

References

[1] Leung, J.Y.T., Whitehead, J.: On the Complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks. Performance Evaluation 2, 237–250 (1982)

[2] Layland, J., Liu, C.: Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM 20(1), 46–61 (1973)

[3] Ravindran, B., Jensen, E.D., Li, P.: On Recent Advances In Time/Utility Function
Real-Time Scheduling And Resource Management. In: 8th IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (2005)

[4] Locke, C.D.: Software Architecture for Hard Real-Time Applications: Cyclic Ex-
ecutives vs. Fixed Priority Executives. Real-Time Systems 4, 37–53 (1992)

Real-Time Scheduling Under Time-Interval Constraints 169

[5] Tokuda, H., Wendorf, J.W., Wan, H.: Implementation of a Time-Driven Scheduler
for Real-Time Operating Systems. In: 8th RTSS, pp. 271–280 (1987)

[6] Burns, A., Prasad, D., Bondavalli, A., Giandomenico, F.D., Ramamritham, K.,
Stankovic, J., Strigini, L.: The Meaning and Role of Value in Scheduling Flexible
Real-Time Systems. Journal of Systems Architecture 46, 305–325 (2000)

[7] Buttazzo, G.C., Spuri, M., Sensini, F.: Value vs. Deadline Scheduling in Overload
Conditions. In: 16th IEEE Real-Time Systems Symposium, pp. 90–99 (1995)

[8] Liu, J., Shih, W.K., Lin, K.J., Bettati, R., Chung, J.Y.: Imprecise Computations.
In: Proceeding of the IEEE (1994)

[9] Jensen, E., Locke, C., Tokuda, H.: A Time-Driven Scheduling Model for Real-Time
Operating Systems. In: Real-Time Sytems Symposium (1985)

[10] Wu, H., Ravindran, B., Jensen, E.D., Balli, U.: Utility Accrual Scheduling un-
der Arbitrary Time/Utility Functions and Multi-unit Resource Constraints. In:
Proceedings of the 10th RTCSA (2004)

[11] Lipton, R.J., Tomkins, A.: Online Interval Scheduling. In: 5th annual ACM-SIAM
Symposium on Discrete Algorithms, Philadelphia, PA, USA, pp. 302–311 (1994)

[12] Hassin, R., Shani, M.: Machine Scheduling with Earliness, Tardiness and Non-
Execution Penalties. Computers and Operations Research 32, 683–705 (2005)

[13] Velasco, M., Mart́ı, P., Fuertes, J.M.: The Self Triggered Task Model for Real-Time
Control Systems. In: 24th RTSS (WiP) (2003)

[14] de la Rocha, F.R., de Oliveira, R.S.: Time-Interval Scheduling and its Applications
to Real-Time Systems. In: 27th Real-Time Systems Symposium (WiP) (2006)

[15] Gutierrez, J.P., Harbour, M.G.: Offset-Based Response Time Analysis of Dis-
tributed Systems Scheduled under EDF. In: 15th ECRTS (2003)

[16] Jeffay, K., Stone, D.L.: Accounting for Interrupt Handling Costs in Dynamic Pri-
ority Task Systems. In: 14th RTSS (1993)

[17] k.Baruah, S., Howell, R.R., Rosier, L.E.: Algorithms and Complexity Concerning
the Preemptive Scheduling of Periodic, Real-Time Tasks on One Processor. Real-
Time Systems 2, 301–324 (1990)

[18] Leung, J., Merill, M.: A Note on the Preemptive Scheduling of Periodic, Real-Time
Tasks. Information Processing Letters 11, 115–118 (1980)

[19] Goossens, J.: Scheduling of Hard Real-Time Periodic Systems with Various Kinds
of Deadline and Offset Constraints. PhD thesis, Université Libre de Bruxelles
(1999)

Towards a Software Framework for Building Highly

Flexible Component- ased Embedded Operating Systems

Dong X , Hua W , Qiming T , Xiangqun C

 Operating System Laboratory, Department of Computer Science and Technology
School of EECS, Peking University, Beijing, 100871

Abstract. Emerging new computing models make embedded systems become

more ubiquitous and pervasive. To adapt the dynamic computing environment,
future embedded operating system (EOS) is required to be highly flexible: the
static image composition can be configured and the runtime structure can
dynamically evolve. In this paper, we present a software framework for
building such an EOS through a component-based approach. One unique
feature of our framework is its ability of supporting black-box software reuse.
This capability permits components from third-party systems to be reused, and
frees component developers from the burden of meeting certain implementation
constraints imposed by the component model. Based on a flexible binding

model, the component runtime service that resides in the nucleus of this
framework provides reconfiguration functions to support runtime changes in
components and connectors at different levels. To evaluate this framework, we
have reorganized uC/OS-II into a component-based one, and we also have
implemented a prototype system named as TICK which consists of both native
components and reused components. Experiment results show the performance
cost induced by our framework is controllable and acceptable.

1 Introduction

As the rapid expansion of the application domain of computing technology, and the

growing maturity of network infrastructure, emerging computing models make
embedded systems become more ubiquitous and pervasive[1,2]. This trend forces

embedded systems to put more focus on the issues of minimization, self adaptability,

personalization and etc. To adapt the dynamic computing environment, future

embedded systems should be highly flexible, which indicates that the static image

composition can be configured and the runtime structure can dynamically evolve. For

example, a smart computing node, whose static image composition is configured with

its only required components, knows to load TCP/IP protocol stack when it enters a

wired network environment, while replacing the TCP/IP stack with Bluetooth

protocol when switching to wireless network. The whole process should be done

without human administration.

Building flexible EOS from components has been an active area of operating
system research. Previous work such as OSKit [3], eCos [4], PURE [5] provide

configuration capability by encapsulating functionalities into components, eCos and

B

u ang eng hen

{xudong,wanghua,tqm}os.pku.edu.cn,cherry@cs.pku.edu.cn

and

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 170–181, 2007.
© IFIP International Federation for Information Processing 2007

PURE also provide tools to aid the configuration process. Systems like Choices [6],

2K [7], Pebble [8] and MMLite [9] provide reconfiguration capabilities by different

approaches, but few of them provide reconfigurable ability for system level OS

components. Moreover, the component-based approaches of these systems lie in the

predefined ways component can interact and bound together.

Another problem in existing component-based EOSes is that there are no rules or

tools for supporting extract or produce components from third party systems.

Component developers cannot directly reuse components from the system adopting a
different component model, and also, without supporting tools, people cannot directly

reuse legacy codes in existing non component-based EOS.

This paper presents a software framework for building EOSes from binary

components. The binary components can be purposely made or extracted from pre-

existing ELF files and composed at build, boot, or runtime to build a system.

The primary contributions of this paper are as follows:

1) Within our knowledge, our framework is the first one that supports black-box

software reuse. We propose a unique approach to extract and produce reusable binary

components from existing systems, and then reuse them in the framework.

2) We build a component runtime service as the runtime infrastructure that

manages system components and user components in a unified way. It enables

reconfiguration ability on both system/user components and connectors, and makes
the runtime structure evolvable.

3) Our supporting toolkit covers almost the whole construction process.

To evaluate our framework, we have successfully reorganized uC/OS-II into a

component-based one. We have also built a prototype system TICK1 which consists

of native components and reused components. Experiment results show the

performance cost induced by our framework is controllable and acceptable.

The rest of this paper is structured as follows. Section 2 discusses related work.

Section 3 details our software framework. Section 4 presents the experimental study

and section 5 concludes this paper.

2 Related Work

There have been several works in the past decade on building component-based EOS.

OSKit [3], an early component system, thinks that application orientation and

reusability can be achieved by providing a “box of building blocks”, but it has no

considerations on the building rules. Systems like eCos [4], PURE [5], Choices [6],
Pebble [8], 2K [7] are built based on certain frameworks in which the kernel design

specified fixed ways components can interact and be bound together. This issue has

been addressed by THINK [10]. Its proposed software framework allows OS

architects to assemble components in varied ways, but it does not support dynamic

reconfiguration functionalities. All these systems adopt different component models,

but none of them provide means to reuse components from each other, and even from

the third party systems.

1 TICK stands for Tick Is Component Kernel .

Towards a Software Framework for Highly Flexible Component-Based EOS 171

Our framework does not impose a particular kernel design on the OS architect. In

this respect, our framework is similar to THINK. Unlike THINK, our framework

provides reconfiguration functions to support run-time changes in components and

their connectors at both user level and system level. Other differences between our

framework and THINK include:

1) Component model: Compared with THINK‟s component model ODP [11], our

component model is a conceptual model, it does not put any constraints on component

implementations.
2) Software reusability: Our framework supports black-box software reuse. Codes

in either component-based or non component-based systems can be reused, regardless

of the different component models.

3) Binding model: Unlike THINK, our binding model dynamically generates

connectors from a pre-translated binary binding routine repository, with which

synchronization and mutual exclusion issues can be made transparent to components.

In this section, we first introduce the overall structure of our framework. Then the

approaches of supporting black-box software reuse and runtime structure evolution

are presented. We at last discuss the construction process and supporting tools.

3. 1 The verall tructure

As illustrated in Figure 1, our framework models the target system as a collection of
components and connectors that are collaboratively running with the supports from

the underlying nucleus. A component in our framework is a functional entity that

encapsulates data and behavior. Our framework supports black-box software reuse, so

there are two kinds of components: the native ones are developed from scratch, and

the others are directly reused from existing systems. Connectors are a sort of

abstraction of the connection relationships amongst components. They can be a few of

3 An verview of ur Software ramework O O F

O S

Fig. 1. The overall structure of our framework. BS stands for Bootstrap Service, LLD stands for
Low Level Driver and RS stands for Runtime Service.

172 D. Xu et al.

instructions that perform a direct call, or be coarse-grained components that

encapsulate complicate inter-component communication semantics.

The nucleus, which comprises a HAL and a component runtime service (CRS),

provides an abstract interface to hardware and management facilities for upper-level

components. HAL provides portability for upper-level components, while the CRS

plays a role as runtime infrastructure that supports run-time changes in both

components and connectors at different levels. Readers can refer to [12] for an

explanation of HAL design. As to CRS, we discuss it in section 3.3.
All ingredients in this framework are statically configurable, including the upper-

level components, connectors and the underlying nucleus.

3.2 Supports for lack- ox oftware euse

In our framework, we build components directly from ELF object files [13]. Choosing

the binary object files as raw component candidates is reasonable:1)Building binary

components can benefit from the fact that programming language used to write the
source component is not restricted, developers can write component codes without

meeting certain implementation constraints imposed by the component model.2)

Building components directly from object files makes it possible to reuse components

using different component models without source-level re-encapsulating.3)ELF

standard is widely accepted in UNIX family operating systems and other systems,

there potentially exist lots of high quality legacy codes to be examined.

Fig. 2. Conceptual diagram of the component model. We look upon a component as a container
for one or more implementation(s) of certain interface(s).

Figure 2 depicts the conceptual diagram of our component model. We look upon a

component as a container for one or more implementation(s) of certain interface(s).

To correctly operate in a target context, a component may require facilities from other

entities in the system. These required (imported) items are referred to as RequMember,

which are modeled as a tuple (Intf, Impl, Member). When requiring a portal from

outside of the component, the component can optionally specify the Impl element. A
NULL Impl element indicates that any implementation that implements the specified

interface is acceptable. A component must have at least one implementation of an

B SB R

Towards a Software Framework for Highly Flexible Component-Based EOS 173

interface member, viz. IntfMember, can be either a variable or a function. Untrusted

components can have only functions as interface members. Since the intended domain

is an embedded system that might have no memory protection supports, the

assumption of direct bindings among components are reasonable. However, for those

systems that do support memory protection or privilege modes, no interface can

export or import data members directly. In this case, all bindings among components

that reside in different protection domains should be done using special facilities (e.g.

trappings, upcalls).
Following steps comprise our component production process:

1) For developers who develop components from scratch can directly go to step 3

after compiling the component source codes into object files.

2) Identify and extract candidate object files from legacy systems. We developed a

tool named DEREF which can automatically extract and visualize the architecture

structure of legacy systems based on cross references among object files [14].With the

assistance of related documents and domain knowledge, people can identify and

extract required software modules easily.

3) Transform selected object files into reusable, self-contained components. The

conversion process is constituted of the following steps: First, we present

functions/variables in the object file to users for syntactic information recovering. All

function/variable names are reprogrammed upon their signatures, which comes from
header files or related documents. By this way, ambiguity caused by duplicate names

in ELF files is eliminated. Second, we specify the properties of interface members,

such as the reentrancy, visibility and so on. Third, we extract codes and data in the

related sections of object files into implementation members, thus the

implementations are separated from interfaces. At the same time, we also extract

relocation information from object files into the component files. Fourth, in order to

prevent hostile modifications, we sign the component with a MD5 fingerprint. Finally,

we attach the component description information in the component header.

Since the binary object file is no longer restrained by the component model, it is

feasible to re-produce binary components with different component models into our

component format. Reusing legacy codes in existing systems can also benefit from
this approach.

3.3 Supports for untime tructure volution

The key nucleus component for supporting target system runtime structure evolution

is the CRS. In this section, we primarily focus on the binding model used by the CRS,

we refer reader to [15] for the details of all the parts of CRS.

Connectors generated by CRS represent some sorts of inter-component
communication semantics. Most of them are implemented into two code snippets

named prolog and epilog, respectively. Figure 3 depicts our binding model [16]

adopted by CRS: supposing that two components A and B are loaded into memory by

CRS, and that the functionA in A requires a service functionB from B, a connector is

needed. The connector is dynamically generated according to the user specified

binding type. In this case, functionB in B is specified to be accessed exclusively. The

corresponding prolog and epilog thus incorporate seizeMutex and freeMutex logic

SR E

174 D. Xu et al.

interface, otherwise the component is regarded useless. For trusted components, the

copied from the Binding Routines repository. The CRS redirects function call (a

relocatable call instruction) in the caller's code to the prolog in which the last goto

instruction points to functionB. The CRS also modifies the calling stack frame of

functionA, in which the return address of functionB („loc_call‟ in Figure 3) is replaced

by the start address of the epilog, so that it appears to B that functionB was called by

the epilog. When component B finishes servicing A, the return statement actually

transfers the execution to the epilog, which finally goes back to the „loc_call‟. Thus

component A is ignorant of the intercepting procedure happened: it seems to A that the
function call behaves just like usual cases, and everything is done as expected.

Fig. 3. The binding model. Binding routines are pre-translated binary relocatable code snippets
shipped along with the CRS component. This repository is customizable when building the
target image.

An interesting point of this binding model is that reference counting, component

locking, and cross-domain interactions can be implemented in the same way.

Supporting more complicated inter-component communication semantics such as

Towards a Software Framework for Highly Flexible Component-Based EOS 175

OS specific communication semantics into connectors, issues such as synchronization

and mutual exclusion can be made transparent to connected components.

We enable reconfiguration ability of components by adopting techniques like

reference count and r/w locks in the connectors. The replacement of connectors is

similar to that of components since we can view connector as a special kind of

component. We do not support state transfer like the K42 [17] does. State transfer

usually adds constraints on component interface semantics, which limits the range of

components to be used.
The CRS manages the system/user components and connectors in a unified way,

since the OS mechanisms and policies are all encapsulated in upper-level components.

By enabling reconfiguration functions, the runtime changes in components and

connectors at different levels are supported. As a result, the runtime structure can

dynamically evolve.

3.4 Construction rocess and upporting ools

The construction process for a particular EOS based on our framework is similar to

common component-based software development approaches, which follows two

major steps:

1) Component acquisition/production: components in target system can either be

bought from third-party vendors, or be developed from scratch. They can also be

extracted and produced directly from legacy systems (e.g., RTEMS, eCos etc.). All

components produced in this phase are collected into a component library.

2) Configuration and composition: at the configuration stage, OS architects select

components from the component library, specify the connectors, and configure the

components and the nucleus. Once the checking process of composition relationships

and constraints passed, the target can be composed at build, boot or runtime.
Tools developed to aid this process include:

 Component repository system: a component library management tool, features

including component storage, search etc.

 DEREF: this tool extracts and visualizes architecture structure of legacy

systems which helps OS architect identify raw black-box components.

 Component maker: a semi-automatic tool used to product components from

ELF object files.

 Composition tool: a visual environment that supports the target system

configuration and the component composition.

4 Experimental tudy

In this section, we have reorganized the non component-based real-time kernel

uC/OS-II into a component-based one. We also have built a prototype system named

TICK based on our framework. All measurements given below are performed on

SAMSUNG S3C44B0X board with a 66MHZ ARM7TDMI processor.

P S T

S

176 D. Xu et al.

RPC is possible by encapsulating them into coarse grained connector components,

thus they can be bound with other components in the same way. By abstracting the

4.1 Reorganize uC/OS-II into a omponent- ased ne

We have extracted 14 object files directly from the kernel of uC/OS-II for S3C44B0.

We also have encapsulated the kernel C library references into a Clib object file. We

have written an application as our benchmark which covers most of uC/OS-II

functionalities, and it is used to verify the correctness of the reorganized system.

Table 1 compares the size of object files and their corresponding components. We can
see that the size of uC/OS components is smaller than that of the object files. This is

because the uC/OS object files contain many debugging sections which are not

extracted into the corresponding components. The Clib object file does not contain

such sections, the attached self description information in Clib component makes it

bigger than the original object file. We have built a HAL which only contains a BS

module, and all the components are configured to be connected by direct call

Table 1. ize comparison between object file and component

Table 2. ime cost of boot-time components loading and binding

The experiment shows that the application successfully starts to run. It proves that

our component production approach is feasible to support the black-box software

reuse. The time cost of boot-time components loading and binding is shown in Table 2.

 This cost is acceptable because it has no impacts on the performance of the target

system itself. As compared to the statically linked uC/OS-II image which is 67,308

bytes sized, we have introduced more than 19,600 bytes extra space cost. However,

this space cost is controllable: because there are no components need to be
reconfigurable, the extra space cost induced by component files can be reclaimed after

the CRS completes the target system composition. Under the circumstance that the

total component size exceeds the memory limitation, we can compose the system at

build time rather than at boot-time, thus there is no space cost induced.

4.2 TICK, a omponent- ased EOS

We have built a component-based EOS named TICK based on our software
framework. TICK‟s structure is shown in Figure 4. TICK consists of both native

components and reused components. Five types of connectors are configured to

connect components. The inter-component communication semantics in these

connectors include direct call, system call, mutual exclusion, enable/disable interrupt

and lock/unlock component.

B OC

connectors. The target system composition is set to be done at boot-time.

S

T

C B

Towards a Software Framework for Highly Flexible Component-Based EOS 177

 obj. file size(bytes) comp. file size(bytes)
Clib 23,696 44,184
uC/OS 46,646 42,724

instructions time(μs) cycles
5,489 271.65 17,929

4.2.1 Reuse lack- ox omponents from ther ystems

The memory management component in TICK is reused from ThreadX [18] which

implements a kind of linear memory management algorithm. Also, we extracted 8

object files from VxWorks I/O subsystem, and developed an „adapter component‟ to

convert their external dependencies into TICK‟s components, interfaces of TICK

components involved in this adaptation including semaphore and memory

management.

Fig. 4. The structure of TICK.CLK is a component for clock management. TMR is timer
component and EXCE is exception management component. ETH stands for the low-level
driver of Ethernet adapter.

4.2.2 Reconfigurable bility

In TICK, a prolog/epilog template is used to generate connectors:

UINT32 bindConnectCode[] = {

 /*prolog:*/
 0xe92d100f, /* stmfd sp!, {r0-r3,ip}, push registers */

 0xe59f0038, /* write Param1 of preStub */

0xe59f1038, /* write Param2 of preStub */

 0xe59f2038, /* write Param3 of preStub */

 0xe59f3038, /* write Param4 of preStub */

 0xeb000000, /* call preStub,need to be relocated */

 0xe8bd100f, /* ldmfd sp!, {r0-r3, ip}, pop registers */

 0xeb000000, /*branch required_func,need to be relocated*/

 /* epilog: */

 0xe92d100f, /* stmfd sp!, {r0-r3, ip} */

 0xe59f001C, /* write Param1 of postStub */

 0xe59f101C, /* write Param2 of postStub */

 0xe59f201C, /* write Param3 of postStub */

SCB OB

A

178 D. Xu et al.

 0xe59f301C, /* write Param4 of postStub */

 0xeb000000, /* call postStub,need to be relocated */

 0xe8bd100f, /* ldmfd sp!, {r0-r3, ip} */

 0xea000000, /*back to the instruction after required_func */

 0x00000000, /* value of preStub Param#1,to be relocated */

 0x00000000, /* value of preStubParam#2, to be relocated* /

 0x00000000, /* value of preStub Param#3,to be relocated */

 0x00000000, /* value of preStub Param#4,to be relocated */
 0x00000000, /*value of postStub Param#1,to be relocated*/

 0x00000000, /*value of postStub Param#2,to be relocated*/

 0x00000000, /*value of postStub Param#3,to be relocated*/

 0x00000000, /*value of postStub Param#4,to be relocated*/

};

Based on this template, we induced extra 96 bytes, 64 bytes of which are used for

16 instructions, and the other 32 bytes are used by data for at most 8 parameters. The

cost of this template is given in Table 3.

The „preStub‟ and „postStub‟ in this template refers to the routines that

implemented certain communication semantics. Table 4 summaries performance of

connectors in TICK. A direct call connector is generated by filling the callee‟s

address into the caller‟s function call instruction, so there is no extra cost in this case.
System call connector does not use the prolog/epilog code in this template. We

registered a „system call binding service‟ as a system call routine that will call the

function specified in its parameters in supervisor mode. When a system call binding is

required, the connector code will put the required function‟s address and parameters

in general purpose registers, and then directly call the software interrupt instruction to

request the system service.

Table 3. Performance cost of prolog/epilog template

Table 4. Performance of connectors in TICK

The performance cost of each connector equals to the cost of prelog/prolog

template plus the cost of corresponding preStub/postStub. Table 3 tells us that the cost

of prolog/epilog is negligible. The cost of each preStub and postStub which

implement certain communication semantics depends on its implementation, and this
kind of cost is inherent in the interacting scheme.

To evaluate the performance of dynamic reconfiguration, we built two components

A and B which encapsulated different priority-based scheduling policies. A is only

Towards a Software Framework for Highly Flexible Component-Based EOS 179

Instructions time(μs) cycles

16 0.93 62

Communication semantics instructions time(μs) cycles
system call 61 2.15 142
mutual exclusion 260 9.01 595
enable/disable interrupt 26 1.21 80
lock/unlock component 761 24.98 1,649

bound with scheduler component, and B is stored in host machine. Besides of the

access semantics, the connectors between A and scheduler component encapsulate

logic of reference counting and read lock acquisition. When dynamic reconfiguration

event (we implemented it as a kind of user-defined event) is triggered, the CRS will

download component B from host machine. After loading component B into memory,

CRS will add a write lock on component A, and will rebind the scheduler component

with component B once the reference count on component A becomes zero.

Table 5. Performance evaluation on a dynamic reconfiguration case

Table 5 shows the performance of this dynamic reconfiguration case. The cost of

internal relocation is requisite when loading relocatable component into memory. The

cost of runtime component binding depends on two factors: 1) the number of required
functions/variables in components. In current implementation, each required

function/variable needs to take 15 cycles when connecting itself with the

corresponding provided one. Since the number of required functions/variables is

configurable, this kind of cost is controllable.2) the performance of connectors. As we

analyzed before, the extra cost induced by connectors is negligible. In real application

scenario, only a few components (e.g., those encapsulate system policies) often need

to be replaced, so the performance cost of dynamic reconfiguration is actually small.

5 Conclusion and uture orks

We have presented a software framework for building highly flexible component-

based EOS that the static image composition can be configured and the runtime

structure can dynamically evolve. We have discussed the component production

approach as well as the component model, with which the black-box software reuse is

supported. We have detailed the runtime infrastructure primarily on the binding

model, which provides reconfiguration ability on the runtime structure. Also we have

briefly introduced the construction process and supporting tools. To evaluate this
framework, we have reorganized uC/OS-II into a component-based one, and we also

have built a prototype system TICK using our framework. The evaluation results

show that our approach is feasible and the performance penalties are controllable and

acceptable.

Future works are to be carried out in the following aspects:

 Investigating method to verify the correctness of the binary component

composition.

 Optimizing the CRS code, as well as the component organization format, thus

the space cost can be lowered.

 Developing more kinds of connectors to support more complicated inter-

component communications such as RPC.
 Exploiting existing EOS to enhance the component library.

F W

180 D. Xu et al.

Step instructions time(μs) cycles
load and internal relocate 1,644 49.43 3,263
bind 35 1.13 75

Acknowledgments Special thanks to Yi ZHAO who helped us tremendously imp-
rove on an earlier version

of

this

paper.

This

work

is

sponsored

by

the

National

 High-Tech Research and Development Plan of China under Grant No. 2002AA1Z2301

 and 2004AA1Z2400.

References

.

1. Weiser, M.: Hot Topics: Ubiquitous Computing. IEEE Computer 26(7), 71–72 (1993)
2. Hendrickson, B., MacBeth, A., Gribble, S.: Systems Directions for Pervasive Computing.

In: Proc. of the 8th Workshop on HOTOS, May 20-22, p. 147 (2001)
3. Ford, B., Back, G., Benson, G., et al.: The Flux OSKit: a substrate for kernel and language

research. In: Proc. of the 16th ACM SOSP, October 05-08, pp. 38–51 (1997)
4. eCos. http://sources.redhat.com/ecos/
5. Beuche, D., Guerrouat, A., Papajewski, H., et al.: The PURE Family of Object-Oriented

Operating Systems for Deeply Embedded Systems. In: Proc. of the 2nd IEEE international
Symposium on Object-Oriented Real-Time Distributed Computing, May 02-05, 1999, pp.
45–53. IEEE Computer Society Press, Washington, DC (1999)

6. Campbell, R., Islam, N., Madany, P., et al.: Designing and Implementing Choices: An
Object-Oriented System in C++. Communications of the ACM 36(9), 117–126 (1993)

7. Kon, F., Singhai, A., Campbell, R.H., et al.: 2K: A Reflective, Component-Based
Operating System for Rapidly Changing Environments. In: Demeyer, S., Bosch, J. (eds.)
Object-Oriented Technology. ECOOP 1998 Workshop Reader. LNCS, vol. 1543, pp. 388–
389. Springer, London (1998)

8. Gabber, E., Small, C., Bruno, J., et al.: The pebble component-based operating system. In:
Proc. of USENIX Annual Technical Conference, CA, pp. 20–20 (1999)

9. Helander, J., Forin, A.: MMLite: A Highly Componentized System Architecture. In: Proc.
of 8th ACM SIGOPS on Operating Systems European Workshop, pp. 96–103. ACM
Press, New York (1998)

10. Fassino, J.-P., Stefani, J.-B., Lawall, J., et al.: THINK: A Software Framework for
Component-based Operating System Kernels. In: USENIX 2002 Annual Technical
Conference, CA, pp. 73–86 (2002)

11. ITU-T Recommendation X.903 | ISO/IEC International Standard 10746-3. ODP Reference
Model: Architecture.ITU-T | ISO/IEC (1995)

12. Teng, Q., Wang, H., Chen, X.: A HAL for Component-Based Embedded Operating
Systems. In: Proc.of the COMPSAC 2005, pp. 23–24. IEEE CS, Washington, DC (2005)

13. Qiming, T., Xiangqun, C., Xia, Z.: On Building Reusable EOS Components from ELF
Object Files. Journal of Software 15(12a), 157–163 (2004)

14. Teng, Q., Chen, X., Zhao, X., et al.: Extraction and Visualization of Architectural
Structure Based on Cross References among Object Files. In: Proc. of COMPSAC 2004,
pp. 508–513. IEEE Computer Society, Washington, DC (2004)

15. Xu, D., Teng, Q., Chen, X.: Supports for Components Loading and Binding at Boot-time
for Component-based Embedded Operating Systems. In: Proc. of ICESS 2005, December
2005, pp. 46–52. IEEE CS Press, Los Alamitos (2005)

16. Teng, Q., Chen, X., Zhao, X.: On Generalizing Interrupt Handling into A Flexible Binding
Model for Kernel Components. In: Wu, Z., Chen, C., Guo, M., Bu, J. (eds.) ICESS 2004.
LNCS, vol. 3605, pp. 323–330. Springer, Heidelberg (2005)

17. Baumann, A., Heiser, G., Appavoo, J., et al.: Providing dynamic update in an operating
system. In: Proc. of USENIX 2005 Annual Technical Conference, CA, pp. 32–32 (2005)

18. ThreadX. http://www.rtos.com/

Towards a Software Framework for Highly Flexible Component-Based EOS 181

A Study on Asymmetric Operating Systems

on Symmetric Multiprocessors

Yu Murata, Wataru Kanda, Kensuke Hanaoka,
Hiroo Ishikawa, and Tatsuo Nakajima

Department of Computer Science, Waseda University
{murata,kanda,kensk,ishikawa,tatsuo}@dcl.info.waseda.ac.jp

Abstract. This paper proposes a technique to achieve asymmetric mul-
tiple OSes environment for symmetric multiprocessors. The system has
a host OS and guest OSes: L4 microkernel and their servers run as the
host OS, and modified Linux runs as the guest OS. OS manager which
is one of the servers on the host OS manages the guest OSes. Our ap-
proach avoids a lot of execution overheads and modification costs of the
guest OSes because the each OS can control hardware directly without
any virtualization. The results of the evaluation show that our system
is much better than the existing virtual machine systems in point of
the performance. In addition, a guest OS in our system requires a few
amount of modification costs. Consequently, the experiments prove that
our system is a practical approach for both performance and engineering
cost sensitive systems.

Keywords: Operating Systems, Symmetric Multiprocessors, Multiple
OSes Environment, InterProcessor Interrupts, InterOS Communications.

1 Introduction

Virtualization technology has become popular again because of the hardware
improvement. The remarkable feature of virtual machine technologies is mul-
tiple operating systems (OSes) can run on a single machine. A virtualization
technology principally consists of a virtual machine monitor (VMM) and some
virtual machines (VMs). A VMM provides VMs which virtualize hardware for
OSes run on them. If a VMM provides multiple VMs, multiple OSes can run on
them concurrently. In general, an OS which runs on a VM is called a guest OS.

On the other hand, virtual machine approaches require higher hardware per-
formance. Some techniques have been proposed to reduce overheads by modify-
ing a guest OS for a specific VMM such as Xen, but they need expensive cost
for modification. Therefore, it is significant to consider the trade-off between
performance and engineering cost.

Various approaches have been proposed to achieve multiple OSes environment
on a single machine. One of the advantages of running multiple OSes is efficient
use of hardware resources. It is usually more efficient to run two OSes on a
single machine than to run them on two machines. Because recent hardware has

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 182–195, 2007.
c© IFIP International Federation for Information Processing 2007

A Study on Asymmetric Operating Systems on Symmetric Multiprocessors 183

a amount of resources such as memory and hard disk, an OS can’t always use all
resources in a machine. Running more than two OSes on a single machine, such
unused resources can be assigned to another OS. As a result, you can save the
number of hardware. In addition, running multiple OSes concurrently improves
the reliability of systems. If there are multiple OSes running on a system, you
can access their services even when one of the OSes doesn’t work. Thus, multiple
OSes environment makes the system reliable.

We developed a system which achieves multiple OSes environment on a single
machine. The system is named SIGMA system. SIGMA system doesn’t require
any specific hardware but only requires a symmetric multiprocessor (SMP) which
is generally used in a personal computer. SIGMA system assigns one OS to one
of the processors. We can say this environment is asymmetric because different
kinds of OSes run on each processor in SIGMA system. One of the most im-
portant characteristics is that an OS of SIGMA system achieves not only the
minimum engineering cost but also the little performance degradation although
performance and engineering cost are trade-off relationships in the virtual ma-
chine technology.

We ran the benchmark software on its OS to evaluate the performance of
SIGMA system and proved its advantage in performance. The evaluation result
is actually significant because evaluation of asymmetric environment has hardly
been performed before.

The remainder of this paper is structured as follows. Section 2 describes three
virtualization techniques as related work which achieve multiple OSes on a sin-
gle machine. Section 3 explains overview of SIGMA system and detail of its
implementation. Section 4 shows evaluations in point of the performance and
engineering cost. Section 5 discusses use cases of SIGMA system. Finally, Sec-
tion 6 summarizes our research.

2 Related Work - Virtualization

The essence of the virtualization technology is a VMM which changes a single
hardware interface to multiple interfaces. The interface is duplication of real
hardware and equips all instructions (both privileged and unprivileged) of pro-
cessors and hardware resources (memory and I/O devices, etc...) [3]. Such inter-
face is called a VM, which is the virtualized hardware environment created by a
VMM. The VM is controlled by the VMM and provides the same environment
as the original hardware. Basically, a program runs on a VM should behave as it
runs on an original hardware except some exceptions such as differences caused
by the availability of system resources and timing dependencies [14].

Generally, virtualization technologies are categorized into three approaches:
full-virtualization, para-virtualization, pre-virtualization.

2.1 Full-Virtualization

Full-virtualization is achieved by complete emulation of all instructions and hard-
ware. The most significant advantage of full-virtualization is that almost all OSes

184 Y. Murata et al.

can be run on its VM without requiring any modification to them. In addition,
since it emulates hardware completely, the approach does not degrade the re-
liability of OSes run on the VM. On the other hand, full-virtualization has
performance problems. The VMMs developed for full-virtualization are VMware
[15][16][19], Virtual PC, real hardware.

2.2 Para-virtualization

Para-virtualization is achieved by modifying a guest OS for a specific hypervisor.
The performance of para-virtualization is superior to that of full-virtualization
because the OS is optimized for the hypervisor. Though, such modification ex-
tinguishes some advantages achieved in full-virtualization. For a examples, a
para-virtualized OS can’t run on different hypervisors because the OS is cre-
ated for only a single hypervisor. The examples of para-virtualization hyper-
visors and its guest OSes are Xen and XenoLinux [2], L4 microkernel and
L4Linux [4].

Microkernel-based para-virtualization: A microkernel is one of kernels
which has only core functions such as interrupt management, process man-
agement, an interprocess communication (IPC). The other functions are im-
plemented as user process modules outside of the kernel. The kernel structure
is simple and easy to manage. On the other hand, an IPC is generated very
frequently to communicate with the modules and it leads context switches. The
performance degradation of a microkernel is mainly caused from those switches.
Although some approaches has been proposed to decrease those overheads for
some architecture such as arm and x86 [12][17][20], the performance problems
in microkernel approaches are the acute issues.

L4Linux is one of the para-virtualized Linux which is ported to run on a L4
microkernel. L4Linux is executed with other servers concurrently in the unprivi-
leged mode. Wombat [9] is also one of the para-virtualized Linux which is ported
to run on L4/Iguana system. L4/Iguana consists of NICTA::L4-embedded [8]
and Iguana [5]. NICTA::L4-embedded is one of the L4 microkernel modified for
embedded systems. Iguana is basic software provides OS services such as mem-
ory protection mechanisms and device driver frameworks for embedded systems.
NICTA::L4-embedded, Wombat and Iguana have been developed at National
ICT Australia (NICTA).

2.3 Pre-virtualization

Pre-virtualization is achieved by modifying assembler codes of a guest OS [10].
The modification consists of multi-phase process called afterburning. Since the
afterburning is processed automatically, the engineering cost is relatively small.
Pre-virtualization has both benefits of full-virtualization and para-virtualization,
the low engineering cost and the high performance. The pre-virtualized OS sup-
ports multiple hypervisors such as Xen and L4 [18]. At present, a single compiled

A Study on Asymmetric Operating Systems on Symmetric Multiprocessors 185

image of a pre-virtualized OS can be run on multiple types of hypervisor. Users
can select hypervisors for any purpose [11].

3 Design and Implementation

This section explains the design and implementation of SIGMA system, which
provides multiple OSes environment especially for multiprocessor architecture.
Although SIGMA system looks like a virtual machine monitor in terms of multi-
ple OSes environment, it doesn’t provide virtualized hardware interfaces to OSes
running on it. An OS in SIGMA system runs on a physical hardware directly. The
principal mechanisms to achieve SIGMA system are an interprocessor interrupt
(IPI) [6] and an interOS communication (IOSC). The system is implemented on
IA-32 architecture.

3.1 Approach and Overview

SIGMA system assigns each processor to a guest OS so that the OS can use
all of the CPU resources exclusively. Consequently, this makes SIGMA system
simple: it doesn’t require a resource management mechanism such as the one
implemented in a VMM. OSes of SIGMA system treat those operations by them-
selves. Those are significant advantages. The first reason is that the OSes hardly
require to be modified because the OSes act as if they run on single normal
hardware. The second is that the OS in SIGMA system can run in the privi-
leged mode. That is, the OS can handle most of the privileged instructions. As
a result, SIGMA system shows as high performance as a native system.

In the Intel architecture, one of the processor is selected as the bootstrap
processor (BSP) and others are the application processors (APs) at system ini-
tialization by the system hardware [7]. After configuring the hardware, the BSP
starts the APs. We define that an OS runs on the BSP is a host OS, and that
an OS runs on the AP is a guest OS in SIGMA system. Especially, we call the
guest Linux, SIGMA Linux, which is little modified its source codes for SIGMA
system. In SIGMA system, NICTA::L4-embedded, Iguana and Wombat are run
on the BSP, and SIGMA Linux is run on the AP. The architecture of the system
is illustrated in Figure 1.

NICTA::L4-embedded

O
S

M
an
ag
er

S
er
ve
r

S
er
ve
r

Ig
ua
na

W
om
ba
t

SIGMA Linux
......

H / W

CPU0 (BSP) CPU1 (AP)

Fig. 1. The structure of SIGMA system

186 Y. Murata et al.

3.2 Boot Sequence of SIGMA Linux

All modules of SIGMA system including a SIGMA Linux kernel are attached to
the memory at initial boot time. The OS manager that is one of the modules
running on the host OS takes in charge of starting guest OSes. Before SIGMA
Linux boots, the OS manager acquires the kernel information from L4. L4 has
modules information such as the address in the memory, the image size and other
parameters. In addition, to define the memory regions which are available from
the guest OS, the OS manager creates new e820 memory maps. The detail of the
memory management will be described in next paragraph. The OS manager also
writes the information which SIGMA Linux refers such as kernel parameters to
the specified memory address. Finally, OS manager sends startup IPI to the AP
and SIGMA Linux starts booting. It seems that SIGMA Linux is booted by the
general bootloader such as grub on the standalone system. For the guest OS,
the OS manager is something like grub.

3.3 Memory Management

Although a normal Linux kernel acquires a memory map through a bios call to
identify free and reserved regions in the main memory, a Linux kernel running
on SIGMA system obtains the memory map from the OS manager.

Before booting SIGMA Linux, the OS manager executes the program which
invokes the e820 function on the AP and acquires the e820 memory map. The
e820 function is one of the bios service to check memory size and memory maps.
Then, the OS manager modifies the memory map to create memory spaces for
SIGMA Linux. The modification is based on the pre-defined memory regions
which can be available for SIGMA Linux. After the modification, the OS manager
overwrites the modified map to the memory and boots SIGMA Linux. Although
the original native Linux includes the instructions which call the e820 function,
those are removed from SIGMA Linux to prevent the modified memory map
from being overwritten again. Finally, SIGMA Linux reads the modified memory
maps and starts booting within the restricted memory areas. This approach is
faced with a security problem that SIGMA Linux can ignore and even change
this memory restriction. The problem is discussed in Section 5.

3.4 InterOS Communication

The IOSC is a mechanism to communicate between OSes run on the different pro-
cessors in SIGMA system. The IOSC is similar in mechanism to an interprocess
communication (IPC) of a general OS. The IOSC is processed by following steps.

(a) A source OS writes a message to a shared memory region.
(b) The source OS sends an IPI to destination processors.
(c) The destination OS receives the IPI and reads the message.

If the IOSC is called frequently, the system performance can be affected. This
resembles IPCs of the microkernel-based system. Though, the IOSC hardly af-
fects the performance of the system because the opportunity to use the IOSC

A Study on Asymmetric Operating Systems on Symmetric Multiprocessors 187

is limited and the frequency is too low as compared to that of IPC in the
microkernel-based system.

3.5 Device Management

Device management is mainly achieved by the host OS. Although both the host
and guest OSes can use the device directly in fact, if some OSes use the same de-
vice at the same time, this device access becomes controversial collision. SIGMA
system avoids these collision by restricting the device access to the host OS.

Device drivers are implemented in the device servers of the host OS. A device
access of a process in the host OS is performed by just calling the device server.
On the other hand, when a process of a guest OS tries to use a device, the
process has to send a request to the device server of the host OS by calling
IOSC service. This process is performed by a stub driver of the guest OS, called
a pseudo device driver. Since the interface of the pseudo device driver is same
as common device drivers, the process can use the devices without knowing the
location of the device and its driver.

4 Performance Evaluation

This section describes the evaluation of our prototype system. We ran a collection
of benchmark programs to evaluate the performance of the guest OS. We also
examined the collision on shared memory between the host OS and the guest
OS. All experiments described in this paper were performed on a PC with a
2.4GHz Intel Core2 Duo with 32KB L1 cache for each core, 4MB shared L2
cache, 512MB of RAM, and an ATA disk drive. We used Linux kernel version
2.6.12, and 2.6.16 for Xen.

4.1 LMbench

We used the LMbench [13] to measure their performance. LMbench is the micro
benchmark software to measure the performance of Linux. LMbench measures
the performance of system calls, context switches, latencies of communications
and so on. Since LMbench uses regular Linux system calls, it can be suitable to
compare many Linux systems.

SIGMA Linux is compared to three systems: vanilla Linux kernel running on
a single core (Native Linux), vanilla Linux kernel running on two cores (Native
SMP Linux), and modified Linux kernel running on Xen virtual machine monitor
(XenoLinux).

Figure 2 shows the cost of the interactions between a process and the guest
kernel. The benchmark examines Linux system call and signal handling perfor-
mance. Any of the items of SIGMA Linux is the same as that of native Linux,
while XenoLinux takes longer time than native Linux in most of the cases. Some
experiments of SIGMA Linux made better results than native Linux. This can be
caused by the small difference of the environment: SIGMA Linux ignores some
interrupts, but native Linux doesn’t.

188 Y. Murata et al.

We evaluated the cost of a process context switch in the same set (Figure 3).
The cost of a context switch on SIGMA Linux is also almost the same as that
of the native Linux and less than that of the native SMP Linux and XenoLinux
in any case.

The last benchmark evaluates the cost of the file operations (Figure 4). Xen
is as fast as native Linux and SIGMA Linux in file create/delete operations. On
the other hand, native SMP Linux is slower than the others. The result shows
that SIGMA Linux performs as well as native Linux. It means that there are
very few overheads in SIGMA Linux comparing to native Linux.

From the all results, SIGMA Linux presented as the almost same performance
as native Linux. In addition, compared to native SMP Linux and XenoLinux,
SIGMA Linux shows much better performance than them.

If multiple threads are appropriately assigned to processors and there are
no dependencies between the threads, native SMP Linux can achieve efficient
processing. Although it may be suitable for math calculation fields and image
processing to introduce native SMP Linux, it is not always efficient way for gen-
eral purpose use. To create a program which is optimized to parallel processing,
a special compiler may be required such as automatic parallelizer and it may be
also required to use a parallel programming language such as Fortress [1]. As
described above, native SMP Linux often shows slower performance than native
Linux on a single processor. There are some possible reasons. The first is lock
contention: if one processor has already acquired the lock of the critical sections,
the other processors have to wait until it will be unlocked to access the regions.
In this case, the advantage of parallel execution cannot be made the best use of.
The second is the memory access collision issues, which will be described in 4.2.
The third is cache inconsistency. In a multiprocessor system, when one processor
changes a page table or page directory entry, the change must be propagated to
all the other processors to keep the cache consistency. This process is commonly
referred to as TLB shootdown and performed by IPI [7]. TLB shootdown in IA-
32 architecture must guarantee either of the following two conditions: different
TLB mappings are not used on different processors during updating the page
table, the OS is prepared to deal with the case where processors use the stale
mapping during the table update. A processor can be stalled or must invalidate
the modified TLB entries in order to keep the TLB consistency. As a result, this
may degrade the system performance.

XenoLinux shows more than two times slower than SIGMA Linux and na-
tive Linux at worst. The most substantial element is the emulation of privileged
instructions handled by Xen hypervisor. Many of IA-32 instructions related to
memory and interrupt and I/O management must be performed in the privi-
leged mode. To perform those operations, XenoLinux invokes hypervisor, which
actually handles such instructions. Such invocations are called hypercalls. The
hypercall is very expensive processing. Although some optimizations are im-
plemented into Xen to reduce the cost of the hypercall, for a example, some
hypercalls are handled together, it can’t be enough to improve the performance
degradation substantially.

A Study on Asymmetric Operating Systems on Symmetric Multiprocessors 189

Fig. 2. LMbench: Processes - time in microseconds

Fig. 3. LMbench: Context switching - time in microseconds

Fig. 4. LMbench: File & VM system latencies in microseconds

190 Y. Murata et al.

On the other hand, SIGMA Linux shows as fast performance as native Linux.
The most significant advantage of avoiding performance degradation is that the
guest OS can handle the privileged instructions directly. The configurations of
page tables and interrupt vector tables, enabling/disabling interrupts, device
controls require privileged instructions and those are usually performed by em-
ulations in general virtualization approaches. Though, SIGMA Linux hardly re-
quires such emulations except in using device drivers run on the other OSes. In
addition, the VMM of general virtualization manages the guest OSes and usu-
ally handles scheduling of the guest OSes. In other words, the VMM must decide
one of the guest OS to run and save and restore all OS contexts. This context
switches between OSes are similar to that of processes in general OS and may
degrade system performance. In SIGMA system, multiple OSes run concurrently
and scheduling of OSes is not required at all. The superiority of SIGMA Linux
in performance aspects is based on the architecture of SIGMA Linux which is
almost same as that of native Linux.

4.2 Memory Access Collision

Memory accessing can conflict at a memory bus in shared memory multipro-
cessor architecture. The conflict causes the performance degradation even in
SIGMA system. When more than two OSes access to the memory concurrently,
while one OS performs memory related operations, the others can be waited for
it to become available. We call such conditions memory access collisions and the
performance may become slow in such cases. Fortunately, many kinds of mul-
tiprocessors have cache memory in each processor and a processor can access
cache memory much faster than memory. If a process accesses data exists in
cache memory, the read/write operation becomes faster. On the other hand, if
the data isn’t in cache memory, the process has to access main memory. Such
operations are expensive compared to the cache memory. Thus, the results of
memory latencies depend on whether the target data is in cache or not. We
measured the latencies with memory access collision in five different conditions
described in Table 1. The main purpose of the evaluation is to survey how much
affection there are from activities of other OSes which share same memory bus.

The five conditions are categorized by cache availability and memory stress.
”No Cache” and ”Both No Cache” condition mean that caches in each processor

Table 1. The measurements condition of memory access collision in SIGMA system

Host OS Guest OS
Condition Cache Stress Cache

Normal enabled no enabled

No Cache no no enabled

No Cache with Stress no stressed enabled

Both No Cache no no no

Both No Cache with Stress no stressed no

A Study on Asymmetric Operating Systems on Symmetric Multiprocessors 191

Fig. 5. LMbench: lat mem rd: Memory read latencies in the guest OS with memory
collisions

are disabled. In ”Stress”, to generate loading condition, the program which only
repeat read and write to memory is run on the host OS, Wombat. In that case,
the memory access of the guest OS in ”No Cache” condition can be sometimes
affected. In ”No Cache with Stress” condition, the delay is more increased be-
cause the many access from the host OS occurs. In ”Both No Cache” and ”Both
No Cache with Stress” condition, the memory collision is assumed to be much
more increased because all processors try to use the memory bus in reading or
writing to the memory. The evaluations are performed on the guest OS and we
used LMbench as an evaluation tool. The results are illustrated in Figure 5.

Figure 5 shows that, in both cache enabled and disabled configurations, the
performance of the guest OS in loading condition degrades ten to fifteen per-
cents compared to that in unloading. In addition, when loading size is below four
megabytes, the latencies of ”No Cache” and even ”No Cache with Stress” con-
ditions are same as the ”Normal”. That is, no performance degradation occurs
below four megabytes when the caches are enabled on the target processor.

In general IA-32 architecture, processors and memory are connected by the
32-bit system bus, and the bus is shared by all processors on the system. There-
fore, if multiple processors try to access the memory, the memory access may
conflict. In the architecture, memory reading/writing is performed in accordance
with memory ordering model of the processor, which is the order in which the
processor issues reads and writes through the system bus to system memory. For
a example, in write ordering of multiprocessor system, although each processor
is guaranteed to perform writes in program order, writes from all processors are
not guaranteed to occur in a particular order [7]. Therefore, if the system mem-
ory becomes loaded condition, multiple processors may access to the memory at

192 Y. Murata et al.

the same time and actually waiting time can be increased for each processor. As
a result, those conflicts caused such delay shown in Figure 5.

On the other hand, the reason why such delay didn’t occur in loading four
megabytes or less is related to L2 cache size of the processor. If the loading data
is in the cache, the processor need not to access the memory and the accessing
does not affected by the memory ordering. Therefore, if the each processor has
more caches, the possibility of the cache hit increases and it minimizes the delay
by the memory access competition, as a result.

4.3 Engineering Cost

We compared the number of modified lines of each guest OS to measure the
development cost quantitatively. One of the principle purpose of SIGMA system
is to minimize the engineering cost of the guest OS as small as possible. The
results are shown in Table 2.

Table 2. The engineering cost of the guest OSes

System Modified Lines

SIGMA Linux 25

XenoLinux 1441

L4Linux 6500

Table 2 indicates that the modification cost of SIGMA Linux is much smaller
than that of XenoLinux and L4Linux. A significant reason is that SIGMA Linux
has the almost same structure as native Linux. That is, SIGMA Linux can ex-
ecute the instructions that control the hardware directly, and such instructions
need not to be substituted with emulated codes and hypervisor calls. The re-
quired modifications in SIGMA Linux are the memory related issues described
in 3.3 and interrupt configurations and hardware checking parts.

5 Discussion

5.1 Limited Memory Protection

SIGMA system can’t support memory protection among host and guest OSes
because those OSes run in the privileged mode. This means that each OS can
change memory mapping to the MMU of each processor and invade the memory
regions where the other OSes manage. Since a VMM of virtualization technolo-
gies emulates updating memory mappings, the guest OS can be restricted not
to update them by itself to preventing such illegal accessing. On the other hand,
SIGMA system doesn’t have any methods to control this kinds of illegal access
because all OSes run in the privileged mode.

A Study on Asymmetric Operating Systems on Symmetric Multiprocessors 193

5.2 Estimated Use Cases

The advantages of the SIGMA system are that multiple OSes can run on it
concurrently and their performance is as fast as native Linux. The main disad-
vantage is that SIGMA system has a security problem that its OSes can’t be
protected each other. Then, we will introduce two systems considered for both
the advantages and the disadvantages.

ForanEmbeddedSystem. If an embedded system is once shipped as a product,
it is difficult to update its software such as OS and applications. Generally speak-
ing, software of the embedded system is reliable because it is thoroughly verified.
Therefore, even if memory protection is not supported sufficiently like SIGMA sys-
tem, it is possible to introduce SIGMA system to some embedded fields. If there
are bugs in OSes or device drivers and the system becomes unstable or crashes at
worst, it is also critical condition for existing embedded systems. In other words,
even general embedded OS can’t ensure that the system continues to work properly
in such condition. It is practical to adopt SIGMA system for embedded systems as
long as their software is tested sufficiently.The advantages to introduce the SIGMA
system to embedded systems are following: inexpensive general-purpose multipro-
cessors are available in the system, the system makes it easy to reuse the hardware
and software by introducing general-purpose hardware platforms.

For a Server System. When SIGMA system is used as a server, it is possible to
achieve secure and high performance server environment by being incorporated
with secure hypervisors.

As illustrated in Figure 6, a secure hypervisor and its guest OS are performed
on some processors. The OS has network interfaces and communicates with
the other computers. The other OSes which don’t depend on the hypervisor
run on other processors. Those guest OSes can handle performance-oriented
applications without accessing networks.

The OS runs on the hypervisor performs in the unprivileged mode. The OS can
never affect the other OSes in the system because the OS is completely managed
by the hypervisor. Therefore, it is suitable to run unreliable applications or

Secure Hypervisor

OS0
(for Network Apps)

H / W

CPU0 (BSP) CPU1 (AP) CPU2 (AP) CPU3 (AP)

OS1
(for Speed Sensitive

Apps)

OS2
(for Speed Sensitive

Apps)

App App App

App App App App

Fig. 6. One of estimated use cases - for a server system

194 Y. Murata et al.

networking applications on the OS which are always faced with the attack from
malicious users. That is, even if the OS are accessed illegally by hitting its bugs
or the administrator account of the OS is taken over, the OS can’t access the
other OSes beyond its own region.

The guest OSes which run on the hardware directly without any hypervisors,
OS1 and OS2 in Figure 6, show fast performance, though they have security
problems. In other words, such OSes can spoil the other OSes or the hypervisor.
Therefore, unreliable and external applications should not be executed on such
OSes and it is desirable to reboot the guest OSes periodically to keep them stable.
Some applications estimated to be executed on the guest OSes are relatively
heavy numeric calculation programs and database management programs and
so on. It is possible for an OS runs on the hypervisor to ask the guest OSes to
execute such heavy applications by using IOSCs.

As described above, combing SIGMA system with a secure hypervisor which are
used in virtualization technologies, both software estimated to be used in reliable
condition and performance-sensitive software can be available on the system.

6 Conclusion

We proposed asymmetric multiple OSes environment named SIGMA system
on symmetric multiprocessors. Asymmetric means that there are two types of
OS run on different processors: L4 microkernel and their servers including OS
manager are performed as a host OS, and modified Linux named SIGMA Linux
is performed as a guest OS. SIGMA system can avoid performance degradation
of SIGMA Linux because SIGMA Linux can control hardware directly without
any virtualization.

The evaluation clearly showed that SIGMA system performed much faster
than the virtualization techniques such as Xen and almost same performance as
native Linux. SIGMA system can be achieved with minimum overheads because
no emulations are required to handle privileged processing. We also measured the
latency of SIGMA Linux in memory loading condition. The results showed that
SIGMA Linux was little affected in the condition. In addition, its engineering
cost is much smaller than that of other para-virtualization approaches.

Consequently, the experiments proved that SIGMA system was a practical
approach for a performance and engineering cost sensitive system. We believe
that SIGMA system is adoptable to a server system and an embedded system.

References

1. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele
Jr., G.L., Tobin-Hochstadt, S.: The Fortress Language Specification Version 1.0
beta. Sun Microsystems, Inc. (March 2007)

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Proceed-
ings of the 19th ACM symposium on Operating systems principles, pp. 164–177.
ACM Press, New York (2003)

A Study on Asymmetric Operating Systems on Symmetric Multiprocessors 195

3. Goldberg, R.: Survey of Virtual Machine Research. IEEE Computer 7(6), 34–45
(1974)

4. Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S., Wolter, J.: The Performance
of Microkernel-Based Systems. In: SOSP 1997: Proceedings of the 16th ACM sym-
posium on Operating systems principles, pp. 66–77. ACM Press, New York (1997)

5. Heiser, G.: Iguana User Manual, 4 (2005)
6. Intel Corporation. MultiProcessor Specification Version 1.4 (May 1997)
7. Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual (June

2006)
8. Kuz, I.: L4 User Manual NICTA L4-embedded API (October 2005)
9. Leslie, B., van Schaik, C., Heiser, G.: Wombat: A Portable User-Mode Linux for

Embedded Systems. In: Proceedings of the 6th Linux.Conf.Au, Canberra (2005)
10. LeVasseur, J., Uhlig, V., Chapman, M., Chubb, P., Leslie, B., Heiser, G.: Pre-

Virtualization: Slashing the Cost of Virtualization. Technical Report 2005-30,
Fakultät für Informatik, Universität Karlsruhe (TH) (November 2005)

11. LeVasseur, J., Uhlig, V., Leslie, B., Chapman, M., Heiser, G.: Pre-Virtualization:
Uniting Two Worlds (October 23–26, 2005)

12. Liedtke, J.: Improved Address-Space Switching on Pentium Processors by Trans-
parently Multiplexing User Address Spaces. Technical Report 933, GMD - German
National Research Center for Information Technology (September 1995)

13. McVoy, L.W., Staelin, C.: lmbench: Portable Tools for Performance Analysis. In:
USENIX Annual Technical Conference, pp. 279–294 (1996)

14. Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation
architectures. Commun. ACM 17(7), 412–421 (1974)

15. Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and
Future Trends. Computer 38(5), 39–47 (2005)

16. Sugerman, J., Venkitachalam, G., Lim, B.: Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In: USENIX Annual Technical
Conference, pp. 1–14 (2001)

17. Uhlig, V., Dannowski, U., Skoglund, E., Haeberlen, A., Heiser, G.: Performance
of Address-Space Multiplexing on the Pentium. Interner Bericht 2002-01, Fakultät
für Informatik, Universität Karlsruhe (2002)

18. University of Karlsruhe Germany and University of New South Wales and National
ICT Australia. Afterburning and the Accomplishment of Virtualization (April
2005)

19. Waldspurger, C.: Memory Resource Management in VMware ESX Server. ACM
SIGOPS Operating Systems Review 36(si), 181 (2002)

20. Wiggins, A., Tuch, H., Uhlig, V., Heiser, G.: Implementation of Fast Address-
Space Switching and TLB Sharing on the StrongARM Processor. In: Proceedings of
the 8th Asia-Pacific Computer Systems Architecture Conference, Aizu-Wakamatsu
City, Japan, September 23–26 (2003)

An Efficient Code Generation Algorithm for

Code Size Reduction Using 1-Offset P-Code
Queue Computation Model

Arquimedes Canedo, Ben A. Abderazek, and Masahiro Sowa

Graduate School of Information Systems
University of Electro-Communications
1-5-1 Chofugaoka, Chofu-Shi 182-8585

Tokyo, Japan

Abstract. Embedded systems very often demand small memory foot-
print code. A popular architectural modification to improve code density
in RISC embedded processors is to use a dual instruction set. This
approach reduces code size at the cost of performance degradation due
to the greater number of reduced width instructions required to execute
the same task. We propose a novel alternative for reducing code size
by using a single reduced instruction set queue machine. We present a
efficient code generation algorithm to insert additional instructions to be
able to execute programs in the reduced instruction set. Our experiments
show that the insertion of additional instructions is minimal and we
demonstrate improved code size reduction of 16% over MIPS16, 26%
over Thumb, and 50% over MIPS32 code. Furthermore, we show that
our compiler without any optimization is able to extract about the same
parallelism than fully optimized RISC code.

1 Introduction

One of the major concerns in the design of an embedded RISC processor is the
code density. Code density is tightly related to performance, energy consumption,
and ROM memory utilization. A well known design strategy to reduce code
size in RISC architectures is allowing the processor to execute two different
instruction sets [5,8,17]. These dual instruction set architectures provide a 32-
bit instruction set, and a reduced instruction set of 16-bit. The idea is to shorten
the instruction length to improve the code size as well as fetching efforts as
two short instructions can be read instead of one at the same cost. As the
reduced instruction set has width limitation, more 16-bit instructions are needed
to execute a given task. Since the 16-bit code requires more instructions than the
32-bit code to execute the same task, the performance of the reduced instruction
set code is lower than the 32-bit code. The ARM-Thumb [5] and MIPS16 [8] are
examples of dual instruction sets. In [5], a 30% of code size reduction with a 15%
of performance degradation is reported for the ARM-Thumb processor.

Compiler support for dual instruction set architectures is crucial to maintain
a balance between code size reduction and performance degradation due to the

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 196–208, 2007.
c© IFIP International Federation for Information Processing 2007

An Efficient Code Generation Algorithm for Code Size Reduction 197

increase in number of instructions. Different researches have been proposed to
cope with this problem. Profile guided compiler heuristics at function level
granularity have been proposed in [9] to determine which code, from the
two available, maximizes the code size reduction without causing a significant
loss in performance. Halambi et.al. proposed in [6] a compiler algorithm at
instruction level granularity based on a profitability analysis function discerning
between code size and performance. A similar approach based on a path-
based profitability analysis is proposed in [15]. Kwon et.al. in [12], proposed
a compiler-architecture interaction scheme to compress even more the ARM-
Thumb instructions by using a partitioned register file and an efficient register
allocation algorithm. In [10,11], Krishnaswamy and Gupta proposed a compiler-
architecture approach where the compiler identifies pairs of 16-bit instructions
that can be combined safely into a single 32-bit instruction and replaces it
with augmenting instructions that are later coalesced by the hardware at zero
performance penalty.

An attractive alternative to reduce code size is using a queue-based com-
putation model. The queue computation model uses a FIFO data structure,
analogous to a register file, to perform computations [3]. All accesses to the FIFO
queue, named operand queue, follow the rules of enqueueing and dequeueing.
These accesses are done at the rear, and head of the queue, respectively. Thus,
instructions are free of location names from where to dequeue or enqueue their
operands. Having only the instruction itself allows the instruction set to be short.

In our previous work we have investigated and designed a Parallel Queue
Processor (PQP) based on the Queue Computation Model [16,1,2]. The PQP
breaks the rule of dequeueing to make a better utilization of the data in the
operand queue. This feature leads to better performance and shorter programs.
PQP instructions allows operands to be dequeued from a specified position with
respect of the head of the queue. Thus, PQP instruction set format requires the
encoding of the offset references making it longer than the instruction set for a
traditional queue machine. We found in [4], that for a set of scientific programs
the instructions that require two offsets are almost nonexistent. Below 10% of
the instructions require only one offset reference, and above 90% of remaining
instructions require no offsets to be specified. As queue programs require at most
one offset, we propose to reduce the number of offsets encoded in the instructions
of the PQP from two to one. Having only one offset reference to be encoded
in the instruction set saves bits in the instruction format making instructions
shorter. In this paper, we present a compiler and architecture support to reduce
code size using a reduced PQP instruction set. An efficient code generation
algorithm for 1-offset P-Code QCM is described in detail. Our algorithm is able
to reduce code size while keeping the instruction count increase very low since
the queue instructions are free of false dependencies. To our best knowledge, code
generation algorithms for queue machines have not been proposed by previous
published work.

The remainder of this paper is organized as follows: Section 2 gives an
overview of the queue computation model, the queue compiler infrastructure,

198 A. Canedo, B.A. Abderazek, and M. Sowa

and describes the 1-offset P-Code QCM. Section 3 describes in detail the phases
of the code generation algorithm for 1-offset P-Code QCM. We present the results
of our approach in Section 4. We discuss our results in Section 5, and conclude
in Section 6.

2 1-Offset P-Code Queue Computation Model

Queue Computation Model (QCM) refers to the evaluation of expressions using
a first-in first-out queue, called operand queue. This model establishes two rules
for the insertion and removal of elements from the operand queue. Operands are
inserted, or enqueued, at the rear of the queue. And operands are removed, or
dequeued, from the head of the queue. Two references are needed to track the
location of the head and the rear of the queue. The Queue Head, or QH, points
to the head of the queue. And Queue Tail, or QT, points to the rear of the queue.

A program for the QCM is obtained from a breadth-first traversal of the
expressions’ parse tree [3]. Figure 1 shows the parse tree of expression x =
(a + b)/(a − b) and the resulting queue program after a breadth-first traversal
of the parse tree. The first four instructions enqueue the operands a, b, a, b from
memory into the operand queue. At this stage QH points to the first loaded
operand (a), and QT points to an empty location after the last operand (b).
The addition instruction add requires two operands to be dequeued (a and b).
QH now points to the third operand originally loaded (a). After the addition is
computed the result is written to QT. The rest of the instructions have the same
behavior until the expression has been completely evaluated and the result (x)
is dequeued to memory.

In our early work [4], we have proposed a 2-offset P-Code QCM to allow
programs to be generated directly from their directed acyclic graphs (DAGs).
2-offset P-Code QCM, strictly follows enqueueing rule but has flexibility in
the dequeueing rule of operands. Operands can be taken from QH or from a
different position other than QH. The desired position of the datum that should
be dequeued is specified as an offset with respect of the position of QH.

Figure 2 shows the DAG and the 2-offset P-Code program for the same
expression shown in Figure 1, x = (a + b)/(a − b). Notice that the program

x

/

+ -

a b a b

a). Parse tree

ld a
ld b
ld a
ld b
add
sub
div
st x

b). Queue program

Fig. 1. Queue program generation from an expression’s parse tree

An Efficient Code Generation Algorithm for Code Size Reduction 199

ld a
ld b
add 0, 1
sub -2,-1
div 0, 1
st x

x

/

+ -

a b

a). DAG b). 2-offset P-Code program

Fig. 2. 2-offset P-Code program generation from a directed acyclic graph

in Figure 2.b contains only one enqueue operation for operand a, and one for
operand b instead of two as in Figure 1. After operands have been enqueued the
queue contents are: a, b. The “add 0, 1” instruction has two offset references,
one for each of its operands. The first offset, 0, indicates that the first operand
should be taken from a zero distance from QH, or QH+0. That is, from QH itself.
The second offset reference, 1, indicates that the second operand should be
taken from a distance one from QH, or QH+1. After the add instruction dequeues
its first operand, a, the QH is updated and points to the next queue location,
in this case, to the operand b. After the second operand for instruction add
is dequeued, operand b, QH is updated and points to an empty location after
operand b. The add instruction is performed with operands a, b and the result,
a + b, is written back to QT, and QT is updated. At this stage, QH points to a + b,
and QT to an empty location after a + b. Next, the “sub -2, -1” instruction
takes its first operand from a distance of -2 from QH, or QH−2. A negative offset
indicates that the operand should be taken from the data in the operand queue
that has been used before by other operations. For this case QH−2 points to the
already used operand a. The second operand for sub is taken from QH−1, the
used operand b. This instruction takes its two operands from a different location
than QH, therefore, QH pointer is not updated and remains pointing to a+ b after
the sub instruction is executed. At this point, the contents of the queue are:
a + b, a − b. The following instructions are executed in similar fashion until the
final expression (x) has been computed entirely.

Together with the 2-offset P-Code QCM we developed the compiler infrastruc-
ture and code generation algorithms [4]. Our queue compiler uses GCC 4.0.2
front-end. The custom back-end of our compiler takes GIMPLE trees [13,14]
as input and generates assembly code for the PQP. GIMPLE intermediate
representation is first expanded into an unrestricted trees named QTrees. The
difference between GIMPLE and QTrees is that QTrees do not have limitation
in the number operands an expression can hold [13]. QTrees are very similar to
GENERIC trees [13] but QTrees are generated after all GCC’s tree optimizations
have been applied to GIMPLE form. QTrees are then passed to a leveling
function that creates a leveled DAG (LDAG) [7]. A LDAG is a data structure
chosen to be the input to the code generation algorithms for the queue compiler
due to its expressiveness in the relations hip between operations, operands, and

200 A. Canedo, B.A. Abderazek, and M. Sowa

the queue computation model. The code generation algorithm takes LDAGs to
perform the offset calculations for the operations in the program. After all P-
Code offset references are computed, the code generation algorithm produces a
linear low level intermediate representation named QIR. QIR is a one operand
intermediate representation suitable for generating final assembly code for the
PQP. The last phase of the compiler takes QIR and generates the final assembly
code for the PQP. Figure 3 shows the structure of the queue compiler.

C
program

GIMPLE

QTrees

LDAGs

QIR

Assembly
Program

QTree construction

GCC's Front-End

Leveling function

2-offset P-Code
code generation algorithm

Q
ueue C

om
piler C

ustom
 B

ack-E
nd

Assembly generator

Fig. 3. Queue Compiler Infrastructure

We conducted experiments to measure the distribution of P-Code instructions
required by some scientific test programs and the 2-offset P-Code QCM [4].
We found that the instructions that require the two operands to be dequeued
from a different position than QH (2-offset instructions) appear rarely in
programs. Instructions that require only one operand to be dequeued from
an offset reference from QH (1-offset instructions), and instructions that take
their operands directly from QH (0-offset instructions) are the most common
instructions in programs. Based on these experiment results, we propose a 1-
offset P-Code QCM. 1-offset P-Code QCM restricts all operations to have at
most one offset reference. This limitation forces binary operations to take one of
the operands always from QH, and the other operand can be taken from a location
different from QH. Unary operations do not suffer from this limitation since they
follow the rule to have at most one offset reference and the only operand can be
taken with an offset reference.

It is impossible for the 1-offset P-Code QCM to execute an instruction where
both operands are away from QH. To solve this problem, a special operation
named dup instruction is added to the 1-offset P-Code’s instruction set. The
semantics of the dup instruction is to copy the value of an operand in the operand
queue to QT. dup instruction takes one operand which is an offset reference. The
offset reference is used to indicate the position with respect of QH of the operand

An Efficient Code Generation Algorithm for Code Size Reduction 201

to be copied to QT. Figure 4.a shows the DAG for the expression x = (a+b)/(a∗a).
1-offset P-Code QCM cannot execute the multiplication node since both of its
operands are away from QH by the time the operation is evaluated. Figure 4.b
shows the DAG for the same expression augmented with dup instruction node.
The effect of the dup node is to create a copy of operand a to the place where the
dup node appears as shown with the dashed arrow. Figure 4.c lists the resulting
1-offset P-Code program. Operands a, b are enqueued. The offset for the dup
instruction is zero indicating that the operand that has to be copied is placed in
QH itself. After dup is executed, the contents of the operand queue are: a, b, a′.
Where a′ is the copy of a produced by dup. QH points to the first operand, a,
and QT points to an empty location after the operand a′. add 0 instruction takes
both operands from QH. Then mul instruction takes its first operand from QHthat
at this stage points to a′, and its second operand, a, from a distance of −2 with
respect of QH. The rest of the program is executed similarly.

ld a
ld b
dup 0
add 0
mul -2
div 0
st x

x

/

+ *

a b

a). DAG c). 1-offset P-Code program
with dup instruction

x

/

+ *

a b dup

b). DAG with dup
instruction

Fig. 4. 1-offset P-code program generation from a directed acyclic graph

1-offset P-Code QCM requires a new algorithm capable to determine the
correct location of dup instructions. In the next section we will describe in detail
the code generation algorithm for 1-offset P-Code.

3 Code Generation Algorithm

The algorithm works in two stages during code generation. The first stage
converts QTrees to LDAGs augmented with ghost nodes. A ghost node is a
node without operation that serves as a mark for the algorithm. The second
stage takes the augmented LDAGs and assigns dup instructions to the ghost
nodes when necessary. Finally, a breadth-first traversal of the LDAGs with dup
nodes computes the offset references for all instructions and generates QIR as
output. Figure 5 shows the two stages for the proposed code generation algorithm
represented by the numbered circles. The elements inside the dashed area are
the modified modules with respect of the original queue compiler [4] shown in
Figure 3.

202 A. Canedo, B.A. Abderazek, and M. Sowa

1QTrees
LDAGs

(ghost nodes)
QIR

(dup instructions)
Assembly
Program

2

Le
ve

liz
ing

Fun
cti

on

1-
of

fse
t P

-C
od

e

co
de

 g
en

er
at

ion

alg
or

ith
m

Ass
em

bly

ge
ne

ra
to

r

Fig. 5. 1-offset P-Code code generation compiler phases

3.1 Augmented LDAG Construction

QTrees are transformed into LDAGs by the leveling function. Algorithm 1 lists
the leveling function that outputs an augmented LDAG with ghost nodes. The
algorithm makes a post-order depth-first recursive traversal over the QTree. All
nodes are recorded in a lookup table when they first appear, and are created in
the corresponding level of the LDAG together with its edge to the parent node.
Two restrictions are imposed over the LDAGs for the 1-offset P-Code QCM.

Definition 1. The sink of an edge must be always in a deeper or same level
than its source.

Definition 2. An edge to a ghost node spans only one level.

When an operand is found in the lookup table the Definition 1 must be kept.
Line 5 in Algorithm 1 is reached when the operand is found in the lookup
table and it has a shallow level compared to the new level. The function
dag ghost move node() moves the operand to the new level, updates the lookup
table, converts the old node into a ghost node, and creates an edge from the
ghost node to the new created node. The function insert ghost same level()
in Line 8 is reached when the level of the operand in the lookup table is the same
to the new level. This function creates a new ghost node in the new level, makes
an edge from the parent node to the ghost node, and an edge from the ghost node
to the element matched in the lookup table. These two functions build LDAGs
augmented with ghost nodes that obey Definitions 1 and 2. Figure 6 illustrates
the result of leveling the QTree for the expression x = (a ∗ a)/(−a + (b − a)).
Figure 6.b shows the resulting LDAG augmented with ghost nodes.

3.2 dup Instruction Assignment and Ghost Nodes Elimination

The second stage of the algorithm works in two passes as shown in Lines 4
and 7 in Algorithm 2. Function dup assignment() decides whether ghost nodes
are substituted by dup nodes or eliminated from the LDAG. Once all the ghost
nodes have been transformed or eliminated, the second pass performs a breadth-
first traversal of the LDAG, and for every instruction the offset references with
respect of QH are computed in the same way as in [4]. The output of the code
generation algorithm is QIR for 1-offset P-Code.

The only operations that need a dup instruction are those binary operations
whose both operands are away from QH. The augmented LDAG with ghost nodes

An Efficient Code Generation Algorithm for Code Size Reduction 203

Algorithm 1. dag levelize ghost (tree t, level)
1: nextlevel ⇐ level + 1
2: match ⇐ lookup (t)
3: if match �= null then
4: if match.level < nextlevel then
5: relink ⇐ dag ghost move node (nextlevel, t, match)
6: return relink
7: else if match.level = lookup (t) then
8: relink ⇐ insert ghost same level (nextlevel, match)
9: return relink

10: else
11: return match
12: end if
13: end if
14: /* Insert the node to a new level or existing one */
15: if nextlevel > get Last Level() then
16: new ⇐ make new level (t, nextlevel)
17: record (new)
18: else
19: new ⇐ append to level (t, nextlevel)
20: record (new)
21: end if
22: /* Post-Order Depth First Recursion */
23: if t is binary operation then
24: lhs ⇐ dag levelize ghost (t.left, nextlevel)
25: make edge (new, lhs)
26: rhs ⇐ dag levelize ghost (t.right, nextlevel)
27: make edge (new, rhs)
28: else if t is unary operation then
29: child ⇐ dag levelize ghost (t.child, nextlevel)
30: make edge (new, child)
31: end if
32: return new

facilitate the task of identifying those instructions. All binary operations having
ghost nodes as their left and right children need to be transformed as follows. The
ghost node in the left children is substituted by a dup node, and the ghost node in
the right children is eliminated from the LDAG. For those binary operations with
only one ghost node as the left or right children, the ghost node is eliminated
from the LDAG. Algorithm 3 describes the function dup assignment(). The
effect of Algorithm 3 is illustrated in Figure 7. The algorithm takes as input the
LDAG with ghost nodes shown in Figure 6.b and performs the steps described
in Algorithm 3 to finally obtain the LDAG with dup instructions as shown in
Figure 7.a. The last step in the code generation is to perform a breadth-first
traversal of the LDAG with dup nodes and compute for every operation, the offset
value with respect of QH. dup instructions are treated as unary instructions by

204 A. Canedo, B.A. Abderazek, and M. Sowa

/

* +

a a neg -

a b a

/

* +

ghost ghost neg -

a b ghost

L1

L2

L3

L4

b). LDAG with ghost nodesa). QTree

Leveling
Function

Fig. 6. Leveling of QTree into augmented LDAG for expression x = a·a
−a+(b−a)

Algorithm 2. codegen ()
1: for all basic blocks BB do
2: for all expressions Wk in BB do
3: for all instructions Ij in TopBottom (Wk) do
4: dup assignment (Ij)
5: end for
6: for all instructions Ij in BreadthFirst (Wk) do
7: p qcm compute offsets (Wk, Ij)
8: end for
9: end for

10: end for

the offset calculation algorithm. The final 1-offset P-Code QIR for the expression
x = (a ∗ a)/(−a + (b − a)) is given in Figure 7.b.

3.3 Increase in Number of Instructions

A single dup instruction is inserted for every binary operation whose both
operands are away from QH (β).

dupi = βi (1)

The increase in number of instructions (Δ) for the 1-offset P-Code compared
to 2-offset P-Code is given by the addition of dup instructions in the program.

Δ =
n∑

i=1

(dupi) (2)

Thus, the total number of instructions for 1-offset P-Code (Total) is given by
the total number of instructions for 2-offset P-Code (T old) plus the inserted
dup instructions (Δ):

Total = T old + Δ (3)

An Efficient Code Generation Algorithm for Code Size Reduction 205

Algorithm 3. dup assignment (i)
1: if isBinary (i) then
2: if isGhost (i.left) and isGhost (i.right) then
3: dup assign node (i.left)
4: dag remove node (i.right)
5: else if isGhost (i.left) then
6: dag remove node (i.left)
7: else if isGhost (i.right) then
8: dag remove node (i.right)
9: end if

10: return
11: end if

/

* +

dup neg -

a b

L1

L2

L3

L4

ld a
ld b
dup 0
neg 0
sub -1
mul -2
add 0
div 0
st x

b). 1-offset P-Code program
with dup instruction

a). LDAG with dup instructions

Fig. 7. 1-offset P-Code code generation from a LDAG

The length of the instruction set of the PQP is 2 byte [1]. The PQP has
a special instruction, covop, which extends the value of the operand of the
following instruction. The covop instructions are used to extend immediate
values that are not representable with a single PQP 16-bit instruction. Thus,
the code size for a 1-offset P-Code is obtained from the Equation 3 as:

Code Size = 2 ∗ (Total + covop) (4)

4 Experiments

We measured the code size for some benchmarks using our queue compiler
for the PQP, and using GCC version 4.0.2 for MIPS32, MIPS16, 32-bit ARM,
and Thumb architectures. We chose a set of recursive and iterative numerical
computation benchmarks including the fast fourier transform, livermore loops,
linpack, matrix multiplication, Rijndael encryption algorithm, etc. All programs
were compiled without code reduction optimizations to estimate the real
overhead of using a reduced instruction set architecture to reduce code size
and compare it with our solution. Compiler based optimization techniques for
improving code size on reduced instruction set architectures remains out of the
scope of this paper.

206 A. Canedo, B.A. Abderazek, and M. Sowa

Table 1. Code size comparison using GCC for different RISC architectures and the
queue compiler for the PQP

Benchmark ARM32 MIPS16 Thumb PQP
quicksort.c 0.95 0.40 0.63 0.43

nqueens.c 0.85 0.53 0.78 0.52

md5.c 0.74 0.39 0.76 0.48

matrix.c 0.93 0.42 0.63 0.68

fft8g.c 1.02 0.92 0.60 0.54

livermore.c 1.16 0.74 0.80 0.58

vegas.c 1.11 0.89 0.73 0.51

whetstone.c 1.15 0.73 0.73 0.34

linpack.c 0.97 0.58 0.81 0.52

aes.c 0.83 0.51 0.67 0.38

For each benchmark we take the code size for MIPS32 as the baseline. Table 1
shows the normalized code size for all compiled benchmarks for ARM32 in
column 2, MIPS16 in column 3, Thumb in column 4, and PQP in column 5
as compared to the baseline code size. GCC generates about the same code
size for MIPS32 and ARM32 architectures with an average difference of 3%.
For the MIPS16 and Thumb architectures, gcc reduces the code size for all
benchmarks compared to the baseline MIPS32 code size. In average, for the
MIPS16 it produces 42% smaller code size. For the Thumb it produces 24%
smaller code size. We compiled the set of benchmarks for the PQP processor
using our queue compiler. The presented results for the PQP take into account
the extra dup instructions. Most of the programs require zero or one extra dup
instruction except for linkpack.c which required six extra dup instructions. In
average, our compiler technique produces 51% smaller code than the baseline
code size. Our compiler is able to generate in average 16% smaller code than
gcc for MIPS16, and 36% smaller code than gcc for Thumb architecture. For
three of the benchmarks, quicksort.c, md5.c, and matrix.c, our compiler
generated larger code compared to MIPS16. An inspection to the source of
the programs revealed that these programs have a common characteristic
of having functions with arguments passed by value. Our queue compiler
handles these arguments sub-optimally as they are passed in memory. Therefore,
additional instructions are required to copy the values to local temporary
variables.

To compare the effect of breadth-first scheduling on parallelism, we compiled
the benchmark programs and analyzed the compile-time parallelism exposed by
the compiler. Our compiler at the moment does not include any optimization of
any kind. For the RISC code we selected GCC-MIPS compiler and we enable all
optimizations (-O3). Figure 8 shows the results of the experiment. Our compiler
is able to extract about the same parallelism than fully optimized RISC code,
in average, 1.07 times more. Our current and future work include the addition
of optimization phases on the queue compiler infrastructure.

An Efficient Code Generation Algorithm for Code Size Reduction 207

0

1.25

2.50

3.75

5.00

quicksort.c nqueens.c md5.c matrix.c fft8g.c livermore.c vegas.c whetstone.c linpack.c aes.c

4.80

3.58

3.27
3.51

3.81

4.19

2.792.73

4.37

2.97

3.90

3.26
3.42

3.10

3.87

4.56

3.09

2.55

3.21

2.72

MIPS -O3 PQP

IL
P

Fig. 8. Compile-time extracted instruction level parallelism

5 Discussion

The presented code generation algorithm efficiently reduces code size by using a
1-offset P-Code queue computation model processor. From the presented results,
we observed that our technique reduces code size while keeping the instruction
number increase very low. Techniques to reduce code size by using a dual
instruction set [5,8] have the tradeoff that the increase in number of instructions,
to relieve register pressure, leads to performance degradation of about 15%. In
our technique, the increase in number of instructions comes from the insertion
of dup instructions by the code generation algorithm. As presented in the
experiments, and as found on our previous work [4], the additional instruction
count is very low. The instructions of the PQP do not have register references
making the programs free of false dependencies and, as a consequence, the need
of spill code disappears. As future work, we will conduct experiments to measure
the performance, in terms of execution time, of our technique. We shown here
that the code for 1-offset P-Code QCM is about 50% denser than a full 32-bit
RISC processor, and we expect it to be about the same performance since the
increase of instructions is minimal. The benefits of 1-offset P-Code QCM are not
just limited to code size. Since our technique introduces very small number of
additional instructions, and the width of the instruction set is 16-bit, we expect
less power consumption while accessing the memory to fetch instructions when
compared to a fixed width 32-bit instruction set such as MIPS32.

6 Conclusion

In this paper we presented a code generation algorithm together with a 1-offset
P-Code QCM for reducing code size. Our code generation algorithm has been
integrated to the Queue compiler and the presented results have demonstrated
the efficiency of the algorithm. The contributions of this paper can be summa-
rized as follows: (1) the development of a new code generation algorithm for a
1-offset P-Code QCM using dup instructions and its integration to the queue
compiler infrastructure; (2) the utilization of a 1-offset P-Code QCM to reduce

208 A. Canedo, B.A. Abderazek, and M. Sowa

code size; (3) evidence that the queue-based computers are a practical alternative
for systems demanding small code size and high performance. Our technique is
able to generate in average 16% denser code than MIPS16, 26% denser code than
Thumb, and 50% denser code than MIPS32 and ARM architectures. Without
optimizations, the queue compiler is able to extract about the same parallelism
than fully optimized code for a RISC machine.

References

1. Abderazek, B., Yoshinaga, T., Sowa, M.: High-Level Modeling and FPGA
Prototyping of Produced Order Parallel Queue Processor Core. Journal of
Supercomputing, 3–15 (2006)

2. Abderazek, B., Kawata, S., Sowa, M.: Design and Architecture for an Embedded
32-bit QueueCore. Journal of Embedded Computing 2(2), 191–205 (2006)

3. Bruno, R., Carla, V.: Data Flow on Queue machines. In: 12th Int. IEEE Symposium
on computer Architecture, pp. 342–351 (1985)

4. Canedo, A.: Code Generation Algorithms for Consumed and Produced Order
Queue Machines, University of Electro-Communications, Master Thesis (2006),
http://www2.sowa.is.uec.ac.jp/∼canedo/master thesis.pdf

5. Goudge, L., Segars, S.: Thumb: Reducing the Cost of 32-bit RISC Performance
in Portable and Consumer Applications. In: Proceedings of COMPCON 1996, pp.
176–181 (1996)

6. Halambi, A., Shrivastava,A., Biswas, P., Dutt,N., Nicolau, A.:An Efficient Compiler
Technique for Code Size Reduction using Reduced Bit-width ISAs. In: Proceedings
of the Conference on Design, Automation and Test in Europe, p. 402 (2002)

7. Heath, L., Pemmaraju, S., Trenk, A.: Stack and Queue Layouts of Directed Acyclic
Graphs. SIAM Journal of Computing 28(4), 1510–1539 (1999)

8. Kissel, K.: MIPS16: High-density MIPS for the embedded market, Technical report,
Silicon Graphics MIPS Group (1997)

9. Krishnaswamy, A., Gupta, R.: Profile Guided Selection of ARM and Thumb
Instructions. In: ACM SIGPLAN conference on Languages, Compilers, and Tools
for Embedded Systems, pp. 56–64 (2002)

10. Krishnaswamy, A., Gupta, R.: Enhancing the Performance of 16-bit Code Using
Augmenting Instructions. In: Proceedings of the, SIGPLAN Conference on
Language, Compiler, and Tools for Embedded Systems, 2003, pp. 254–264 (2003)

11. Krishnaswamy, A.: Microarchitecture and Compiler Techniques for Dual
Width ISA Processors, University of Arizona, Ph.D Dissertation (2006),
http://cs.arizona.edu/∼gupta/Thesis/arvind.pdf

12. Kwon, Y., Ma, X., Jae Lee, H.: PARE: instruction set architecture for efficient
code size reduction. Electronics Letters, 2098–2099 (1999)

13. Merrill, J.: GENERIC and GIMPLE: A New Tree Representation for Entire
Functions. In: Proceedings of GCC Developers Summit, pp. 171–180 (2003)

14. Novillo, D.: Design and Implementation of Tree SSA. In: Proceedings of GCC
Developers Summit, pp. 119–130 (2004)

15. Sheayun,L.,Jaejin,L.,Min,S.:CodeGenerationforaDualInstructionProcessorBased
onSelectiveCodeTransformation. Lectures inComputer Science, pp. 33–48 (2003)

16. Sowa, M., Abderazek, B., Yoshinaga, T.: Parallel Queue Processor Architecture
Based on Produced Order Computation Model. Journal of Supercomputing, 217–
229 (2005)

17. SuperH RISC Engine, http://www.superh.com

http://www2.sowa.is.uec.ac.jp/~canedo/master_thesis.pdf
http://cs.arizona.edu/~gupta/Thesis/arvind.pdf
http://www.superh.com

Interconnection Synthesis of MPSoC

Architecture for Gamma Cameras

Tianmiao Wang1, Kai Sun1, Hongxing Wei1, Meng Wang2,
Zili Shao2,�, and Hui Liu3

1 Robot Research Institute, Beihang University, Beijing 100083, China
{wtm,mounthorse,whx}@me.buaa.edu.cn

2 Department of Computing, The Hong Kong Polytechnic University, Hong Kong
{csmewang,cszlshao}@comp.polyu.edu.hk

3 Software Engineering Institute, Xidian University, Xi’an, China
liuhui@xidian.edu.cn

Abstract. MPSoC (Multi-Processor System-on-Chip) architecture is
becoming increasingly used because it can provide designers much more
opportunities to meet specific performance and power goals. In this
paper, we use MPSoC architecture to solve real-time signal processing
problem in gamma camera. We propose an interconnection synthesis al-
gorithm to reduce the area cost of the Network-on-Chip for an MPSoC
architecture we propose in [14]. We implement our interconnection syn-
thesis algorithm on FPGA, and synthesize Network-on-Chip using Syn-
opsys Design Compiler with a UMC 0.18um standard cell library. The
results show that our technique can effectively accelerate the processing
and satisfy the requirements of real-time signal processing for 256 × 256
image construction.

1 Introduction

MPSoC (Multi-Processor System-on-Chip) architecture is becoming increasingly
used. It can provide high throughput while keeping power and complexity under
control and give designers more opportunities to meet specific performance and
power goals. With a heterogeneous MPSoC architecture, different types of cores
can be built on the same die, and each type of core can effectively and efficiently
process specific tasks. These flexible combinations make MPSoC systems very
powerful and be able to implement complex functions with high performance and
low power by integrating multiple heterogeneous processors, hierarchy memory
systems, custom logic, and on-chip interconnection. With such advantages, MP-
SoC architecture has been widely applied in various fields such as network[10],
multimedia[11] and HDTV[6]. We focus on the MPSoC design and synthesis for
real-time signal processing for biomedical applications in this paper.

In biomedical applications, most medical electronic devices heavily rely on im-
age processing techniques to process large scale data. Therefore, more powerful

� The corresponding author.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 209–218, 2007.
c© IFIP International Federation for Information Processing 2007

210 T. Wang et al.

techniques are needed in order to improve processing speed and precision. MP-
SoC architecture brings these systems more opportunities to achieve their goals.
For example, in [8], Khatib et al. propose an application-specific MPSoC archi-
tecture for real-time ECG (Electrocardiogram) analysis. The advanced industrial
components for MPSoC design (multi-issue VLIW DSPs, system interconnect
from STMicroelectronics, and commercial off-the-shelf biomedical sensors) are
employed in their architecture so real-time ECG analysis can be achieved with
high sampling frequencies.

In this paper, we solve the real-time digital signal processing for gamma cam-
eras, most commonly used medical imaging devices in nuclear medicine. In a
gamma camera, images are generated by detecting gamma radiation. One of the
key components in a gamma camera is PMT (PhotoMultiplier Tube). Basically,
PMT is used to detect fluorescent flashes generated by a crystal and produce
current. Then the corresponding voltage signals are converted to digital signals
by ADC (Analog to Digital Converter) behind a PMT, and finally the digital
signals are processed to generate images by a digital signal processing system.
To generate images, multiple PMTs are placed in hexagon configurations behind
the absorbing crystal. In a typical scheme, a PMT array consisting of more than
30 PMTs is used in a gamma camera. Using a serial 2D images obtained by
gamma cameras from the different angles, 3D information can be acquired by
SPECT (Single Photon Emission Computed Tomography).

To process the data generated by the PMT array, DSP (Digital Signal Process-
ing) boards based on PC platforms are widely used in current gamma cameras.
With such platforms, typically, it takes about 15 - 30 seconds to generate one 64
× 64 image and 15 - 20 minutes to finish a complete scan in SPEC. The plat-
forms can not efficiently produce higher-quality images such as 256×256. And
their slow processing speed and big size limit the effective use of gamma cameras,
in particular, for portable gamma cameras [12,13] that work with new room-
temperature nuclear radiation detector. To improve image construction speed,
a technique called PMT-PSPMT (Position Sensitive PhotoMultiplier Tube) [7]
is proposed. PMT-PSPMT is very effective in optimizing image construction
times. But it reduces the image quality and cannot construct 256 × 256 image
dynamically.

To solve these problems, we propose an MPSoC architecture for PMT data
processing in a gamma camera in [14]. Our MPSoC architecture consists of the
following four parts: one general-purpose embedded processor, a high speed data
interface (HSDI), application-specific DSP cores and a Network-on-Chip with
an interconnection bus. In this paper, we develop an interconnection synthesis
algorithm to reduce the area cost of the Network-on-Chip for the MPSoC ar-
chitecture in [14]. We implement our interconnection synthesis algorithm with
FPGA, and synthesize DSP cores and Network-on-Chip using Synopsys Design
Compiler with a UMC 0.18um standard cell library. The results show that our
technique can effectively accelerate the processing and implement communica-
tion with small area cost. It can satisfy the requirements of real-time signal
processing for 256 × 256 image construction.

Interconnection Synthesis of MPSoC Architecture for Gamma Cameras 211

The rest of this paper is organized as follows: in Section 2, we introduce
necessary backgrounds related to gamma camera technique. In Section 3, we
present the MPSoC system architecture. Section 4 provides the experimental
results and discussions. In Section 5, we conclude the paper.

2 Background

Gamma camera is a commonly used medical imaging device in nuclear medicine.
In a gamma camera, images are generated by detecting gamma radiation. Basi-
cally, the counts of gamma photons that are absorbed by a crystal are accumu-
lated, and the crystal produces a faint flash of light at the same time. The PMT
array behind the crystal detects the fluorescent flashes and generates current.
The current signal generated by the PMT is captured by the ADC, and two
corresponding voltage signals are converted into digital signals. Digital signals
are used to calculate the coordinate and energy of the gamma photons. With
these coordinate and energy data, the final image can be produced.

During the whole medical imaging procedure, three algorithms, the integral,
coordinate and amendment algorithms, are applied to the collected data.

The integral algorithm is to calculate the energy of the voltage signal. In this
algorithm, the serial data of each PMT is accumulated based on system status
conditions. The coordinate algorithm includes the calculation for two parts, po-
sition and energy. With the position and energy data, the gamma photon pulse
can be determined. The amendment algorithm is used to amend energy and po-
sition data with three table-lookup operations. This algorithm consists of two
parts, energy and linearity emendation.

To reduce the image construction time, we can increase the pulse frequency of
gamma photons. With the limitation of the device, the maximum pulse frequency
currently we can achieve is 500KHz-1 MHz. Correspondingly, we have to improve
the speed of digital signal processing in order to generate image with such high
pulse frequency. In this paper, our goal is to design an MPSoC architecture that
can generate one 256 × 256 image in less than one second for gamma cameras
with 1 MHz pulse frequency.

3 MPSoC System Design

In this section, we first introduce the MPSoC architecture in Section 3.1. Then
we propose our interconnection synthesis in Section 3.2, respectively.

3.1 Architecture Overview

Our MPSoC architecture is a typical heterogeneous multi-core architecture tar-
geting on the application of gamma camera. It is specially designed for processing
PMT data in parallel with multi-processors. In order to achieve these goals, an
MPSoC architecture, as shown in Figure 1 is proposed to speed up the image
generation and improve image quality.

212 T. Wang et al.

Fig. 1. The MPSoC Architecture

As shown in Figure 1, our MPSoC architecture consists of four parts: gen-
eral processor, HSDI (High Speed Data Interface), DSP, and interconnection
synthesis. In this architecture, the processor speed and the 32-bit on-chip inter-
connection are 200MHz, which are compatible with the 0.18um ASIC technology
and the 32-bit bus interface IP cores. Next, we present the design issues for each
key part of MPSoC architecture.

In the general processor part, there are one general purpose processor and
some necessary IP cores, such as timer, UART, and SPI etc. Among these IP
cores, the most important components are the on-chip RAM, SRAM/Flash con-
troller, SDRAM controller and Ethernet MAC controller. The amendment al-
gorithm and other general purpose computing are implemented in the general
processor.

The customized DSPs used in our MPSoC architecture are designed for im-
plementing the integral algorithm and the coordinate algorithm. We design two
types of DSP, integral and coordinate, to implement the integral and coordinate
algorithm, respectively. The corresponding block diagrams of the integral DSP
and coordinate DSP are shown in Figure 2(a) and Figure 2(b), respectively.

The integral DSP has two bus interfaces, Master and Slave. The Master in-
terface implements the data load/store, and the Slave interface implements the
control and status logic accessing from other devices. The main components of

Interconnection Synthesis of MPSoC Architecture for Gamma Cameras 213

(a) (b)

Fig. 2. The block diagrams of two DSP Cores a) The Integral arch structure (b) The
Coordinate arch structure

the coordinate DSP are MAC (Multiply Accumulate) and Divider. The coordi-
nate DSP has two bus interfaces, Master and Slave, which are as same as those
of the integral DSP.

3.2 Interconnection Synthesis

In this section, we first compare and analyze several bus structures, and then
propose an algorithm to get a better interconnection synthesis for MPSoC ar-
chitecture.

In MPSoC architecture, since the customized DSP and other components have
enough buffer or cache to debase the infection of the bus latency, we can ignore
the effect of the buffer to the system. Furthermore, since the communication
throughput of the Slave interface is very low for the integral DSP, coordinate
DSP and DMA controller, in this section, we only focus on the Master interface
when considering the design of interconnection synthesis.

In most on-chip bus standards, such as AMBA[2], CoreConnect[1], STBus[5]
and WISHBONE[4], the share structure is used in the embedded processor as
shown in Figure 3(b). In this structure, the total bandwidth of the interconnec-
tion is limited to the bandwidth of each node since all buses are connected to
one node and only one master can access the interconnection simultaneously.

In order to fulfill the bandwidth requirement, we employ the crossbar struc-
ture in which different masters can access the slaves at the same time as shown
in Figure 3(c). This structure improves the capability of the interconnection,
and it is suitable for our architecture to process the integral algorithm in paral-
lel. However, the area cost is very high in this structure. We have implemented
these two structures in Wishbone protocol based on the open source IP core[3],
and the results show that the crossbar structure uses more than 8 times area
compared with that using the share structure. To reduce the area, the reduced
crossbar structure which reduces the unnecessary connections between masters
and slaves (in Figure 3(d)) is employed in our implementation. The results show
that the reduced structure uses more than about four times more area compared
with that using the share structure as shown in Table 5.

214 T. Wang et al.

(a) (b)

(c) (d)

Fig. 3. Interconnection Structure (a) The main components (b) The share structure
(c) The crossbar structure (d) The reduced crossbar structure

In order to further reduce the area cost, we design a novel algorithm which
can reduce a generic-reduced matrix, thus to achieve our goals to reduce the
area cost. The basic idea is to combine the Slaves and let the combined Slaves
use only one Slave interface with the conditions that the total bandwidth of
the combined Slaves can not exceed the bandwidth of every single bus, and
the maximum number of buses can be reduced after the combination. We do
not combine the Masters since such combination may cause more complicated
problems [9]. We ignore the communication conflicts as the bandwidth of every
single bus is low and the DSP and HSDI have enough buffers. Our MBRA
algorithm (The Maximum-Bus-Reduction Algorithm) is shown in Figure 3.1.

In the inputs of the algorithm, M and S are the numbers of the master
and slaves in the network, MAX is the maximum bandwidth of a single bus,
and MS is the communication matrix where MS[i][j] denotes the communi-
cation between master i and slave j. We place the communication bandwidth
between the Masters and Slaves into MS[i][j], in which if MS[i][j] = 0, it
denotes that there is no bus between master i and slave j. The output of the
algorithm is the optimized bus architecture by combining slaves as much as
possible.

Interconnection Synthesis of MPSoC Architecture for Gamma Cameras 215

Algorithm 3.1 The Maximum-Bus-Reduction Algorithm (MBRA)
Require: M ← The number of masters; S ← The number of slaves; MAX ← The

upper-bound of the bandwidth of a single bus; MS[M][S]: The communication
matrix where MS[i][j] denotes the communication between master i and slave j
(MS[i][j] == 0 denotes no bus);

Ensure: The communication matrix with the minimum number of slaves after the
slave combination.

1: //Assign a flag/number to each slave to denote if it has been com-
bined/to which .

2: For i = 0 to S-1, Flag Slave[i]=NO; To Slave[i]=-1;
3: //Find the pair of slaves with the maximum cost (the reduced bus num-

ber) and combine the pair.
4: while {1} do
5: //Find the pair of slaves with the maximum cost.
6: max cost = -1;
7: for i=0 → S-2 do
8: for j=i+1 → S-1 do
9: combined bus=total bus=0; combined flag=YES

10: if Flag Slave[i] == NO and Flag Slave[j] == NO then
11: for k=0 → M-1 do
12: If MS[k][i] > 0, total bus ++; If MS[k][j] > 0, total bus ++;
13: If MS[k][i] > 0 or MS[k][j] > 0, combined bus ++;
14: If MS[k][i] + MS[k][j] > MAX, combined flag=NO;
15: end for
16: if combined flag==YES then
17: cost ← total bus - combined bus;
18: if cost > max cost then
19: max cost ← cost; combined slave[0]=i; combined slave[1]=j;
20: end if
21: end if
22: end if
23: end for
24: end for
25: //Combine the slaves with the maximum cost (always combine Slave

j to salve i).
26: if min cost != -1 then
27: i = combined slave[0]; j=combined slave[1];
28: For k=0 to M-1, MS[k][i]+ = MS[k][j];
29: Flag Slave[j]=YES; To Slave[j]=i;
30: else
31: Break;
32: end if
33: end while

In the algorithm, for each pair of slaves, we first calculate the total numbers
of buses from all masters to this slave pair before and after combining slaves. We
then check if the combination is possible by comparing the combined combination

216 T. Wang et al.

with the upper bound of bandwidth of a single bus. Next, if the combination is
possible, we calculate the cost that is defined as the reduced number of buses
after the combination. The cost is compared with the current recorded maximum
cost. If it is larger than the current maximum cost, we record the slave pairs
< i, j > into an array. After all possible slave pairs have been checked, we
combine the slave pair with the maximum cost, which means that we can reduce
the maximum number of buses by combining this slave pair. Then we record
which slave has been combined and combined into which one. We set a flag for
the slave that has been combined into others so it will not be considered in
the further combination. The above procedure will be repeated until we could
not find any possible combination. The MBRA algorithm is a polynomial-time
algorithm. It takes at most O(|S|3|M |) to finish where S is the number of slaves
and M is the number of masters.

4 Experimental Results and Discussions

To compare our MPSoC architecture with the general architecture, we have
implemented our interconnection with WISHBONE protocol and our bus inter-
connection synthesis algorithm. We compare our technique with the crossbar
and the reduce crossbar structure in terms of the area cost.

The communication array without optimization between the masters and
slaves in the interconnection is shown in Table 1. In this array, for example,
the number 60 in column 3 and row 4 denotes that the communication request
between master 4 and slave 3 is 60MBps. After applying our MBRA algorithm
in 3.1, the original 8 slaves are combined into 4 slave groups, and the area is
reduced accordingly. The reduced array is shown in Table 2. In this reduced
array, the columns have been reduced from 8 to 4, and the slaves 1, 2, 5, and
slaves 3, 8, 4 have been partitioned into 2 groups, which means that slaves of
the two groups can be put into one single bus. With the reduced array, the final
structure is shown in Figure 4.

The three interconnection structures are coded in Verilog HDL, and are syn-
thesized to gate-level circuits using Synopsys Design Compiler and a UMC
0.18um standard cell library. The area cost comparison of the cross, the re-
duced cross and the final structure is show in Figure 5. The results show that
the algorithm 3.1 reduces 12% of the area.

Table 1. The unreduced array

s1 s2 s3 s4 s5 s6 s7 s8

m1 50 25 100 1 2 2 2 2
m2 10 50 0 0 0 0 0 0
m3 0 50 55 50 0 0 0 0
m4 0 4 60 0 0 0 0 0
m5 0 0 19 0 150 150 150 105
m6 0 0 19 0 150 150 150 105
m7 0 0 19 0 150 150 150 105
m8 0 0 19 0 150 150 150 105

Table 2. The reduced array

s1,2,5 s3,8,4 s6 s7

m1 79 105 4 4
m2 60 0 0 0
m3 50 105 0 0
m4 4 6 0 0
m5 150 124 150 150
m6 150 124 150 150
m7 150 124 150 150
m8 150 124 150 150

Interconnection Synthesis of MPSoC Architecture for Gamma Cameras 217

Fig. 4. The final crossbar structure

Structure Area(K um2)
Crossbar 1608

Shared crossbar 786

Our MBRA Algorithm 694

Fig. 5. Area Comparison

5 Conclusion

In this paper, we have proposed an interconnection synthesis algorithm for an
MPSoC architecture for implementing real-time signal processing in gamma cam-
era in [14]. We synthesized DSP cores and Network-on-Chip using Synopsys De-
sign Compiler with a UMC 0.18um standard cell library. The results show that
our technique can effectively accelerate the processing and satisfy the require-
ments of real-time signal processing for 256 × 256 image construction.

Acknowledgments

The work described in this paper was partially supported by the grants from
the Research Grants Council of the Hong Kong Special Administrative Region,
China (PolyU A-PH13, PolyU A-PA5X, PolyU A-PH41, and PolyU B-Q06B),
the National Nature Science Foundation of China (60525314), the 973 Program
of China (2002CB312204-04) and the 863 Program of China (2006AA04Z206).

References

1. Ibm on-chip coreconnect bus architecture. www.chips.ibm.com
2. Arm amba specification (rev2.0) (2001), http://www.arm.com
3. Wishbone interconnect matrix ip core. rev. 1.1 (2002), http://www.opencores.org
4. Wishbone system-on-chip (soc) interconnection architecture for portable ip cores

revision: B.3 (2002), http://www.opencores.org
5. Stbus communication system: Concepts and definitions, reference guide. STMicro-

electronics (2003)
6. Beric, A., Sethuraman, R., Pinto, C.A., Peters, H., Veldman, G., van de Haar,

P., Duranton, M.: Heterogeneous multiprocessor for high definition video. In: Con-
sumer Electronics, 2006. ICCE 2006. 2006 Digest of Technical Papers. International
Conference on, pp. 401–402 (2006)

7. Jeong, M.H., Choi, Y., Chung, Y.H., Song, T.Y., Jung, J.H., Hong, K.J., Min, B.J.,
Choe, Y.S., Lee, K.-H., Kim, B.-T.: Performance improvement of small gamma
camera using nai(tl) plate and position sensitive photo-multiplier tubes. Physics in
Medicine and Biology 49(21), 4961–4970 (2004)

www.chips.ibm.com
http://www.arm.com
http://www.opencores.org
http://www.opencores.org

218 T. Wang et al.

8. Khatib, I.A., Poletti, F., Bertozzi, D., Benini, L., Bechara, M., Khalifeh, H.,
Jantsch, A., Nabiev, R.: A multiprocessor system-on-chip for real-time biomedi-
cal monitoring and analysis: architectural design space exploration. In: Sentovich,
E. (ed.) DAC, pp. 125–130. ACM, New York (2006)

9. Pasricha, S., Dutt, N.D., Ben-Romdhane, M.: Constraint-driven bus matrix syn-
thesis for mpsoc. In: Hirose, F. (ed.) ASP-DAC, pp. 30–35. IEEE, Los Alamitos
(2006)

10. Paulin, P.G., Pilkington, C., Bensoudane, E., Langevin, M., Lyonnard, D.: Appli-
cation of a multi-processor soc platform to high-speed packet forwarding. In: DATE
2004: Proceedings of the conference on Design, automation and test in Europe, p.
30058. IEEE Computer Society, Washington, DC, USA (2004)

11. Reyes, V., Kruijtzer, W., Bautista, T., Alkadi, G., Nnuez, A.: A unified system-
level modeling and simulation environment for mpsoc design: Mpeg-4 decoder case
study. In: DATE 2006: Proceedings of the conference on Design, automation and
test in Europe, Leuven, Belgium, Belgium, 2006. European Design and Automation
Association, pp. 474–479 (2006)

12. Sanchez, F., Benlloch, J.M., Escat, B., Pavon, N., Porras, E., Kadi-Hanifi, D., Ruiz,
J.A., Mora, F.J., Sebastia, A.: Design and tests of a portable mini gamma camera.
In: Medical Physics, pp. 1384–1397 (2004)

13. Sanchez, F., Fernandez, M.M., Gimenez, M., Benlloch, J.M., Rodriguez-Alvarez,
M.J., De Quiros, F.G., Lerche, C.W., Pavon, N., Palazon, J.A., Martinez, J., Se-
bastia, A.: Performance tests of two portable mini gamma cameras for medical
applications. Medical Physics 4210 (2006)

14. Sun, K., Wang, M., Shao, Z.: Mpsoc architectural design and synthesis for real-
time biomedical signal processing in gamma cameras. In: International Conference
on Biomedical Electronics and Devices (2008)

Integrated Global and Local Quality-of-Service
Adaptation in Distributed, Heterogeneous Systems

Larisa Rizvanovic1, Damir Isovic1, and Gerhard Fohler2

1 Department of Computer Science and electronics, Mälardalen University, Sweden
{larisa.rizvanovic,damir.isovic}@mdh.se

http://www.mrtc.mdh.se
2 Department of Electrical and Computer Engineering,

University of Kaiserslautern, Germany
fohler@eit.uni-kl.de

http://www.eit.uni-kl.de/

Abstract. In this paper we have developed a method for an efficient Quality-of-
Service provision and adaptation in dynamic, heterogeneous systems, based on
our Matrix framework for resource management. It integrates local QoS mecha-
nisms of the involved devices that deal mostly with short-term resource fluctua-
tions, with a global adaptation mechanism that handles structural and long-term
load variations on the system level. We have implemented the proposed approach
and demonstrated its effectiveness in the context of video streaming.

Keywords: Quality-of-Service adaptation, distributed resource management, het-
erogenous systems, networked architectures, resource limitations and fluctuations.

1 Introduction

In distributed heterogeneous environments, such as in-home entertainment networks
and mobile computing systems, independently developed applications share common
resources, e.g., CPU, network bandwidth or memory. The resource demands coming
from different applications are usually highly fluctuating over time. For example, video
processing results in both temporal fluctuations, caused by different coding techniques
for video frames, and structural fluctuations, due to scene changes [1]. Similarly, wire-
less networks applications are exposed to long-term bandwidth variations caused by
other application in the system that are using the same wireless network simultane-
ously, and short-term oscillations due to radio frequency interference, like microwave
ovens or cordless phones. Still, applications in such open, dynamic and heterogeneous
environments are expected to maintain required performance levels.

Quality-of-Service (QoS) adaptation is one of the crucial operation to maximize over-
all system quality as perceived by the user while still satisfying individual application
demands. It involves monitoring and adjustment of resources and data flows in order
to ensure delivering of certain performance quality level to the application. This can be
done locally on a device, i.e., local resource adaptation mechanisms on devices detect
changes in resource availability and react to them by adjusting local resource consump-
tion on host devices, or globally, on the system level, i.e., the QoS adaptation is per-
formed by a global QoS manager with a full knowledge of the system resources. The

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 219–233, 2007.
c© IFIP International Federation for Information Processing 2007

http://www.mrtc.mdh.se
http://www.eit.uni-kl.de/

220 L. Rizvanovic, D. Isovic, and G. Fohler

first approach has the advantage that the application can use domain specific knowl-
edge to adapt its execution to the available resources. For example, in a video streaming
application, this could be achieved by decreasing the stream bit rate or skipping video
frames. On the other hand, a global resource management is aware of the demand of
other applications and it has an overview of the total resource availability on the sys-
tem level. In this way, it may reassign budgets, or negotiate new contracts to maximize
system overall performance.

While most of the existing approaches provide mechanisms for either local or global
adaptation, we believe that both methods should be used together in order to respond
properly to both local and global fluctuations. Hence, we propose an integrated global
and local QoS adaptation mechanism, where the structural and long-term load varia-
tions on the system level are object for global adaptation, while the temporal load and
short-term resource variations are taken care locally on devices. The task of the local
adaptation mechanism is to adjust resource usage locally on a device as long as the
fluctuation is kept within a certain QoS range. If the resource usage exceeds the range’s
threshold, the global adaptation mechanism takes over and performs resource realloca-
tion on the system level.

QoS-aware applications are usually structured in such a way that they can provide
different discrete quality levels, which have associated estimations of the required re-
sources. We use the notion of abstract quality levels for defining QoS ranges, such as
high, medium and low resource availability. This provides a general QoS framework
that is not application or device specific. As long as an application or a device can ex-
press its resource demand and consumption in terms of an abstract level, it can benefit
from our method.

Implementation of the proposed integrated QoS mechanism is enabled by our pre-
vious work, the Matrix framework for efficient resource management in distributed,
heterogeneous environments [2]. It provides a global abstraction of device states as
representation of the system state for resource management and it decouples device
scheduling and system resource allocation. In this work, we use the Matrix as the in-
frastructure to develop global and local adaptation mechanisms and to integrate them
into a single QoS adaptation unit in a system. While some parts of the resource manage-
ment mechanism are adopted from the original Matrix approach and further developed
here in terms of the newly proposed global adaptation mechanism, the local adaptation
and the integrated mechanism are entirely new contributions. Furthermore, the original
parts of this paper include a new module in the Matrix, the application adapter used
for application adaptation, the quality level mapping and interfacing, the closed-loop
control model for resource monitoring and adaptation, as well as the deployment of our
approach in the context of video streaming and video stream adaptation.

The rest of this paper is organized as follows. In the next section we give an overview
of the related work. In Section 3 we describe the extended Matrix framework used in
our approach. In Section 4 we describe the global and the local adaptation mechanism
and show how to integrate them in a single approach. In the same section, we present an
example of how our method can be used in the context of media streaming. In Section 5
we describe the current implementation status, followed by Section 6, which concludes
the paper.

Integrated Global and Local Quality-of-Service Adaptation 221

2 Related Work

Comprehensive work on distributed QoS management architectures has been presented
in [3,4,5,6,7]. However, those architectures are mostly designed to work over networks
like ATM or the Internet with Integrated Services (IntServ) and Differentiated Services
(DiffServ) support, i.e., networks that can provide guarantees on bandwidth and delay
for data transfer. In our work, we do not make any assumptions that the underlying
system (OS or network) can offer any QoS guarantees. We consider a distributed, het-
erogeneous environment where applications share resources, such as CPU and network
bandwidth. Applications can either execute on a single device, or on several devices
(e.g., a video streaming application that involves reading a stream on a server and send-
ing it through a network to a hand held device to be decoded and displayed). Further-
more, we assume that handovers and other network related issues are done by lower
level in the system architecture, and those are not task of our research.

While architectures like [8] give an overall management system for end-to-end QoS,
covering all aspects from a user QoS policies to network handovers, in our work we
focus on QoS management and resource adaptation in application domain. Our work is
related to [9,10], which present application-aware QoS adaptation. Both of them make
a separation between the adaptations on the system and application levels. While in [9]
the application adjustment is actively controlled by a middleware control framework, in
[10] this process is left to the application itself, based on upcalls from the underlying
system.

Our work differs in how an application adaptation is initiated and performed. We do
adaptation on different architectural levels, but unlike the mentioned work, we address
global and local adaptation and the integration of both approaches.

We perform global adaptation of all resources within the system, while the work
above focus on adjustment of resources on the end system, where the adaptation is based
on the limited view of the sate of one device. We also provide an application indepen-
dent approach, i.e., it can be used with different types of applications. Furthermore our
approach can support component-based, decoupled approaches, where different com-
ponents, like CPU or network schedulers can easily be replaced.

More recently, control theories have been examined for QoS adaptation. The work
presented in [11] shows how an application can be controlled by a task control model.
Method presented in [12] uses control theory to continuously adapt system behaviour
to varying resources. However, a continuously adaptation maximizes the global quality
of the system but it also causes large complexity of the optimization problem. Instead,
we propose adaptive QoS provision based on a finite number of quality levels.

3 Resource Management Framework

Here we present the resource management framework used in our QoS adaptation
method. First we give an overview of our previous work on distributed resource man-
agement, and then we extend it to suit the needs of the integrated QoS adaptation ap-
proach that will be presented in the next section.

222 L. Rizvanovic, D. Isovic, and G. Fohler

3.1 Matrix Framework

The Matrix is an adaptive framework for efficient management of resources in dis-
tributed, heterogeneous environments. Figure 1 shows the data flow (information flow)
between the Matrix components. The Resource Manager (RM) is used to globally
schedule and reserve resources in the system, i.e., it makes decisions for resource usage
for all devices in the system. Likewise, each time a new application is about to enter the
system, the RM performs admission control.

For example, in a video streaming application, if the display device, e.g., a PDA,
cannot manage to decode and display all video frames on time, the Resource Manager
will notice this and instruct the sender device to send a less demanding version of the
stream (e.g., with lower resolution).

In order to deal with resource reservation, the Resource Manager has to have knowl-
edge about currently available resources in the system. This is provided in the Status
Matrix (SM). For the example above, the Status Matrix will contain the information that
CPU availability on the PDA is low while the bandwidth for the wireless link between
the streaming server and the PDA device is high. The SM also provides information
about active applications resource requirements, priorities, sink and source destinations.

Based on the information stored in the Status Matrix, the Resource Manager will
make decisions for resource reallocation in the system, and store the orders for devices
the Order Matrix (OM). An example of such an order could be one given to the stream-
ing server to decrease the quality of streamed video.

Resource

Manager

(RM)

Status Matrix

(SM)

Order Matrix

(OM)

Order
Manager

(OMR)

Order
Manager

(OMR)

Local

Monitor

(LM)

Local

Monitor

(LM)

Local

Scheduler
(LS)

Local

Scheduler

(LS)

Fig. 1. The Matrix: Information flow

time

Resource
availability

QoS
mapping
algorithm

Abstract QoS levels
(q1,q2,q3,….,qn)

Fig. 2. Abstract QoS levels

The resource status information in the Status Matrix is provided by the Order Man-
agers (OMR), located on the devices. For each type of shared resources, there is an Or-
der Manager responsible for publishing the current resource availability on the device
in the Status Matrix. This information is provided to the Order Manager through Local

Integrated Global and Local Quality-of-Service Adaptation 223

Monitors (LM), that are responsible for continuous monitoring of a resource availabil-
ity on a device, e.g., the available CPU or the network bandwidth. The accuracy of the
information depends on a chosen temporal granularity.

Furthermore, an Order Manager receives orders from the Order Matrix and makes
sure to adjusts local resource usage according to them. This is done through Local
Schedulers (LS), which are responsible for scheduling of a local resources, e.g., a net-
work packets scheduler that can adjust the packet sending rate according to available
bandwidth.

For further details on Matrix framework we refer to our previous work [2,13].

3.2 QoS Levels

We want to use the minimum relevant information about devices states as needed for
resource management, in order to reduce the system state presentation, and to abstract
over fluctuations, which could overload scheduling of resources. Thus, we use the no-
tion of a few abstract QoS levels that represent a resource’s availability and an appli-
cation’s quality. For example, the variations in the quality of network link connection
between two devices can be represented by e.g., three abstract QoS level values, (L)ow,
(M)edium and (H)igh. H means that the data can be transmitted through the link with
full available capacity, while L indicates severe bandwidth limitations. Likewise, quality
of each application using certain resources is mapped to a finite number of application
QoS levels.

In general, the availability of each resource is represented in our approach as a vector
of discrete range of n QoS performance levels {q1, q2, ...qk, qk+1, ..., qn}, see Figure 2.
The value range of a QoS level qk is defined by its threshold values [qmin

k , qmax
k].

In this work, we apply linear mapping between the resources and the QoS levels,
e.g., based on experimental measurements [14]. For example, one simple mapping for
the CPU bandwidth based on the CPU utilization U could be e.g., 0 ≤ U ≤ 0.3 ⇒ H ,
0.3 < U ≤ 0.6 ⇒ M , 0.6 < U ≤ 1.0 ⇒ L. A more advanced mapping could, for
instance, use fuzzy logic to provide a larger number of QoS levels with finer granularity,
but QoS mapping is an ongoing work and it is out of the scope of this paper.

3.3 Application Adapter

The Matrix is an application independent framework, and application adaptation is not
the main focus of our work. However, in order to advance the usage of the Matrix along
with various types of applications, we have extended the original Matrix architecture
with an additional component, the Application Adapter (AA). The Application Adapter
performs the mapping of QoS levels to the application specific parameters, and vice
versa. For example, the AA for a video streaming application could map abstract qual-
ity levels, such as H, M and L, into real possible frame-per-second (fps) values for the
stream, e.g., for a 30 fps MPEG-2 stream high quality could mean the fps-interval be-
tween 24 and 30 fps, medium quality is 16 to 23 fps and low quality could be defined
as 10 to 15 fps.

Since this process is application specific, our ambition was to provide an interface
for this component, and than is up to the application designer to implement it. If there is

224 L. Rizvanovic, D. Isovic, and G. Fohler

a way in an application to map its resource fluctuations into some abstract levels, then it
can be used with our design. Also, upon resource reallocation, the Application Adapter
will receive orders about new abstract levels from the Order Manager, which must be
translated into some concrete actions on the application level.

4 Integrated QoS Adaptation Approach

In this section we present our integrated global and local adaptation mechanism that
uses the Matrix framework. In our approach, global adaptation is performed by the
Resource Manager, while the local adaptation is taken care of locally on the devices.

Consider the following motivating example: A person uses a PDA to watch a video
stored on a local video server, which is delivered to the PDA through a wireless network.
As the person moves around with the PDA, at some point it becomes almost out of
range for the server, which results in video interruption due to packet losses. A local
adaptation on the PDA does not really help in this case, since the video disruption
is caused by the buffer underflow in PDAs decoder (in the case of buffer overflow,
this could be treated locally on the PDA by e.g., speeding up the video decoding task).
However, if there is a mechanism at the system level that can detect the lower bandwidth
of the wireless link, i.e., the Matrix framework described in previous section, it could
instruct the video server to stream a lower quality video stream that takes less network
bandwidth.

Expressed in more general terms, resource consumption is adjusted locally on de-
vices as long as the fluctuation stays within the range of requested QoS. For example,
the Local Monitor detects a change in available CPU for a certain application, but this
change is not large enough to enforce a different quality level to the application. Instead,
the Local Scheduler could perform some local countermeasures, e.g., prioritize the ap-
plication on the cost of some other application running on the same device. However, if
the resource availability passes the defined thresholds (abstract QoS levels), the entire
system gets involved via the global adaptation mechanism. The whole idea is illustrated
in Figure 3.

L

M

H

x x x

x x x

x

x x

Global adaptation
changes in resource
availability overstep
the range of
requested QoS

Available
Resources

Time

Local adaptation
changes in
resource
availability
within the range
of requested
QoS

Fig. 3. Different types of resource variations handled on different architectural levels

Integrated Global and Local Quality-of-Service Adaptation 225

4.1 Local Adaptation Mechanism

Local adaptation involves detecting the changes in resource availability and reacting to
those via the local scheduler. The ideas from control theory can be used to achieve this.
We use the closed loop model, i.e., a control model that involves feedback to ensure
that a set of conditions is met. It involves the Local Monitor, the Local Scheduler, and
the Order Manager, see Figure 4. Expressed by terminology of the control theory, we
use the following terms for inputs and outputs variables in our control model; control
variable, vctrl, is the value observed by the local monitor (e.g. network packet loss,
CPU utilization), reference variable, vref , is concrete performance specification for
Local Schedulers made by the order manager, error ε is the difference between the value
observed by the Local Monitor and the reference variable, and control input variable,
vin, is the value calculated by the adaptation algorithm in order to adapt scheduling of
the local resources. The Local Monitor continuously monitors available resources in the

Local
Monitor

control
variable vctrl

Quality Level
(from RM)

[qmin, qmax]

no

error
-

sample

yes

Order Manager

control input
variable vin

Local
Scheduler

Quality Level
(to RM)

reference
variable vref

Run-Time Mechanism (System)

Application
adapter

data

Application Mapping
[qmin, qmax]

Mapping to
QoS level

Fig. 4. Local QoS Adaptation Mechanism

system (e.g., CPU or bandwidth). Thus, in our control model it acts as an observer of the
controlled system. It send the observed control value to the Order Manager. The Order
Manager calculates the difference between the desired value, defined by the currently
used QoS level, and the observed control value, i.e., it calculates the error value of the
control loop. As long as resource availability stays within the boundaries for the given
QoS level, i.e., the error falls in the range of the current QoS level, the output of the
adaptation algorithm, control input, is passed to the Local Scheduler, i.e., the adapter
part of control loop.

In the case that the error value implies a change in QoS levels, the values in the Status
Matrix are updated and the Resource Manager is informed about the change. From this
point, the global adaptation mechanism takes over, which we describe next.

226 L. Rizvanovic, D. Isovic, and G. Fohler

4.2 Global Adaptation Mechanism

Whenever a local mechanism detects that a local resource availability has exceeded the
current QoS level, a global adaptation mechanism will be initiated. The objective of
the global adaptation is to adjust the resource usage among all involved applications.
If the resource availability has increased, it will be given to involved applications (in
terms of increased quality levels). Similarly, if the resource availability has decreased,
the quality levels of the consumer applications will be decreased.

We support user defined priorities to be used when redistributing resources, i.e., the
higher the priority of an application, the faster the quality increase of the application.
However, it is up to the user to use priorities or not. Based on this, we distinguish
between three reallocation policies in our approach, fair, fair prioritized and greedy.

Fair reallocation – If the priorities are not used, then the resources are adjusted
(increased or decreased) in a strictly fair fashion: for each consumer applications the
quality is adjusted step-by-step, one QoS level at the time, and then, if there are still
resources to increase/decrease, we repeat the procedure for all applications once again,
until the resource is consumed/replanished. For example, consider four different appli-
cations a1,a2, a3 and a4 that are using the same resource r. The current quality level
for each applications is set to L. Assume that a4 gets terminated and the resource avail-
ability of r gets increased by the portion used by a4. The freed resource is given back
to the remaining three application such that we first increase the the QoS level of a1,a2
and a3 to M, and then, if there are still resources left, all QoS levels are increased to H .

Fair-prioritized reallocation – Note that in the fair approach, there is no guarantee
that a certain application will change its QoS level. In the example above, there could
be a case where the freed resource is entirely consumed after increasing the level of
a1 and a2 to level M, so that a3 will remain running on level L, despite the fact that
a3 might be the most important one in the system. However, if we use priorities, we
could instruct RM to start by increasing the QoS levels of high priority applications
first, i.e., a3 in the example above. In other words, the resources are reallocated in a fair
fashion, i.e., each application’s quality level is changed by one step before changing any
other application’s level one more step, but also we use priorities to determine which
applications should be served first.

Greedy reallocation – Moreover, priorities enable for an another reallocation policy,
i.e., greedy redistribution. This means to increase (decrease) QoS level of an application
with the highest (lowest) priority until it reaches its maximum (minimum) QoS level,
before we start with the next one application (in the priority order). For the example
above, we would continue increasing the QoS level of a3 until it reaches H, before
doing any QoS increase of a1 and a2. Furthermore, the priorities can be used when
selecting which applications to drop first if that becomes necessary.

If an application is processed by several different devices, then, before changing its
quality level, we need to check if the new level can be supported by all involved de-
vices on the application’s playout route. For example, in a video streaming application
where a video stream is sent from a video server to a hand held device via a laptop, the

Integrated Global and Local Quality-of-Service Adaptation 227

bandwidth increase between the server and the laptop does not necessarily mean that we
should start streaming a higher bit rate stream, since the link between the laptop and the
hand held device might not be able to support it. Likewise, we have to consider if this
increased quality can be supported by all other types of resources that the application is
consuming e.g., there is no point to send more data over the communication link than it
cannot be timely processed at the receiver device (by the local CPU).

Our admission control approach for new applications is quite similar to the adapta-
tion approach described above. Thus, each time a new application is about to enter the
system, the Resource Manager has to determine if sufficient resources are available to
satisfy the desired QoS of the new connection, without violating QoS of existing ap-
plications. If yes, then we accept the new application and publish orders for resource
reservation/reallocation into the Order Matrix. If no, we check if there are any existing
application with the the lower priority than the new one, and if so, decrease their QoS
(starting with the lowest priority application) to free some resources for the new appli-
cation. If there are no available resources, and no lower priority applications, the new
applications is rejected.

4.3 Pseudo-Code for Integrated Approach

Here is the pseudo-code for our current implementation of the integrated local and
global QoS adaptation mechanism. We introduce some additional terms, as a comple-
ment to the terms presented earlier:

– A = {a1, a2, .., an}, a set of applications in the system.
– R = {r1, r2, ..., rm}, a set of resources in the system.
– D = {d1, d2, ..., dp}, a set of devices in the system.
– A(ri) ∈ A, a subset of applications that currently use resource ri.
– R(aj) ∈ R, a subset of resources currently used by application aj .
– R(dl) ∈ R, a subset of resources currently consumed on device dl.
– D(aj) ∈ D, a subset of devices currently used for processing of application aj .
– S(ri), current resource supply (availability) of resource ri.
– D(ri), current resource demand of all applications using ri.
– qk(ri) and qk(aj), the k-th QoS level of resource ri, respective application aj , as

described in section 3.2.

/* For the sake of simpler explanation, we omit in the pseudo-code for the start up
activities where the devices has reported the local resource availability, and the RM has
published initial QoS levels in the Status Matrix */

∀ di ∈ D /* For each device */
∀ ri ∈ R(di) /* For each resource on a device */

/* Invoke local adaptation based on the currently assigned quality level */
map qk(ri) ⇒[qmin

k (ri),qmax
k (ri)]

vref = qmax
k (ri), εmax = qmax

k (ri) − qmin
k (ri)

228 L. Rizvanovic, D. Isovic, and G. Fohler

Do
get vctrl from LM
ε = vref - vctrl

calculate vin(ε) and send it to LS
While (0 ≤ ε ≤ εmax)

/* Prepare for global adapt. when the error exceeds the limit of current QoS level */
map ε ⇒ ql(ri), l �= k
publish ql(ri) in SM

⇒ break! invoke global adaptation

/* RM performs global adaptation based on new info in SM */

/* Case 1: total resource supply is greater than the total demand ⇒ increase QoS levels */
If (S(ri) > D(ri)) Then

Do
/* Based on the chosen realloc. policy get an application to increase its QoS level */
If (aj = getApplication(POLICY, INCREASE)) Then

/* Check if all aj ’s proc. devices (other than di), support the next QoS level of aj*/
If (∀dj ∈ D(aj), dj �= di, dj supports qk+1(aj)) Then

/* Check if the new QoS level of aj can be served by all other aj’s resources*/
If (∀rn ∈ R(aj), rn �= ri, rn supports qk+1(aj)) Then

increase quality of aj to qk+1(aj)
/* incr/decr dem/sup for ri by the amount used to jump to next QoS lev.*/
Δ = qmax

k+1 (ri) − qmax
k (ri)

D(ri)+ = Δ; S(ri)− = Δ

While (S(ri) > D(ri) AND aj �= NULL)

/* Case 2: total resource supply is less than the total demand ⇒ decrease QoS levels */
Else

/* Similar as above, but the QoS levels are decreased. Also, we do not need to check
other devices and resources, since the decr. quality will not put extra demands on them.
...(omitted)

4.4 Example

Here we illustrate our approach in the context of video streaming. Consider the example
scenario with the PDA and the streaming video server from Section 3, where the quality
of the streamed video was dependent on the distance between the PDA and the server.
At some point in time, the PDA is so far away from the server so it only makes sense to
stream a low quality video stream, i.e., stream S1 with the abstract quality level L and
priority p1. Assume also that there is another video stream in the system, S2, streamed
from the server to a laptop with a quality level H and higher priority p2. The CPU

Integrated Global and Local Quality-of-Service Adaptation 229

availability (bandwidth) on all devices is initially assumed to be high. The reallocation
policy used is fair-prioritized. The whole situation is depicted in Figure 5. The values
within the parentheses are the new QoS levels (obtained after adaptation).

Now, assume that the person with the PDA starts moving closer to the server. The
local adaptation mechanism on the one of the involved devices, i.e., either on the server
or on the PDA, will detect that more and more packets can be sent between them (let’s
assume the PDA will detect this first). As the PDA is coming closer to the server, at
some point the quality of the link connection will exceed the assigned threshold for the
local adaptation, and the global adaptation mechanism will take over, with the following
steps involved (see Figure 5 in parallel; the numbers below correspond to the numbers
in the figure; some of the steps are merged):

1. The Local Monitor on the PDA detects that the link quality between the server and
the PDA has increased.

2. This is reported to the Order Manager, who will map the new values to the quality
level H (we can assume a sudden large connection improvement e.g., by entering
the room where the server is placed).

3. Order Manager publishes the new quality level H in the Status Matrix.
4. Assume also that there has been some change in the CPU availability on the laptop,

i.e., it gets decreased from H to L due some new, CPU intensive application that
has started to run on the laptop. Initially, the local adaptation mechanism on the
laptop will react to the changes in the CPU load by e.g., by performing selective
frame skipping in the video decoder that is processing the stream S2. However, at
some point the CPU QoS threshold will be exceeded and the new QoS value will
be calculated and published in the Status Matrix for the CPU.

5. The Resource Manager is notified about the new quality level values.
6. Now, it is up to the Resource Manager to take a decision about the resource reallo-

cation. Considering the available bandwidth and the streams priorities, one solution
could be to set the quality of S1 to M (since it has lower priority), and left the quality
of S2 unchanged. However, streaming the high quality video stream to the laptop
may not be a good solution, since the CPU on the laptop is overloaded and video
frames will be skipped anyway. Hence, the Resource Manager, who has the total
resource usage view of the system, decides to set L for stream S2. This decision
will not only reflect the resource status on the laptop correctly, but also it will al-
low for S1 to be set to H (which can be done because the quality of the connection
between the server and the PDA has been changed to H).

7. The Order Managers on respective devices are informed about the new values (ar-
rows to the OMRs of the PDA and the laptop are omitted in the figure to ease
readability).

8. The Order Managers then enforce the new settings via their local schedulers and
application adapters. For example, in the case of the server, the stream application
adapter will make sure to decrease the quality of stream S2. This can be done in
several ways, e.g., by reading a lower quality version of S2 that has been stored on
the server in advance, or by using an online modification of original S2 by using
the quality-aware preventive frame skipping methods that we have developed in our
previous work [15].

230 L. Rizvanovic, D. Isovic, and G. Fohler

Video server
PDA

RM

(1)

OMR

LM LS

OMR

LMLS

OMR

LMLS

Laptop
Stream S2 Stream S1

SM LAP SER PDA

CPU H (L) H H

BW H L (H)

S1 L L

HS2 H

(2)

(3)
(4)

(6)
(5)

(8)

(7)

AA

OM LAP SER PDA

CPU H (L) H H

BW H (L) L (H)

S1 L (H) L (H)

H (L)S2 H (L)

Fig. 5. Example global adaptation

5 Implementation and Evaluation

The Matrix framework is quite complex and we are still working on its full implemen-
tation. However, we have implemented a mock-up of Matrix approach [2] using HLA
[16]. Moreover, some basic benefits of our method, has been demonstrated by simula-
tions.

5.1 Implemented Modules

The hierarchical architecture and the loose coupling between system modules makes
it possible to work on different parts independently. Current implementation includes
Local Monitors and Schedulers for CPU and network bandwidth, and a Video Stream
Adapter.

Local Network Scheduler – For network scheduling we use the traffic shaping ap-
proach, which provides different QoS by dynamically adapting the transmission rate of
nodes, to match the currently available bandwidth of a wireless network. The Traffic
Shaper adjusts the outbound traffic accordingly to input parameters (i.e., the amount of
available bandwidth assign to the Local Scheduler). Please see [14] for full implemen-
tation details.

Local Network Monitor – For monitoring and estimation of available bandwidth
(over 802.11b wireless Ethernet), we use a method that provides us with the average
bandwidth that will be available during a certain time interval. The architecture consists

Integrated Global and Local Quality-of-Service Adaptation 231

of a bandwidth predictor that first uses a simple probe-packet technique to predict the
available bandwidth. Then, exponential averaging is used to predict the future available
bandwidth based on the current measurement and the history of previous predictions,
see [14] for details.

Local CPU Scheduler – The allocation of CPU to the applications depends on the
scheduling mechanism that is used. We have developed a predictable and flexible real-
time scheduling method that we refer to as slot shifting [17]. The basic idea is to guar-
antee a certain quality of service to applications before run-time, and then adjust it at
run-time according to the current status of the system.

Local CPU Monitor – Since we use a real-time scheduling mechanism, the CPU
monitoring is very simple to achieve. The spare capacity mechanism of slot shifting
provides easy access of the amount and the distribution of available resources at run-
time [17].

Video Stream Adapter – We have implemented an Application Adapter for MPEG-2
video stream adaptation, based on quality-aware, selective frame skipping. Order Man-
ager sends allowed abstract quality level to the video adapter, which then adjusts the
stream according to available resources by skipping the least important video frames.
For the frame priority assignment algorithm we have proposed a number of criteria to
be applied when setting priorities to the frames. Please see our previous work [15] for
details.

5.2 Evaluation

We have evaluated our method in the context of video streaming. Here we present re-
sults from a 15 minutes video streaming simulation using our integrated approach for
global and local adaptation. We simulate usage of 30 devices in the system and show
how a MPEG-2 video stream is adapted based on current resource availability (net-
work bandwidth). We use the following quality levels for available bandwidth (given
in Mbps): q1(BW) = [qmax

1 , qmin
1] = [1.5, 2.5] (L), q2(BW) = [qmax

2 , qmin
2] =

[2.5, 4] (M), q3(BW) = [qmax
3 , qmin

3] = [4, 11] (H). Figure 6 shows that the local
adaptation mechanism is deployed most of the time (77%), while the global mechanism
is triggered only when necessary (23%), i.e., the QoS has changed that much that the
system reallocation must take place.

1

2

3

4

5

6

0 20 40 60 80 100 120

av
ai

la
bl

e
ba

nd
w

id
th

 (
M

bp
s)

time (sec)

resource fluctuation
global adaptation

Fig. 6. Invocation of global adaptation

0

1

2

3

4

5

0 20 40 60 80 100

ba
nd

w
id

th
 Q

oS
 le

ve
s

(M
bp

s)

time (sec)

QoS level based on global system view
QoS level published by the device

Fig. 7. Global vs Local system view

232 L. Rizvanovic, D. Isovic, and G. Fohler

Figure 7 shows the difference between QoS levels based on one device’s local view
and those assigned by global adaptation, i.e. the possible spared resources (available
bandwidth) on just one device due to global adaptation. It illustrates efficiency of our
integrated approach where adjustment of resources is not just based on the limited local
system view of one device, but also on the current available resources of all involved
devices. In that way, our approach enables a system wide optimization.

6 Conclusions and Future Work

We proposed a method for efficient Quality-of-Service adaptation in dynamic, heteroge-
nous environments.

It integrates global and local adaptation, where the first one takes care of the struc-
tural resource fluctuations on the system level, while the second one is performed lo-
cally on devices to handle short-term variations.

The idea is to perform local adaptation as long as possible, using a control model for
resource monitoring and adjustment, and if a resource availability passes the range of
the currently assigned QoS level, the global adaptation mechanism takes over.

Our current and future work include further developing the local control model by
formally describing the system’s behaviour with a set of differential equations. Fur-
thermore, we are working on a more general model for mapping between resources
demands and abstract QoS levels and exploiting the proposed framework in other ap-
plication domains than in-home networks.

References

1. Otero Perez, C., Steffens, L., van der Stok, P., van Loo, S., Alonso, A., Ruı́z, J.F., Bril,
R.J., Garcı́a Valls, M.: QoS-based resource management for ambient intelligence, Ambient
intelligence: impact on embedded system design. Academic Publishers, Norwell, MA, USA
(2003)

2. Rizvanovic, L., Fohler, G.: The MATRIX: A QoS Framework forStreaming in Heterogeneous
Systems. In: International Workshop on Real-Time for Multimedia, Catania, Italy (2004)

3. Nahrstedt, K., Smith, J.M.: Design, Implementation an Experiences of the OMEGA End-
Point Architecture, Distributed Systems Laboratory, University of Pennsylvania, Philadel-
phia

4. Nahrstedt, K., Chu, H., Narayan, S.: QoS-Aware Resource Management for Distributed Mul-
timedia Applications, UIUCDCS-R-97-2030 (1997)

5. Campbell, A., Coulson, G., Hutchison, D.: A quality of service architecture, ACM SIG-
COMM Computer Communication Review (1994)

6. Gopalakrishna, G., Parulkar, G.: Efficient Quality of Service in Multimedia Computer Oper-
ating Systems, Washington University (1994)

7. Shankar, M., De Miguel, M., Liu, J.W.S.: An end-to-end QoS management architecture,
Real-Time Technology and Applications Symposium (1999)

8. Kassler, A., Schorr, A., Niedermeier, C., Schmid, R., Schrader, A.: MASA - A scalable QoS
Framework. In: Proceedings of Internet and Multimedia Systems and Applications (IMSA),
Honolulu, USA (2003)

9. Li, B., Nahrstedt, K.: A Control-Based Middleware Framework for Quality-of-Service Adap-
tations. Selected Areas in Communications, IEEE Journal (1999)

Integrated Global and Local Quality-of-Service Adaptation 233

10. Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., Walker, K.R.: Agile
Application-Aware Adaptation for Mobility. In: 16th ACM Symposium on Operating Sys-
tems Principles, France (1997)

11. Li, B., Nahrstedt, K.: Impact of Control Theory on QoS Adaptation in Distributed Middle-
ware Systems. In: American Control Conference (2001)

12. Stankovic, J.A., Abdelzaher, T., Marleya, M., Tao, G., Son, S.: Feedback control scheduling
in distributed real-time systems. In: RTSS (2001)

13. Rizvanovic, L., Fohler, G.: The MATRIX - A Framework for Real-time Resource Manage-
ment for Video Streaming in Networks of Heterogenous Devices. In: Conference on Con-
sumer Electronics, Las Vegas, USA (2007)

14. Lennvall, T., Fohler, G.: Providing Adaptive QoS in Wireless Networks by Traffic Shaping,
Resource management for media processing in networked embedded systems (RM4NES),
Netherlands (2005)

15. Isovic, D., Fohler, G.: Quality aware MPEG-2 Stream Adaptation in Resource Constrained
Systems, ECRTS, Catania, Italy (2004)

16. IEEE Standard for Modeling and Simulation, High Level Architecture (HLA) - Federate
Interface Specification, No.:1516.1-2000

17. Isovic, D., Fohler, G.: Efficient Scheduling of Sporadic, Aperiodic, and Periodic Tasks with
Complex Constraints, 21st IEEE RTSS, USA (2000)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 234–246, 2007.
© IFIP International Federation for Information Processing 2007

Toward to Utilize the Heterogeneous Multiple Processors
of the Chip Multiprocessor Architecture

Slo-Li Chu

Department of Information and Computer Engineering,
Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C.

slchu@cycu.edu.tw

Abstract. Continuous improvements in semiconductor fabrication density are
supporting new classes of Chip Multiprocessor (CMP) architectures that
combine extensive processing logic/processor with high-density memory in a
single chip. One of the architecture, called Processor-in-Memory (PIM) can
support high-performance computing by combining various processors in a
single system. Therefore, a new strategy is developed to identify their
capabilities and dispatch the most appropriate jobs to them in order to exploit
them fully. This paper presents a novel scheduling mechanism, called Swing
Scheduling to fully utilize all of the heterogeneous processors in the PIM
architecture. Integrated with our Octans system, this mechanism can decompose
the original program into blocks and can produce a feasible execution schedule
for the host and memory processors, even for other CMP architectures. The
experimental results for real benchmarks are also proposed.

Keywords: Chip Multiprocessor (CMP), Processor-in-Memory, Swing
Scheduling, Octans.

1 Introduction

In current high-performance computer architectures, the processors run many times
faster than the computer's main memory. This performance gap is often referred to as
the Memory Wall [25]. This gap can be reduced using the System-on-a-Chip or Chip
Multiprocessor [13] strategies, which integrates the processors and memory on a
single chip. The rapid growth in silicon fabrication density has made this strategy
possible. Accordingly, many researchers have addressed integrating computing
logic/processing units and high density DRAM on a single die [5][7][8][9]
[10][12][13]. Such architectures are also called Processor-in-Memory (PIM), or
Intelligent RAM (IRAM).

Integrating DRAM and computing logic on a single integrated circuit (IC) die
generates PIM architecture with several desirable characteristics. First, the physical
size and weight of the overall design can be reduced. As more functions are integrated
on each chip, fewer chips are required for a complete design. Second, very wide on-
chip buses between the CPU and memory can be used, since DRAM is located with
computing logic on a single die. Third, eliminating off-chip drivers reduces the power
consumption and latency [12].

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 235

This class of architectures constitutes a hierarchical hybrid multiprocessor
environment by the host (main) processor and the memory processors. The host
processor is more powerful but has a deep cache hierarchy and higher latency when
accessing memory. In contrast, memory processors are normally less powerful but
have a lower latency in memory access. The main problems addressed here concern
the method for dispatching suitable tasks to these different processors according to
their characteristics to reduce execution times, and the method for partitioning the
original program to execute simultaneously on these heterogeneous processor
combinations.

Previous studies of programming for PIM architectures [4][6] have concentrated on
spawning as many processors as possible to increase speedup, rather than on the
capability difference between the host and memory processors. However, such an
approach does not exploit the real advantages of PIM architectures. This study
integrates our Octans system that integrates statement splitting, weight evaluation and
a scheduling mechanism. The original scheduling [2] mechanism is improved to
generate a superior execution schedule to fully utilize all heterogeneous processors in
the PIM architecture, using our new Swing Scheduling mechanism. A weight
evaluation mechanism is established to obtain a more precise estimate of execution
time, called weight. The Octans system can automatically analyze the source
program, generate a Weighted Partition Dependence Graph (WPG), determine the
weight of each block, and then dispatch the most suitable blocks for execution on the
host and memory processors.

The rest of this paper is organized as follows: Section 2 introduces PIM
architectures. Section 3 describes our Octans system and the Swing Scheduling
algorithms. Section 4 presents experimental results. Conclusions are finally drawn in
Section 5.

2 The Processor-in-Memory Architecture

Fig. 1 depicts the organization of the PIM architecture evaluated in this study. It
contains an off-the-shelf processor, P.Host, and four PIM chips. The PIM chip
integrates one memory processor, P.Mem, with 64 Mbytes of DRAM. The techniques
presented in this paper is suitable for the configuration of one P.Host and multiple
P.Mems, and can be extended to support multiple P.Hosts.

Table 1 lists the main architectural parameters of the PIM architecture. P.Host is a
six-issue superscalar processor that allows out-of-order execution and runs at
800MHz, while P.Mem is a two-issue superscalar processor with in-order capability
and runs at 400MHz. There is a two-level cache in P.Host and a one-level cache in
P.Mem. P.Mem has lower memory access latency than P.Host since the former is
integrated with DRAM. Thus, computation-bound codes are more suitable for running
on the P.Host, while memory-bound codes are preferably running on the P.Mem to
increase efficiency.

The PIM chip is designed to replace regular DRAMs in current computer systems,
and must therefore conform to a memory standard that involves additional power and
ground signals to support on-chip processing. One such standard is Rambus [5], so the

236 S.–L. Chu

 Table 1. Parameters of the PIM architecture

Host
Processor

Core

L1 Cache

P.Host

Rambus
(Memory Bus)

Memory
Processor

Core

L1 Cache

DRAM
Cells

Memory
Processor

Core

L1 Cache

DRAM
Cells

Memory
Processor

Core

L1 Cache

DRAM
Cells

P.Mem

PIM Chip

Memory
Processor

Core

L1 Cache

DRAM
Cells

L2 Cache

Inter-Chip
Interconnection

Network

P.Host P.Mem Bus & Memory
Working Freq:
800 MHz

Working Freq:
400 MHz

Bus Freq:
100 MHz

Dynamic issue
Width: 6 Static issue Width: 2

P.Host Mem RT:
262. 5 ns

Integer unit num: 6 Integer unit num: 2
P.Mem Mem RT:
50. 5 ns

Floating unit num: 4 Floating unit num: 2 Bus Width: 16 B

FLC_Type: WT FLC_Type: WT
Mem_Data_Transfer:
16

FLC_Size: 32 KB FLC_Size: 16 KB
Mem_Row_Width:
4K

FLC_Line: 64 B FLC_Line: 32 B
SLC_Type: WB SLC: N/A
SLC_Size: 256 KB
SLC_Line: 64 B
Replace policy:
LRU
Branch penalty: 4 Branch penalty: 2
P.Host_Mem_Delay:
88

P.Mem_Mem_Delay:
17

Fig. 1. Organization of the PIM architecture

 * FLC stands for the first level cache, SLC for the second level
cache, BR for branch, RT for round-trip latency from the
processor to the memory, and RB for row buffer.

PIM chip is designed with a Rambus-compatible interface. The private
interconnection network of the PIM chips is also provided.

3 The Octans System

Most current parallelizing compilers focus on the transformation of loops to execute
all or some iterations concurrently, in a so-called iteration-based approach. This
approach is suited to homogeneous and tightly coupled multi-processor systems.
However, it has an obvious disadvantage for heterogeneous multi-processor platforms
because iterations have similar behavior but the capabilities of heterogeneous
processors are diverse. Therefore, a different approach is adopted here, using the
statements in a loop as a basic analysis unit, called statement-based approach, to
develop the Octans system.

Octans is an automatic parallelizing compiler, that partitions and schedules an
original program to exploit the specialties of the host and the memory processor. At
first, the source program is split into blocks of statements according to dependence
relations. Then, the Weighted Partition Dependence Graph (WPG) is generated, and
the weight of each block is evaluated. Finally, the blocks are dispatched to either the
host or the memory processors, according to which processor is more suitable for
executing the block. The major difference between Octans and other parallelizing
systems is that it uses a statement rather than an iteration as the basic unit of analysis.
This approach can fully exploit the characteristics of statements in a program and
dispatch the most suitable tasks to the host and the memory processors. Fig. 2
illustrates the organization of the Octans system.

3.1 Statement Splitting and WPG Construction

Statement Splitting splits the dependence graph of the given program by the extended
node partition mechanism as introduced in [2]. It divides the original program into

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 237

Subroutine

for P. Mem
Code Generator

Schedule Determination

Weight Evaluation

Weight

Table

Statement Splitting

Subroutine

for P. Host

Source

Program

Fig. 2. The sequence of compiling stages in Octans

several small loops within the minimal statements. The detailed mechanisms can be
found in literature [2]. Then WPG Construction constructs the Weighted Partition
Dependence Graph (WPG), to be used in the subsequent stages of Weight Evaluation,
Wavefront Generation and Schedule Determination.

3.2 Weight Evaluation

Two approaches to evaluating weight can be taken. One is to predict the execution
time of programs by profiling the dominant parts. The other considers the operations
in a statement and estimates the program execution time by looking up an operation
weight table. The former method called code profiling may be more accurate, but the
predicted result cannot be reused; the latter called code analysis can determine
statements for suitable processors but the estimated program execution time is not
sufficiently accurate. Hence, the Self-Patch Weight Evaluation scheme was designed
to combine the benefits of both approaches. It integrates these two approaches
together by analyzing code and searching weight table first to estimate the weight of a
block. If the block contains unknown operations, the patch (profiling) mechanism is
then activated to evaluate the weights of unknown operations. The obtained operation
weights are added into the weight table for next look-up. For a detailed description of
this scheme, please refer to [2].

3.3 The Swing Scheduling Mechanism

Here we propose the Swing Scheduling mechanism to achieve a good schedule for
utilizing all of the memory processors in PIM architecture. At first, the redundancy
and synchronization between processors are critical factors that affect the
performance of job scheduling for multiprocessor platforms. A critical path
mechanism is used to minimize the frequency of synchronization. Then the WPG is
then partitioned into several Sections according to the nodes on the critical path and
the dependence relations between these nodes. In a Section, the blocks are partitioned
into several Inner Wavefronts in the following stages. Finally, the execution schedule

238 S.–L. Chu

for all P.Host and P.Mems is obtained. If the number of occupied memory processors
exceeds the maximum number of processors in the PIM configuration, then the
execution schedule will be modified accordingly. Algorithm 1 presents the main steps
of this scheduling mechanism.

Algorithm 1. (Swing Scheduling)

[Input]

WPG=(P,E): original weighted partition dependence graph after weight is determined.
[Output]

An critical path execution order schedule CPS, where CPS = {CPS1, CPS2, …,CPSi}.
CPSi ={CPi, IWFi} where CPi = {Processor(ba)} where processor is PH or PM . IWFi
={PH(ba), PM1(bb), PM2(bc),…} means that in Inner Wavefront i, PH(ba) means that
block ba will be assigned to P.Host, PM1(bb) means that blocks bb will be assigned to
P.Mem1, PM2(bc) means that blocks bc will be assigned to P.Mem2.
[Intermediate]
W: a working set of nodes ready to be visited.
EO_temp: a working set for execution order scheduling.
iwf_temp: a working set for Inner Wavefront scheduling.
max_EO: the maximum number of execution order.
min_pred_O(bi): the minimum execution order for all bi’s predecessor blocks.
max_pred_O(bi):the maximum execution order for all bi’s predecessor blocks.
min_succ_RO(bi):the minimum execution order for all bi’s successor blocks.
max_succ_RO(bi):the maximum execution order for all bi’s successor blocks.
PHW(bi): the weight of bi for P.Host.
PMW(bi): the weight of bi for P.Mem.
Ranku(bi): the trace up value of bi used for finding CP
Rankd(bi): the trace down value of bi used for finding CP

[Method]
Step 1:Call "Initialization()" to initialize the algorithm and determine the weights of each

block.
Step 2:Call "Rankd_Exec_Order_Det()" to determine the Rankd and Execution order of

each block.
Step 3:Call "Ranku_Det()" to determine the Ranku of each block.
Step 4:Call "Critical_Path_Det()" to determine the blocks which is belong to the Critical

Path.
Step 5:Call "Critical_Path_Block_Sch()" to find out the Section and schedule the Critical

Path Block in each Section to the a suitable processor.
Step 6:Call "Inner_Wavefront_Sch()" to partition the blocks which is belong to the same

Section into several Inner Wavefront and schedule the blocks in the same Inner
Wavefront to the suitable processors.

Step 7:Call "Generate_Schedule()" to generate the execution schedule, CPS.
Step 8:If the occupied processor number is larger than the maximum processor number,

call "Modify_schedule()" to modify the original execution schedule to fit the
processor number, else Stop the algorithm.

The algorithm includes eight major steps. In Step 1, the algorithm calls

"Initialization()" to initiate the necessary variables and determine the P.Host and
P.Mem weights of each blocks determined by the weight evaluation mechanism.

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 239

Swing algorithm adopts the critical path method to partition WPG into Sections.
Therefore, the critical path and the blocks on the critical path must be determined.
Then the attributes, randu and rankd, of block bi in WPG are defined by the following
equations.

))((max)()(
)(

ju
bsuccb

iiu brankbPMWbrank
ij ∈

+=

)}()({max)(
)(

jjd
bpredb

id bPMWbrankbrank
ij

+=
∈

Here, succ(bi) and pred(bi) represent all of the successors and predecessors of bi,
respectively. The critical path is defined as the following equation.

A block bi is on the critical path, if and only if ranku(bi) + rankd(bi) = ranku(bs),
where bs is the start block of the WPG, and bi is called the critical path block.

According to the above definitions, the critical path and the critical path block can
be determined from Step 2 to Step 4. Step 2 calls "Rankd_Exec_Order_Det()"
to determine rankd and the execution order of each block. Step 3 calls "Ranku_Det()"
to determine ranku of each block. Then, the algorithm calls "Critical_Path_Det()" to
determine which blocks are critical path blocks in Step 4.

Subroutine: Critical_Path_Det()

CP = (rankd(bs)),where bs is the start block of WPG
CP_num_sec=0
for i=1 to max_EO do

store all of bi whose Oi =i in EO_temp
for each block bi ∈ EO_temp do

if (rankd(bi)+ranku(bi))=CP then
CP_num_sec=CP_num_sec+1
CP_O(CP_num_sec)= O(bi)
CP_temp(CP_num_sec)= bi

end for
end for

Subroutine: Ranku_Det()

W=P-{be},where be is the end block of the WPG
RO(be)=1
done = False

while done = False AND W≠φ do
done=True
for each bi ∈W do

if min_succ_RO(bi)=0 then
done=False

else
))((max)()(

)(
ju

bsuccb
iiu brankbPMWbrank

ij∈
+=

ROi= max_succ_RO(bi)+1
W=W-{ bi }

end if
end for

end while

240 S.–L. Chu

Subroutine: Critical_Path_Det()
CP = (rankd(bs)),where bs is the start block of WPG
CP_num_sec=0
for i=1 to max_EO do
store all of bi whose Oi=i in EO_temp
for each block bi ∈ EO_temp do

if (rankd(bi)+ranku(bi))=CP then
CP_num_sec=CP_num_sec+1
CP_O(CP_num_sec)= O(bi)
CP_temp(CP_num_sec)= bi

end for
end for

Fig. 3 illustrates the WPG of the synthetic program, which is processing in stages

stated above. In this WPG, the shadow blocks are on the critical path. When the
critical path is determined in Step 5, "Critical_Path_Block_Sch()" is called to
partition all blocks in the WPG into several Sections. Fig. 4 illustrates the result of the
given WPG, which is partitioned into five Sections, Section1:{b1}, Section 2: {b2, b3,
b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14}, Section 3:{b15}, Section 4: {b16,
b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28} and Section 5:{b29}. The
execution order of Sections is governed by their dependence relations. After the
critical path block is identified, the remaining blocks are partitioned into several Inner
Wavefronts according to the order of execution and the dependence relations. In Fig.
4, Section 2 of the WPG is used to explain how blocks are scheduled in a Section.
Since b2 is the block on critical path in Section 2, "Critical_Path_Block_Sch()" is
firstly used to schedule b2 to reduce the waiting and synchronization frequencies. The
remaining blocks are partitioned into three wavefronts according to the Oi of each
block, by calling "Inner_Wavefront_Sch()" in Step 6. Finally, iw1={b3, b4, b5, b6},
iw2={b7, b8, b9}, iw3={b10, b11, b12, b13} are determined.

Subroutine: Critical_Path_Block_Sch()

i=1, k=0
while k ≤CP_num_sec do

k=CP_O(i)
if PHW(CP_temp(i))- PMW(CP_temp(i))< 0 then

CPk={PH(CP_temp(i))}
PH_Used=true
PM1_Used=false

else
CPk={PM1(CP_temp(i))}
PH_Used=false
PM1_Used=true

end if
i=i+1

end while

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 241

I=
{N,M}

S=
{s1}

W=
{1, 2}

O=1
ranku
=118

rankd
=0

b1

I=
{N,M}

S=
{s2}

W=
{51,69}

O=2
ranku
=116

rankd
=2

b2

I=
{N,M}

S=
{s2}

W=
{16,12}

O=2
ranku
=89

rankd
=2

b3

I=
{N,M}

S=
{s4}

W=
{19,13}

O=2
ranku
=90

rankd
=2

b4

I=
{N,M}

S=
{s5}

W=
{18,12}

O=2
ranku
=88

rankd
=2

b5

I=
{N,M}

S=
{s6}

W=
{20,15}

O=2
ranku
=85

rankd
=2

b6

I=
{N,M}

S=
{s10}

W=
{13,10}

O=4
ranku
=57

rankd
=34

b10

I=
{N,M}

S=
{s11}

W=
{15,11}

O=4
ranku
=58

rankd
=34

b11

I=
{N,M}

S=
{s12}

W=
{13,8}

O=4
ranku
=55

rankd
=37

b12

I=
{N,M}

S=
{s13}

W=
{12,8}

O=4
ranku
=55

rankd
=28

b13

I=
{N,M}

S=
{s14}

W=
{16,12}

O=4
ranku
=59

rankd
=28

b14

I=
{N,M}

S=
{s7}

W=
{27,19}

O=3
ranku
=77

rankd
=15

b7

I=
{N,M}

S=
{s8}

W=
{31,21}

O=3
ranku
=76

rankd
=15

b8

I=
{N,M}

S=
{s9}

W=
{16,11}

O=3
ranku
=70

rankd
=17

b9

I=
{N,M}

S=
{s15}

W=
{3,5}

O=5
ranku
=47

rankd
=71

b15

I=
{N,M}

S=
{s16}

W=
{18,13}

O=6
ranku
=38

rankd
=76

b16

I=
{N,M}

S=
{s17}

W=
{11,12}

O=6
ranku
=37

rankd
=76

b17

I=
{N,M}

S=
{s18}

W=
{19,14}

O=6
ranku
=41

rankd
=76

b18

I=
{N,M}

S=
{s19}

W=
{16,13}

O=6
ranku
=37

rankd
=76

b19

I=
{N,M}

S=
{s20}

W=
{17,12}

O=6
ranku
=36

rankd
=76

b20 I=
{N,M}

S=
{s21}

W=
{68,41}

O=6
ranku
=42

rankd
=76

b21

I=
{N,M}

S=
{s22}

W=
{7,11}

O=7
ranku
=25

rankd
=89

b22

I=
{N,M}

S=
{s23}

W=
{14,10}

O=7
ranku
=27

rankd
=90

b23

I=
{N,M}

S=
{s24}

W=
{13,8}

O=7
ranku
=24

rankd
=89

b24

I=
{N,M}

S=
{s25}

W=
{19,13}

O=8
ranku
=14

rankd
=102

b25

I=
{N,M}

S=
{s26}

W=
{14,16}

O=8
ranku
=17

rankd
=100

b26

I=
{N,M}

S=
{s27}

W=
{21,15}

O=8
ranku
=16

rankd
=97

b27

I=
{N,M}

S=
{s28}

W=
{23,15}

O=8
ranku
=16

rankd
=97

b28

I=
{N,M}

S=
{s29}

W=
{1,1}

O=9
ranku

=1
rankd
=117

b29

Fig. 3. WPG of a synthetic example

Section 2={b2,b3,b4,b5,b6,b7,b8,b9,,b10,b11,b12,b13}
Critical path ={b2}

iw1={b3,b4,b5,b6}

iw2={b7,b8,b9}

iw3={b10,b11,b12,b13,b14}

I=
{N,M}

S=
{s2}

W=
{51,69}

O=2 ranku
=116

rankd
=2

b2

I=
{N,M}

S=
{s2}

W=
{16,12}

O=2 ranku
=89

rankd
=2

b3

I=
{N,M}

S=
{s4}

W=
{19,13}

O=2 ranku
=90

rankd
=2

b4

I=
{N,M}

S=
{s5}

W=
{18,12}

O=2 ranku
=88

rankd
=2

b5

I=
{N,M}

S=
{s6}

W=
{20,15}

O=2 ranku
=85

rankd
=2

b6

I=
{N,M}

S=
{s10}

W=
{13,10}

O=4 ranku
=57

rankd
=34

b10

I=
{N,M}

S=
{s11}

W=
{15,11}

O=4 ranku
=58

rankd
=34

b11

I=
{N,M}

S=
{s12}

W=
{13,8}

O=4 ranku
=55

rankd
=37

b12

I=
{N,M}

S=
{s13}

W=
{12,8}

O=4 ranku
=55

rankd
=28

b13

I=
{N,M}

S=
{s14}

W=
{16,12}

O=4 ranku
=59

rankd
=28

b14

I=
{N,M}

S=
{s7}

W=
{27,19}

O=3 ranku
=77

rankd
=15

b7

I=
{N,M}

S=
{s8}

W=
{31,21}

O=3 ranku
=76

rankd
=15

b8

I=
{N,M}

S=
{s9}

W=
{16,11}

O=3 ranku
=70

rankd
=17

b9

Fig. 4. Scheduled WPG of Section 2

242 S.–L. Chu

CPS = {CPS1 , CPS2 , CPS3 , CPS4 , CPS5}
={{CP1 , IWF1}, {CP2 , IWF2}, {CP3 , IWF3}, {CP4 , IWF4}, {CP5 , IWF5}}

CPS1 : /*Section 1*/
CP1={PH(b1)},
 IWF1={φ }

CPS2 : /*Section 2*/
CP2={PH(b2)},
IWF2={iwf1, iwf2, iwf3} ={{PM1(b3), PM2(b4), PM3(b5), PM4(b6)}, {PM1(b7), PM2(b8),

PM3(b9)}, {PM1(b10), PM2(b11), PM3(b12), PM4(b13), PM5(b14)}}
CPS3 : /*Section 3*/

CP3={PH(b15)},
IWF3={φ }

CPS4 : /*Section 4*/
CP4={PM1(b21)},
IWF2={iwf1, iwf2, iwf3} ={{PH(b16), PM1(b17), PM2(b18), PM3(b19), PM4(b20)},

{PH(b22), PM1(b23), PM2(b24)}, {PH(b25), PM1(b26), PM2(b27), PM3(b28)}}
CPS5 : /*Section 5*/

CP5={b29}, IWF5={φ }

Fig. 5. Output of the Swing scheduling algorithm

In Step 7, the execution schedule is generated by "Generate_Schedule()", as
shown in Fig. 5. and Fig. 6 shows the graphical execution schedule. The shaded
blocks the Fig. 5 represent the execution latency. The blank blocks indicate that
the processor is waiting for other processors to synchronize. The bold and dotted
lines determine the point of synchronization of Section and Inner Wavefront
respectively.

time

1

.

.

.

10

.

.

.

20

.

.

.

30

.

.

.

40

.

.

.

50

.

.

.

60

.

.

.

70

.

.

.

80

.

.

.

90

.

.

.

PH PM1 PM2 PM3 PM4 PM5

b1

b2

b3 b4 b5
b6

b7 b8

b9

b10 b11
b12 b13

b14

b15

b21

b29

b17 b16 b18 b19 b20

b22
b23 b24

b25b26 b27 b28

Fig. 6. Graphical execution schedule of the given example

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 243

Sometimes, the execution schedule may occupy more processors than are present in
the architectural configuration. Therefore, Step 8 calls "Modify_schedule()" to modify
the execution schedule as necessary.

4 Experimental Results

The code generated by our Octans system is targeted on our PIM simulator that is
derived from the FlexRAM simulator developed by the IA-COMA Lab. at UIUC
[13]. Table 1 lists the major architectural parameters. In this experiment, the
configuration of one P.Host with many P.Mem processors is modeled to reflect the
benefits of the multiple memory processors.

This experiment utilizes multiple P.Mem processors in the PIM architecture to
improve performance. The evaluated applications include five benchmarks: cg is from
the serial version of NAS; swim is from SPEC95; strsm is from BLAS3; TISI is from
Perfect Benchmark, and fft is from [45].

Table 2 and Fig. 7 summarize the experimental results. “Standard” denotes that the
application is executed in P.Host alone. This experiment concerns a general situation
of a uniprocessor system, and is used to compare speedup. "1-P.Mem” implies that
the application is transformed and scheduled by the simplified Swing Scheduling for
the one-P.Host and one-P.Mem configuration of the PIM architecture. “n-P.Mem”
implies that the application is transformed and scheduled by Swing Scheduling
mechanism for the one P.Host and multiple P.Mem configuration of the PIM
architecture.

Table 2 and Fig. 7 indicate that swim and cg have quite a good speedup when the
Swing Scheduling mechanism is employed because these programs contain many
memory references and few dependence relations. Therefore, the parallelism and
memory access performance can be improved by using more memory processors.
Applying the 1-P.Mem scheduling mechanism can also yield improvements. strsm
exhibits an extremely high parallelism but a rather few memory access, so the Swing
Scheduling mechanism is more suitably adopted than the 1-P.Mem scheduling
mechanism. TISI cannot generate speedup when the 1-P.Mem scheduling mechanism
is applied, since it is a typical CPU bounded program, and involves many
dependencies. The Swing Scheduling mechanism can be suitably used to increase
speedup. Finally, in fft, the program is somewhat computation-intensive and

Table 2. Execution cycles of five benchmarks

SpeedupBench-
mark Standard 1-P.Mem

Scheduling
n-P.Mem
Scheduling 1-P.Mem

Scheduling
n-P.Mem
Scheduling

n(Occupied
P.Mem)

swim 228289321 116669760 52168027 1.96 4.38 6
cg 91111840 51230772 32124287 1.78 2.84 4
strsm 703966766 489967053 187989176 1.44 3.74 5
TISI 133644087 173503404 91098174 0.77 1.47 2
fft 117998621 101841407 110399171 1.16 1.07 2

244 S.–L. Chu

Fig. 7. Execution times of five benchmarks obtained by Standard, 1-P.Mem and n-P.Mem
settings.

sequential, and therefore only a little speedup can be improved after the 1-P.Mem
scheduling mechanism is applied. However, an additional overhead is generated when
the Swing Scheduling mechanism is applied. Accordingly, 1-P.Mem and Swing
scheduling mechanisms are suitable for different situations. Choosing the 1-P.Mem or
Swing scheduling mechanism more heuristically in the scheduling stage of the Octans
system will improve performance.

5 Conclusions

This study proposes a new scheduling mechanism, called Swing Scheduling, with
Octans system for a new class of high-performance chip multiprocessor architectures,
Processor-in-Memory, which consists of a host processor and many memory
processors. The Octans system partitions source code into blocks by statement
splitting; estimates the weight (execution time) of each block, and then schedules each
block to the most suitable processor for execution. Five real benchmarks, swim, TISI,

 Toward to Utilize the Heterogeneous Multiple Processors of the CMP Architecture 245

strsm, cg, and fft were experimentally considered to evaluate the effects of the Swing
Scheduling. In the experiment, the performance was improved by a factor of up to
4.38 while using up to six P.Mems and one P.Host. The authors believe that the
techniques proposed here can be extended to run on DIVA, EXECUBE, FlexRAM,
and other high-performance chip multiprocessor architectures by slightly modifying
the code generator of the Octans system.

Acknowledgements

This work is supported in part by the National Science Council of Republic of China,
Taiwan under Grant NSC 96-2221-E-033 -019-

References

[1] Blume, W., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Petersen, P.,
Pottenger, B., Rauchwerger, L., Tu, P., Weatherford, S.: Effective Automatic
Parallelization with Polaris. International Journal of Parallel Programming (May 1995)

[2] Chu, S.L.: PSS: a novel statement scheduling mechanism for a high-performance SoC
architecture. In: Proceedings of Tenth International Conference on Parallel and
Distributed Systems, pp. 690–697 (July 2004)

[3] Crisp, R.: Direct Rambus Technology: the New Main Memory Standard. In: Proceedings
of IEEE Micro, pp. 18–28 (November 1997)

[4] Hall, M., Anderson, J., Amarasinghe, S., Murphy, B., Liao, S., Bugnion, E., Lam, M.:
Maximizing Multiprocessor Performance with the SUIF Compiler. IEEE Computer
(December 1996)

[5] Hall, M., Kogge, P., Koller, J., Diniz, P., Chame, J., Draper, J., LaCoss, J., Granacki, J.,
Brockman, J., Srivastava, A., Athas, W., Freeh, V., Shin, J., Park, J.: Mapping Irregular
Applications to DIVA, a PIM-Based Data-Intensive Architecture. In: Proceedings of 1999
Conference on Supercomputing (January 1999)

[6] Judd, D., Yelick, K.: Exploiting On-Chip Memory Bandwidth in the VIRAM Compiler.
In: Proceedings of 2nd Workshop on Intelligent Memory Systems, Cambridge, MA
(November 12, 2000)

[7] Kang, Y., Huang, W., Yoo, S., Keen, D., Ge, Z., Lam, V., Pattnaik, P., and Torrellas, J.:
FlexRAM: Toward an Advanced Intelligent Memory System. In: Proceedings of
International Conference on Computer Design (ICCD), Austin, Texas (October 1999)

[8] Landis, D., Roth, L., Hulina, P., Coraor, L., Deno, S.: Evaluation of Computing in
Memory Architectures for Digital Image Processing Applications. In: Proceedings of
International Conference on Computer Design, pp. 146–151 (1999)

[9] Oskin, M., Chong, F.T., Sherwood, T.: Active Page: A Computation Model for Intelligent
Memory. Computer Architecture. In: Proceedings of the 25th Annual International
Symposium on Computer Architecture, pp. 192–203 (1998)

[10] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Tomas,
R., Yelick, K.: A Case for Intelligent DRAM. IEEE Micro, pp. 33-44 (March/April 1997)

[11] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in
Fortran 77. Cambridge University Press, Cambridge (1992)

246 S.–L. Chu

[12] Snip, A. K., Elliott, D.G., Margala, M., Durdle, N.G.: Using Computational RAM for
Volume Rendering. In: Proceedings of 13th Annual IEEE International Conference on
ASIC/SOC, pp. 253 –257 (2000)

[13] Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: WaveScalar. MICRO-36
(December 2003)

[14] Veenstra, J., Fowler, R.: MINT: A Front End for Efficient Simulation of Shared-Memory
Multiprocessors. In: Proceedings of MAS-COTS 1994, pp. 201–207 (January 1994)

[15] Wang, K.Y.: Precise Compile-Time Performance Prediction for Superscalar-Based
Computers. In: Proceedings of ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, pp. 73–84 (1994)

Consensus-Driven Distributable Thread

Scheduling in Networked Embedded Systems

Jonathan S. Anderson1, Binoy Ravindran1, and E. Douglas Jensen2

1 Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg Virginia, 24061, USA

{andersoj,binoy}@vt.edu
2 The MITRE Corporation

Bedford, Massachusetts, 01730, USA
jensen@mitre.org

Abstract. We demonstrate a consensus utility accrual scheduling al-
gorithm for distributable threads with run-time uncertainties in execu-
tion time, arrival models, and node crash failures. The DUA-CLA al-
gorithm’s message complexity (O(fn)), lower time complexity bound
(O(D+fd+nk)), and failure-free execution time (O(D+nk)) are estab-
lished, where D is the worst-case communication delay, d is the failure
detection bound, n is the number of nodes, and f is the number of
failures. The “lazy-abort” property is shown — abortion of currently-
infeasible tasks is deferred until timely task completion is impossible.
DUA-CLA also exhibits “schedule-safety” — threads proposed as feasible
for execution by a node which fails during the decision process will not
cause an otherwise-feasible thread to be excluded. These properties mark
improvements over earlier strategies in common- and worst-case perfor-
mance. Quantitative results obtained from our Distributed Real-Time
Java implementation validate properties of the algorithm.

1 Introduction

1.1 Dynamic Distributed Real-Time Systems

Distributed real-time systems such as those found in industrial automation,
net-centric warfare (NCW), and military surveillance must support for timely,
end-to-end activities. Timeliness includes application-specific acceptability of
end-to-end time constraint satisfaction, and of the predictability of that satis-
faction. These activities may include computational, sensor, and actuator steps
which levy a causal ordering of operations, contingent on interactions with phys-
ical systems. Such end-to-end tasks may be represented in a concrete distributed
system as: chains of (a) nested remote method invocations; (b) publish, receive
steps in a publish-subscribe framework; (c) event occurrence and event handlers.

Dynamic Systems. The class of distributed real-time systems under
consideration here, typified by NCW applications [1], is characterized by dynam-
ically uncertain execution properties due to transient and persistent local over-
loads, uncertain task arrival patterns and rates, uncertain communication delays,

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 247–260, 2007.
c© IFIP International Federation for Information Processing 2007

248 J.S. Anderson, B. Ravindran, and E.D. Jensen

node failures, and variable resource demands. However, while local activities in
these systems may have timeliness requirements with sub-second magnitudes,
end-to-end tasks commonly have considerably larger magnitudes of milliseconds
to multiple minutes. Despite larger timeliness magnitudes, these activities are
mission-critical and require the strongest assurances possible under the circum-
stances.

End-to-End Context. In order to make resource allocation decisions in keep-
ing with end-to-end activity requirements, some representation of these param-
eters and the current state of the end-to-end activity must be provided. The
distributable thread abstraction provides such an extensible model for reason-
ing about end-to-end activity behavior. Distributable threads (hereafter, sim-
ply threads) appeared first in the Alpha OS [2] and were adopted in Mach
3.0 [3] and Mk7.3 [4]. Recently, this abstraction has served as the basis for
RT-CORBA 2.0 [5] and Sun’s emerging Distributed Real-Time Specification for
Java (DRTSJ) [6], where threads form the primary programming abstraction
for concurrent, distributed activities.

Time Constraints for Overloaded Systems. In underloaded systems it
is sufficient to provide an assessment of the urgency of an activity, typically
in the form of a deadline. For these scenarios, known-optimal algorithms (e.g.,
EDF [7]) exist to meet all deadlines (given some restrictions.) When a system
is overloaded, resource managers must decide which subset of activities to com-
plete, and with what degree of timeliness.

This requires the system to be aware of the relative importances activities.
We consider the time/utility function (TUF) timeliness model [8], in which the
utility of completing an activity is given as a function of its completion time.
This paper is confined to downward step-shaped TUFs, wherein an activity’s
utility is a constant Ui when the task is completed before a deadline t; no utility
is gained for tasks after their deadline.

Utility Accrual Scheduling. When time constraints are expressed as TUFs,
resource allocation decisions may be expressed in terms of utility accrual (UA)
criteria. A common UA criteria is maximize summed utility, in which resource
allocation decisions are made such that the total summed utility accrued is max-
imized. Several such UA scheduling and sequencing heuristics have been inves-
tigated (e.g., [9,10]). Such algorithms for activities described by downward-step
TUFs equate to EDF during underload conditions, achieving optimum schedules.
During overloads, these algorithms favor higher-utility activities over those with
lower-utility. Resulting “best-effort” adaptive behavior exhibits graceful degra-
dation as load increases, shedding low utility work irrespective of its urgency.

1.2 Contributions and Related Work

The central contributions of this paper are: (a) the Distributed Utility Accrual
- Consensus-based Lazy Abort (DUA-CLA) scheduling algorithm; (b) bounds on
DUA-CLA’s timeliness, message efficiency, and optimality behavior in a variety

Consensus-Driven Distributable Thread Scheduling 249

of conditions; (c) implementation of DUA-CLA in the DRTSJ middleware; and
(d) experimental results illustrating the validity of the theoretical results.

This paper presents significant progress on work published by the authors
in [11], expanding the theoretical performance envelope in two ways: First, the
“lazy-abort” property is introduced (Theorem 6), relaxing conservative task-
abortion behavior present in earlier work, while maintaining asymptotic execu-
tion times and performance assurances. Second, DUA-CLA is shown (see Theorem
7) to be “schedule-safe” in the presence of failures during distributed reschedul-
ing. This property mitigates pessimism in feasibility assessments due to failures
which results in unnecessary task rejection during partial failure.

The DUA-CLA algorithm represents a unique approach to distributable thread
scheduling in two respects. First, it unifies scheduling with a fault-tolerance strat-
egy. Previous work on distributable thread scheduling [12, 13] addresses only
the scheduling problem, with fault tolerance dealt with by separate thread in-
tegrity protocols [12,13,14]. While this provides admirable separation of concerns,
scheduling and integrity operations become tightly intertwined in distributed
systems where failures are prevalent.

Second, DUA-CLA takes a collaborative approach to the scheduling problem,
rather than requiring nodes independently to schedule tasks without knowledge
of other nodes’ states. Global scheduling approaches wherein a single, centralized
scheduler makes all scheduling decisions have been proposed and implemented.
DUA-CLA takes a via media, improving independent node scheduler decision-
making with partial knowledge of global system state.

Little work has been done on collaborative distributed scheduling for real-
time systems. The RT-CORBA 2.0 specification [5] envisions such an approach,
enumerating it as the third of its four “cases” for distributed scheduling. Poledna,
et. al. consider a consensus-based sequencing approach for operations on replicas
to ensure consistency [15]. In a similar vein, Gammar and Kammoun present a
consensus algorithm for ensuring database properties such as serializability and
consistency in real-time transactional systems [16]. None of these directly address
the question of end-to-end causal activity scheduling.

2 The DUA-CLA Algorithm

2.1 Models

Distributable Thread Abstraction. Threads execute in local and remote
objects by location-independent invocations and returns. A thread begins its
execution by invoking an object operation. The object and the operation are
specified when the thread is created. The portion of a thread executing an object
operation is called a thread segment. Thus, a thread can be viewed as being
composed of a concatenation of thread segments.

A thread’s initial segment is called its root and its most recent segment is
called its head. The head of a thread is the only segment that is active. A thread
can also be viewed as a sequence of sections, where a section consists of all

250 J.S. Anderson, B. Ravindran, and E.D. Jensen

contiguous thread segments on a node. Further details of the thread model can be
found in [6,5,13]. Execution time estimates (possibly inaccurate) of the sections
of a thread areknown when the thread arrives.The application is thus comprised
of a set of threads, denoted T = {T1, T2, T3, . . .}, with sections [Si

1, S
i
2, . . . , S

i
k].

Timeliness Model. We specify the time constraint of each thread using a TUF.
A thread Ti’s unit downward step TUF is denoted as Ui (t), which has a initial
time Ii, which is the earliest time for which the TUF is defined, a termination
time Xi, which, for a downward step TUF, is its discontinuity point, and a
constant utility Ut. Ui (t) > 0, ∀t ∈ [Ii, Xi] and Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

System and Failure Models. Our system and failure models follow that
of [17]. We consider a system model where a set of processing nodes are de-
noted by the totally-ordered set Π = {1, 2, . . . , n}. We consider a single hop
network model (e.g., a LAN), with nodes interconnected through a hub or a
switch. The system is assumed to be (partially) synchronous in that there exists
an upper bound D on the message delivery latency. A reliable message transmis-
sion protocol is assumed; thus messages are not lost or duplicated. Node clocks
are assumed to be perfectly synchronized, for simplicity in presentation, though
DUA-CLA can be extended to clocks that are nearly synchronized with bounded
drift rates. As many as fmax nodes may crash arbitrarily. The actual number of
node crashes is denoted as f ≤ fmax. Nodes that do not crash are called correct.

Each node is assumed to be equipped with a perfect failure detector [18] that
provides a list of nodes deemed to have crashed. If a node q belongs to such a list
of node p, then node p is said to suspect node q. The failure detection time [19]
d ≤ D is bounded. Similar to [17], for simplicity in presentation, we assume that
D is a multiple of d. Failure detectors are assumed to be (a) accurate—i.e., a
node suspects node q only if q has previously crashed; and (b) timely—i.e., if
node q crashes at time t, then correct nodes permanently suspect q within t+ d.

2.2 Rationale and Design

Our primary scheduling objective is to maximize total utility accrued by all the
threads Further, the algorithm must provide assurances on the satisfaction of
thread termination times in the presence of (up to fmax) crash failures. Moreover,
the algorithm must exhibit the UA best-effort property described in Section 1.

Definition 1 (Current and Future Head Nodes). The current head node
of a thread Ti is the node where Ti is currently executing (i.e., where Ti’s head
is currently located). The future head nodes of a thread Ti are those nodes where
Ti will make remote invocations in the future.

The crash of a node p affects other nodes in the system in three possible ways:
(a) p may be the current head node of one or more threads; (b) p may be the
future head node of one or more threads; and (c) p may be the current and
future head node of one or more threads.

If p is only the current head node of one or more threads, then all its future
head nodes are immediately affected when p crashes, since they can now release

Consensus-Driven Distributable Thread Scheduling 251

allocated processor time. This implies that when a node p crashes, a system-
wide decision must be made regarding which subset of threads are eligible for
execution in the system—referred to as an execution-eligible thread set. This de-
cision must be made in the presence of failures since nodes may crash while that
decision is being made. We formulate this problem as a consensus problem [20]
with the following properties: (a) If a correct node decides an eligible thread
set T , then some correct node proposed T ;1 (b) Nodes (correct or not) do not
decide different execution-eligible sets (uniform agreement); (c) Every correct
node eventually decides (i.e., termination).

How can a node propose a set of threads which are eligible for execution? The
task model is dynamic and future scheduling events cannot be considered at a
scheduling event.2 Thus, the execution-eligible thread set must be constructed
exploiting the current system knowledge. Since the primary scheduling objec-
tive is to maximize the total thread accrued utility, a reasonable heuristic for
determining the execution-eligible thread set is a “greedy” strategy: Favor “high
return” threads over low return ones, and complete as many of them as possible
before thread termination times.

The potential utility that can be accrued by executing a thread section on a
node defines a measure of that section’s “return on investment.” We measure
this using a metric called the Potential Utility Density (or PUD). On a node, a
thread section’s PUD measures the utility that can be accrued per unit time by
immediately executing the section on the node.

Thus, each node iteratively examines thread sections in its local ready queue
for potential inclusion in a feasible (local) schedule in order of decreasing section
PUDs. For each section, the algorithm examines whether that section can be
completed early enough, allowing successive sections of the thread to also be
completed early enough, to allow the entire thread to meet its termination time.
We call this property the feasibility of a section. Infeasible sections are not
included in the working schedule. This approach requires a decomposition of
the thread’s deadline, which is computed at arrival time using the following
conservative approach: The section termination times of a thread Ti with k
sections are given by:

Si
j .tt =

{
Ti.tt j = k

Si
j+1.tt − Si

j+1.ex − D 1 ≤ j ≤ k − 1
(1)

where Si
j .tt denotes section Si

j ’s termination time, Ti.tt denotes Ti’s termination
time, and Si

j .ex denotes the estimated execution time of section Si
j .

Thus, the local schedule constructed by a node p is an ordered list of a subset
of sections in p’s ready queue that can be feasibly completed, and will likely re-
sult in high local accrued utility (due to the greedy nature of the PUD heuristic).
The set of threads, say Tp, of these sections included in p’s schedule is proposed

1 This property is stronger than the conventional Uniform Validity property, and
therefore requires additional constraints.

2 A “scheduling event” is any event that invokes the scheduling algorithm.

252 J.S. Anderson, B. Ravindran, and E.D. Jensen

by p as those that are eligible for system-wide execution, from p’s standpoint.
However, not all threads in Tp may be eligible for system-wide execution, because
the current and/or future head nodes of some of those threads may crash. Con-
sequently, the set of threads that are eligible for system-wide execution is that
subset of threads with no absent sections from their respective current and/or
future head node schedules.

2.3 Algorithm Description

The DUA-CLA algorithm that we present is derived from Aguilera et. al ’s time-
optimal, early-deciding, uniform consensus algorithm [17]. A pseudo-code de-
scription of DUA-CLA on each node i is shown in Algorithm 1.

Algorithm 1. DUA-CLA: Code for each node i

input: σi
r ; output: σi; // σi

r: unordered ready queue of node i’s sections; σi:1
schedule

Initialization: Σi = ∅; ωi = ∅; maxi = 0;2
σi = ConstructLocalSchedule(σi

r);3
send(σi, i) to all;4
upon receive (σj , j) until 2D do // After time 2D, consensus begins5

Σi = Σi ∪ σj ;6
ωi = DetermineSystemWideFeasibleThreadSet(Σi);7
upon receive (ωj , j) do8

if j > maxi then maxi = j; ωi = ωj;9
at time (i − 1)d do10

if suspect j for any j : 1 ≤ j ≤ i − 1 then11
ωi = UpdateFeasibleThreadSet(Σi);12
send(ωi, i) to all;13

at time (j − 1)d + D for every j : 1 ≤ j ≤ n do14
if trust j then decide ωi;15

UpdateSectionSet(ωi, σi
r);16

σi = ConstructLocalSchedule(σi
r);17

return σi;18

The algorithm is invoked at a node i at the scheduling events including 1)
creation of a thread at node i and 2) inclusion of a node k into node i’s suspect
list by i’s failure detector.

When invoked, a node i first constructs a local schedule (ConstructLocal-
Schedule()), sending this schedule (σi, i) to all nodes. Recipients respond im-
mediately by constructing local section schedules and sending them to all nodes.
When node i receives a schedule (σj , j), it includes that schedule into a schedule
set Σi. Thus, after 2D time units, all nodes have a schedule set containing all
schedules received.

A node i then determines its consensus decision, computed from Σi as the
subset of threads with no sections absent from node schedules in Σi. Node i uses
a variable ωi to maintain its consensus decision.

The algorithm divides time in rounds of duration d, where the ith round
corresponds to the time interval [(i − 1)d, id). At the beginning of round i,
node i checks whether it suspects any of the nodes with smaller node ID. If so,
it computes a new ωi using UpdateFeasibleThreadSet() (see Algorithm 2),

Consensus-Driven Distributable Thread Scheduling 253

sending (ωi, i) to all nodes. Note that the messages sent in a round could be
received in a higher round since D > d.

Algorithm 2. UpdateFeasibleThreadSet
input: ωi; output: ω′

i; // ω′
i: feasible section set with sections on failed1:

nodes removed

initialize: ω′
i = ωi2:

for each section St
j ∈ ωi do3:

if suspect j then ω′
i = ω′

i\St
j;4:

return σ′
i;5:

Each node i maintains a variable maxi that contains the largest node ID from
which it has received a consensus proposal. When a node i receives a proposed
execution-eligible thread set (ωj , j) that is sent from another node j with an ID
that is larger than maxi (i.e., j > maxi), node i updates its consensus decision
to thread set ωj and maxi to j. At times (j − 1)d + D for j = 1, . . . , n, node i is
guaranteed to have received potential consensus proposals from node j. At these
times, i checks whether j has crashed; if not, i arrives at its consensus decision
on the thread set ωi.

Node i then updates its ready queue σi
r by removing those sections whose

threads are absent in the consensus decision ωi. The updated ready queue is used
to construct a new local schedule σi, the head section of which is subsequently
dispatched for execution.

2.4 Constructing Section Schedules

We now describe the algorithm ConstructLocalSchedule() and its auxiliary
functions. Since this algorithm is not a distributed algorithm per se, we drop
the suffix i from notations σi

r (input unordered list) and σi (output schedule),
and refer to them as σr and σ, respectively. Sections are referred to as Si, for
i = 1, 2, . . .

Algorithm 3 describes the local section scheduling algorithm. When invoked
at time tcur, the algorithm first checks the feasibility of the sections. First, if
the earliest conceivable execution (the current time) of segment will still miss
the termination time, the algorithm aborts the section. If the earliest predicted
completion time of a section is later than its termination time, it is removed
from this round’s consideration. The sections considered for insertion into σ
in order of decreasing PUD, which is maintained in order of non-decreasing
section termination times. After inserting a section Si, the schedule σ is tested for
feasibility.3 If σ becomes infeasible, Si is removed. After examining all sections,
the ordered list σ is returned.

Algorithm 3 includes those sections likely to result in high total utility (due to
the greedy nature of the PUD heuristic). Further, since the invariant of schedule
3 A schedule σ is feasible if the predicted completion time of each section Si ∈ σ

does not exceed Si’s termination time. For explicit pseudo-code for a linear-time
implementation, see Algorithm 3 in [11].

254 J.S. Anderson, B. Ravindran, and E.D. Jensen

Algorithm 3. ConstructLocalSchedule()
input: σr ; output: σ;1:
Initialization: t := tcur, σ := ∅;2:
for each section Si ∈ σr do3:

if current time + Si.ex > Si.tt then4:
abort(Si)

if Si
j−1.tt + D + Si

j .ex > Si
j.tt then5:

σr = σr\Si;6:
else

Si.PUD = Ui (t + Si.ex) /Si.ex;7:

σtmp :=sortByPUD(σr);8:
for each section Si ∈ σtmp from head to tail do9:

if Si.PUD > 0 then10:
Insert(Si, σ, Si.tt);11:
if Feasible(σ)=false then12:

Remove(Si, σ, Si.tt);13:

else break;14:

return σ;15:

feasibility is preserved throughout the examination of sections, the output sched-
ule is always a feasible schedule. During underloads, schedule σ will always be
feasible in (Algorithm 3), the algorithm will never reject a section, and will pro-
duce a schedule which is the same as that produced by EDF (where deadlines are
equal to section termination times). This schedule will meet all section termina-
tion times during underloads. During overloads, one or more low-PUD sections
will not be included. These rejected sections are less likely to contribute a total
utility larger than that contributed by accepted sections. The asymptotic com-
plexity of Algorithm 3 is dominated by the nested loop with calls Feasible(),
resulting in a cost of O(k2).

3 Algorithm Properties

We now establish DUA-CLA’s timeliness and execution time properties in both
absence and presence of failures. We first describe DUA-CLA’s timeliness property
under crash-free runs. The proof of this and some future results are elided for
space, but may be found in the full version of the paper.4 [17]

Theorem 1. If all nodes are underloaded and no nodes crash (i.e., fmax = 0),
DUA-CLA meets all thread termination times, yielding optimum total utility.

Theorem 2. DUA-CLA achieves (uniform) consensus (i.e., uniform validity,
uniform agreement, termination) on the system-wide execution-eligible thread
set in the presence of up to fmax failures.

Theorem 3. DUA-CLA’s time complexity is O(D + fd+nk) and message com-
plexity is O(fn).
4 Full paper available at: http://www.real-time.ece.vt.edu/euc07.pdf

http://www.real-time.ece.vt.edu/euc07.pdf

Consensus-Driven Distributable Thread Scheduling 255

Theorem 4. If n−f nodes (i.e., correct nodes) are underloaded, then DUA-CLA
meets the termination times of all threads in its execution-eligible thread set.

To establish the algorithm’s best-effort property (Section 1), we define NBI:

Definition 2. Consider a distributable thread scheduling algorithm A. Let a
thread Ti be created at a node at a time t with the following properties: (a) Ti

and all threads in A’s execution-eligible thread set at time t are not feasible
(system-wide) at t, but Ti is feasible just by itself; and (b) Ti has the highest
PUD among all threads in A’s execution-eligible thread set at time t. Now, A’s
non-best-effort time interval, denoted NBIA, is defined as the duration of time
that Ti will have to wait after t, before it is included in A’s execution-eligible
thread set. Thus, Ti is assumed to be feasible at t + NBIA.

We now describe the NBI of DUA-CLA and other distributable thread scheduling
UA algorithms including DASA [9], LBESA [10], and AUA [12] under crash-free
runs.

Theorem 5. Under crash-free runs (i.e., fmax = 0), the worst-case NBI of
DUA-CLA is 3D + δ, DASA’s and LBESA’s is δ, and that of AUA is +∞.

In order to further characterize the algorithm’s best-effort behavior in the pres-
ence of failures, we introduce definitions for Lazy-Abort behavior and Schedule
Safety:

Definition 3. A collaborative distributable thread scheduling algorithm is said
to Lazy-Abort if it delays abortion of a segment until it would be infeasible if it
were the only thread in the system.

Theorem 6. DUA-CLA demonstrates Lazy-Abort behavior. Sections are only
aborted in ConstructLocalSchedule() (Algorithm 3), and then only when the
segment would exceed its deadline if it were executed immediately. If this is the
case, the Lazy-Abort condition is met. Consequently, transient perceived over-
loads which resolve through node failures or pessimistic execution time evalua-
tions do not cause overly-aggressive abortion of future threads.

Definition 4. A consensus-based distributable thread scheduling algorithm is
said to exhibit Schedule Safety if it never allows the presence of a remote segment
Sf in the global feasible set to render infeasible a local segment Sl if the node
hosting Sf is known to have failed during consensus.

Theorem 7. DUA-CLA demonstrates schedule-safety despite failures during the
distributed scheduling event. The algorithm evaluates feasibility of local segments
on node i based on the section set updated in the call to UpdateSectionSet()
in Algorithm 1. If any nodes j with 1 < j < i is suspected by i, then i removes
all segments on j from ωi. (Furthermore, at time D + fd, all nodes will receive
this reduced proposed section set.) Therefore, no locally feasible thread segments
will be rendered infeasible by erroneous inclusion of segments from j.

256 J.S. Anderson, B. Ravindran, and E.D. Jensen

4 Implementation Experience

A major objective this work was to bridge the gap between theoretical consid-
eration and the practicalities of implementation. In particular, we constructed
experiments to uncover time complexity constants implicit in Theorem 3. Single-
node task sets are compared to distributed sets in the presence of underloads
as well as overloads, in failure-free as well as the f = fmax case. We explore
algorithm overhead by comparing well-known single-node scheduling disciplines
to a degenerate case of our collaborative approach.

DUA-CLA was implemented on the DRTSJ reference implementation (DRTSJ-
RI), consisting of Apogee’s Aphelion-based DRTSJ-compliant JVM, executing
on Pentium-class machines with Ubuntu Edgy Linux (kernel 2.6.17 with real-
time extensions). Nodes were connected via 10Mbps Ethernet through a Linux-
based dynamic switch, configured with the netem network emulation module [21]
to introduce controlled communication delay. Failure detector traffic, experimen-
tal control traffic, and normal communication traffic were allocated to priority
bands configured to simulate communication delays consonant with the system
model described in Section 2.1, resulting in particular in the relationship D � d
between common communication latency and failure detection latency.

A heartbeat fast-failure detector was implemented as a small, pure RTSJ
application [22] with the highest execution eligibility on the node, and not pre-
emptible by the garbage collector. A heartbeat period of 1ms and evaluation
period of 3ms were chosen to match the magnitudes of task execution times.
Extensive measurements of latency d and application message delay D were
made across a range of CPU and network utilization, with no failure detection
latency greater than 2.98 milliseconds; therefore we use d = 2.98ms for the
following DUA-CLA experiments. Similarly, we measured a worst-case message
delay D ≈ 69.87ms. Both latencies are stable across a range of CPU utilization,
closely approximating a perfect fast failure detector.

With this detector, the DUA-CLA algorithm was implemented on top of the
DRTSJ Metascheduler, a pluggable scheduling framework enabling user-space
scheduling implementations in DRTSJ [6], and previously on QNX [23].

Our experiments took place in the testbed described above, with one DRTSJ-
compliant JVM instantiated on each node. Node clocks were synchronized using
NTP [24]. The dynamic switch was configured to insert normally-distributed
communication delay in application communication traffic. All application com-
munication was via UDP, with reliable messaging provided by the application.

Local Scheduler Performance. In order to establish a baseline for assessing
the performance of our scheduler implementation, we compared DUA-CLA to
a variety of other scheduling algorithms. In these experiments, each submitted
thread consisted of a single segment to be executed on the local node. Since
no remote segments appeared in the ready set, no remote scheduling event was
triggered and DUA-CLA is functionally equivalent to Clark’s DASA algorithm.

Figures 1(a) and 1(b) illustrate deadline satisfaction performance of some UA
and non-UA scheduling policies. We use Deadline Satisfaction Ratio (DSR), the

Consensus-Driven Distributable Thread Scheduling 257

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Processor Utilization (Demand)

RMA
EDF

MLLF
DASA

DUA-CLA

(a) Deadline Satisfaction (Wide)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.9 1 1.1 1.2 1.3

D
ea

dl
in

e
S

at
is

fa
ct

io
n

R
at

io
 (

D
S

R
)

Processor Utilization (Demand)

RMA
EDF

MLLF
DASA

DUA-CLA

(b) Deadline Satisfaction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Processor Utilization (Demand)

RMA
EDF

MLLF
DASA-ND
DUA-CLA

(c) Local Accrued Utility

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

D
ea

dl
in

e
M

is
s

Lo
ad

 (
D

M
L)

 P
er

ce
nt

 U
til

iz
at

io
n

Mean Task (Section) Execution Time (ms)

RMA
EDF

MLLF
DASA

DUA-CLA

(d) Local Deadline Miss Load

Fig. 1. Local Scheduler Performance: Deadline Satisfaction, AUR, and DML

ratio of jobs which satisfy their deadline to the total number of jobs released. In
the case of this non-distributed experiment, a job is exactly equivalent to a thread
segment. A collection of 5 periodic threads were created with relatively-prime
periods and random phase offsets. Mean execution time for each job release was
varied producing processor demands ranging from 0 to 200%.

The schedulers presented here include Rate Monotonic Analysis (RMA),
Earliest Deadline First, Modified Least-Laxity First (MLLF), Dependent
Activity Scheduling Algorithm (DASA), and DUA-CLA. Of these, only DASA and
DUA-CLA are utility accrual algorithms. Each algorithm was implemented in the
Metascheduler, and each was run with an identical task set for each utilization.

Figure 1(b) provides a detailed look at the “deadline-miss load” region from
Figure 1(a), the utilization range at which the scheduling policies begin miss-
ing activity deadlines. Theoretically, each of the schedulers shown (with the
exception of RMA) should obtain 100% DSR up to 100% load. However, due
to middleware overhead activities miss deadlines at lower CPU utilizations. Un-
derstanding this overhead as we consider more complex scheduling policies is
critical to engineering systems which appropriately trade off scheduling “intelli-
gence” against the additional overhead incurred by more complex policies.

Figure 1(c) captures scheduler performance measured against the UA metric
Accrued Utility Ratio (AUR). AUR is the ratio of the accrued utility (sum of
the Ui for all completed jobs) to the utility available. Since we have chosen
unit-downward step TUFs for these experiments, the AUR and DSR are similar

258 J.S. Anderson, B. Ravindran, and E.D. Jensen

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Maximum Processor Utilization (Demand)

3-Sections Periodic Threads
Local Periodic Threads

(a) AUR for 3-Segment Threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
cc

ru
ed

 U
til

ity
 R

at
io

 (
A

U
R

)

Maximum Processor Utilization (Demand)

3-Section Periodic Threads
3-Section Periodic Threads (failures)

Local Periodic Threads

(b) AUR with f = fmax = 0.2n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

D
ea

dl
in

e
M

is
s

Lo
ad

 (
D

M
L)

 P
er

ce
nt

 U
til

iz
at

io
n

Mean Task (Section) Execution Time (ms)

Communication
 Delay (D)

Delay (2D) Delay (3D)

1 Segment Threads
3 Segment Threads

3 Segment Threads, 20% Failures

(c) Deadline Miss Load for DUA-CLA

Fig. 2. Distributed Scheduler Performance

metrics, with AUR appearing as a weighted form of the DSR, with weights Ui.
The reader will note that, while Figures 1(a) and 1(b) indicate that the non-UA
policies like RMA sometimes outperform DASA and DUA-CLA in the DSR metric
during overloads, Figure 1(c) shows us that this is because RMA is dropping the
“wrong” tasks, while the UA policies favor high-utility tasks. It is precisely this
behavior we wish to explore in the distributed case, in particular understanding
the additional overhead incurred.

Finally, Figure 1(d) characterizes scheduler overhead for each policy by mea-
suring Deadline Miss Load (DML). For each data point, a task execution time
(the plot’s x-axis) was fixed for every job during a single run. Periods of each pe-
riodic task were varied, measuring the resulting utilization and deadline satisfac-
tion. The DML (the y-axis) is that greatest utilization for which the scheduling
policy was able to meet all deadlines. The theoretical (zero-overhead) behavior
during underload for each policy is a DML of 1.0: these policies should never
miss a deadline until the CPU is saturated.

Distributed Scheduler Performance. Our final set of experiments sought
to establish the concrete behavior of the DUA-CLA algorithm for qualitative
comparison to local scheduling approaches, for validation of the theoretical re-
sults above, and to investigate execution timescales for which consensus thread
scheduling is appropriate. In each trial, each three-segment periodic thread orig-
inates on a common origin node with a short segment, makes an invocation onto
one of many server nodes to execute a second segment, then returns to the origin

Consensus-Driven Distributable Thread Scheduling 259

node to complete in a final segment. We fix the periods, and vary the execution
times to produce the utilizations in Figure 2.

In Figure 2(a), we compare the AUR of a collection of one-segment (local)
threads to a collection of three-segment threads. As can be seen from the plot, the
penalty incurred by collaboration is significant, but the scheduling policy con-
tinues to accrue utility through 1.8 fractional utilization. Furthermore, Theorem
1 is borne out by the underloaded portion of Figure 2(a), modulo scheduling
overhead. This overhead is explored in detail in the discussion of Figure 2(c).

The behavior of DUA-CLA in the presence of failures is shown in Figure 2(b),
wherein we fail fmax nodes. Again, the performance of the scheduler suffers, but
as shown in Theorem 4, our implementation meets the termination times for all
threads remaining on correct nodes.

Finally, we investigate overhead incurred by DUA-CLA across a selection of
mean task execution times. Figure 2(c) demonstrates the expected penalty paid
in terms of DML for conducting collaborative scheduling. It is clear that the DML
for tasks with execution times less than 3D suffers because this is the minimal
communication delay required to accept a thread’s segments for execution.

5 Conclusions and Future Work

The preliminary investigation of consensus-driven collaborative scheduling ap-
proach described in this work may be extended in a variety of ways. In particular,
algorithmic support for shared resources, deadlock detection and resolution, and
quantitative assurances during overload represent worthwhile theoretical ques-
tions. Furthermore, improved implementations investigating real-world behavior
under failures and with non-trivial abort handling are suggested by the results
presented here. An exhaustive look at the practical message complexity would
enable broad-based analysis of algorithm design and implementation trade-offs
between time complexity and overload schedule quality.

References

1. CCRP: Network centric warfare, www.dodccrp.org/ncwPages/ncwPage.html
2. Northcutt, J.D., Clark, R.K.: The Alpha operating system: Programming model.

Archons Project Tech. Report 88021, Dept. of Computer Science, Carnegie Mellon,
Pittsburgh, PA (February 1988)

3. Ford, B., Lepreau, J.: Evolving Mach 3.0 to a migrating thread model. In: USENIX
Technical Conference, pp. 97–114 (1994)

4. Open Group: MK7.3a Release Notes. Open Group Research Institute, Cambridge,
Mass (October 1998)

5. OMG: Real-time CORBA 2.0: Dynamic scheduling. Technical report, Object
Management Group (September 2001)

6. Anderson, J., Jensen, E.D.: The distributed real-time specification for Java: Status
report. In: JTRES (2006)

7. Chetto, H., Chetto, M.: Some results of the earliest deadline scheduling algorithm.
IEEE Transactions on Software Engineering 15(10), 466–473 (1989)

www.dodccrp.org/ncwPages/ncwPage.html

260 J.S. Anderson, B. Ravindran, and E.D. Jensen

8. Jensen, E.D., et al.: A time-driven scheduling model for real-time systems. In:
RTSS, pp. 112–122 (December 1985)

9. Clark, R.K.: Scheduling Dependent Real-Time Activities. PhD thesis, CMU (1990)
10. Locke, C.D.: Best-Effort Decision Making for Real-Time Scheduling. PhD thesis,

CMU CMU-CS-86-134 (1986)
11. Ravindran, B., Anderson, J.S., Jensen, E.D.: On distributed real-time scheduling

in networked embedded systems in the presence of crash failures. In: Proceedings
of SEUS 2007 (May 2007)

12. Curley, E., Anderson, J.S., et al.: Recovering from distributable thread failures
with assured timeliness in real-time distributed systems. In: SRDS, pp. 267–276
(2006)

13. Northcutt, J.D.: Mechanisms for Reliable Distributed Real-Time Operating Sys-
tems — The Alpha Kernel. Academic Press, London (1987)

14. Goldberg, J., Greenberg, I., et al.: Adaptive fault-resistant systems. Tech-
nical report, SRI Int’l (January 1995), http://www.csl.sri.com/papers/
sri-csl-95-02/

15. Poledna, S., Burns, A., Wellings, A., Barrett, P.: Replica determinism and flexible
scheduling in hard real-time dependable systems. IEEE ToC (2) (February 2000)

16. Gammar, S.M., Kamoun, F.: A comparison of scheduling algorithms for real time
distributed transactional systems. In: Proc. of 6th IEEE CS Workshop on Future
Trends of Distributed Computing Systems, pp. 257–261 (October 1997)

17. Aguilera, M.K., Lann, G.L., Toueg, S.: On the impact of fast failure detectors on
real-time fault-tolerant systems. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508,
pp. 354–370. Springer, Heidelberg (2002)

18. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. JACM 43(2), 225–267 (1996)

19. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of failure detectors.
IEEE ToC 51(5), 561–580 (2002)

20. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
21. NetEm: Netem Wiki, http://linux-net.osdl.org/index.php/Netem
22. JSR-1 Expert Group: Real-time specification for Java, http://rtsj.org
23. Li, P., Ravindran, B., et al.: A formally verified application-level framework for

real-time scheduling on POSIX real-time operating systems. IEEE Trans. Software
Engineering 30(9), 613–629 (2004)

24. Mills, D.L.: Improved algorithms for synchronizing computer network clocks.
IEEE/ACM TON 3, 245–254 (1995)

http://www.csl.sri.com/papers/sri-csl-95-02/
http://www.csl.sri.com/papers/sri-csl-95-02/
http://linux-net.osdl.org/index.php/Netem
http://rtsj.org

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 261–270, 2007.
© IFIP International Federation for Information Processing 2007

Novel Radio Resource Management Scheme with Low
Complexity for Multiple Antenna Wireless Network

System

Jian Xu, Rong Ran, DongKu Kim, and Jong-Soo Seo

Department of Electrical and Electronic Engineering, Yonsei University, Shinchon Dong,
Seodaemoon-Ku, Seoul, 120-749, Korea

jianxu@yonsei.ac.kr

Abstract. Multiple-input multiple-output (MIMO) antennas can be combined
with orthogonal frequency division multiplexing (OFDM) to increase system
throughput by spatial multiplexing. That is the requirement of high speed future
wireless networks such as WLANs and WMANs. This paper investigates the
radio resource management problem of MIMO-OFDM based wireless network
systems in order to maximize the total system throughput subject to the total
power and proportional rate constraints of each user. A low-complexity
algorithm that separates subcarrier allocation and power allocation is proposed.
Simulation results show that the proposed resource allocation algorithm can
improve the throughput and also it can make the throughput be distributed more
fairly among users than some other schemes.

Keywords: WLANs, Radio Resource Management, Multiple Antenna, OFDM.

1 Introduction

Implementation of high-data-rate wireless local area network (WLAN) has been a
major focus of research in recent years. Multiple-input multiple-output (MIMO)
schemes [1] and [2] and orthogonal frequency division multiplexing (OFDM) [3] can
be combined to operate at the high-throughput (HT) mode, or the diversity mode, or
the combination of both in fading environments [4]. Such systems could achieve high
spectral efficiency and/or a large coverage area that are critical for future-generation
wireless local area networks.

Common open-loop linear detection schemes include the zero-forcing (ZF) and
minimum mean-square error (MMSE) schemes [5] and [6]. A large condition number
(i.e., the maximum-to-minimum-singular-value ratio, MMSVR) of the channel state
information (CSI) matrix implies a high noise enhancement. Thus, MMSVR could be
a convenient and effective metric to characterize the performance of different MIMO
configurations. The importance and effectiveness of the eigenvalue distribution on
MIMO system capacity and the overall system performance have been well
recognized [7]–[10]. The eigenvalue analysis for MIMO-OFDM systems can be used
to reduce the overall system complexity [11] and [12]. In this paper, the MMSVR is
used for the subcarrier allocation, in this way the allocation complexity can be
reduced and also the detection performance in the receiver side could be improved.

262 J. Xu et al.

In recent years, however, many dynamic subcarrier, power allocation algorithms
for single input single output (SISO) OFDM systems have been developed to find the
solution of maximizing system throughput or minimizing the overall transmit power
[13]-[15]. These suboptimal algorithms have good performances, but cannot be
applied to the MIMO-OFDM system. Few researches [16]-[17] have been done for
the dynamic subcarrier, power and bit allocation in the MIMO-OFDM system.

In this paper, we investigate the subcarrier and power allocation problems for
MIMO-OFDM based wireless network system. We concentrate more on throughput
fairness among the users. Our objective is to maximize the total throughput of the
system subject to the total power and proportional rate constraints of each user. By
dealing subcarrier and power allocation issues separately, we can simplify the
resource allocation problem. We proposed a subcarrier allocation algorithm by
dividing the users into groups and the MMSVR is treated as an important criterion to
pick up the subcarriers for each user.

This paper is organized as follows. Section 2 introduces the MIMO-OFDM system
model and presents the optimization objective function. In Section 3, the proposed
radio resource management algorithm is described. Simulation results are illustrated
in Section 4 and conclusions are drawn in Section 5.

()1V%

()V N%

Fig. 1. Block diagram of MIMO-OFDMA system in the downlink

2 System Model and Problem Formulation

2.1 System Model

The block diagram of adaptive MIMO OFDMA system is shown in Fig.1. In this
paper, it is assumed that in the base station the channel state information of each
couple of transmit and receiver antennas is sent to the subcarrier and power algorithm
block through the feedback channels. The resource allocation information is
forwarded to the MIMO-OFDM transmitter. The transmitter then selects the allocated
number of bits from different users to form OFDMA symbols and transmits via all the
transmit antennas. The spatial multiplexing mode of MIMO is considered. The
resource allocation scheme is updated as soon as the channel information is collected
and also the subcarrier and bit allocation information is sent to each user for detecting.

 Novel Radio Resource Management Scheme with Low Complexity 263

2.2 Problem Formulation

Throughout this paper, let the number of transmit antennas be T and the number of
receiver antennas be R for all users. Denote the number of users as K and the
number of subcarriers as N . Assume that the base station has total transmit power
constraint Q . The objective is to maximize the total system throughput and consider
the fairness between the users with the total power constraint. We use the equally
weighted sum throughput as the objective function. We also include a set of nonlinear
constraints so that we can control the throughput ratios among users.

We formulate the following system throughput optimization problem to determine
the subcarrier allocation and power distribution:

()
,

,
1 1 1 0

max log 1
kn

iMK N
kn k n

k n
k n i

qW
C

N N

λ
ρ

= = =

⎛ ⎞⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∑ ∑ (1)

subject to: ,
1 1

.
K N

k n
k n

q Q
= =

 ≤∑∑

, 0 ,k nq for all k n≥

{ }, 0,1 ,k n for all k nρ =

,1
1

K

k nk
for all nρ

=
= ∑

1 2 1 2: : ... : : : ... :K KR R R γ γ γ=

where K is the total number of users; N is the total number of subcarriers; Q is the

total available power; W is the system bandwidth; ,k nq is the power allocated for user

k in the subcarrier n ; knM is the rank of knH which denotes the channel gain

matrix ()R T× on subcarrier n for user k and ()
1:{ }

kn

i
kn i Mλ = are the eigenvalues of

†H H
kn kn

; ,k nρ can only be the value of 1 or 0 indicating whether subcarrier n is

used by user k or not. 0N is the noise power in the frequency band of one subcarrier.

The throughput for user k , denoted as kR , is defined as

()
,

,
1 1 0

log 1
kn

iMN
kn k n

k k n
n i

qW
R

N N

λ
ρ

= =

⎛ ⎞⎛ ⎞
⎜ ⎟= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ (2)

and { } 1

K

i i
γ = is a set of predetermined values which are used to ensure proportional

fairness among users.

264 J. Xu et al.

3 Proposed Radio Resource Management Scheme

Ideally, subcarriers and power should be allocated jointly to achieve the optimal
solution in (1). However, this poses a prohibitive computational burden at the access
point or base station in order to reach the optimal allocation. Furthermore, the access
point has to rapidly compute the optimal subcarrier and power allocation as the
wireless channel changes. Hence, low-complexity suboptimal algorithms are
preferred for cost-effective and delay-sensitive implementations. Separating the
subcarrier and power allocation is a way to reduce the complexity, because the
number of variables in the objective function is almost reduced by half.

Before we describe the proposed suboptimal resource allocation algorithm, we

firstly show the mathematical expression of MMSVR. Let max min
, , ,k n k n k nη σ σ= denotes

the maximum to minimum singular value ratio for user k on subcarrier n . max
,k nσ and

min
,k nσ are the maximum singular value and the minimum singular value of knH ,

respectively.

A large ,k nη value could arise either because min
,k nσ is small or because max

,k nσ is

large. From simulation results, it is found that the latter is unlikely, thus ,k nη is a

good indicator of noise enhancement, and if , 1k nη , we can conclude that the
channel is ill-conditioned for the nth sub-carrier. In the following step, this point will
be adopt as the important rule to allocate the subcarrier, which can avoid using the ill-
conditioned subcarrier so that the noise enhancement could be reduced.�

The steps of the proposed suboptimal algorithm are as follows:

Step 1. Assign the subcarriers to each user in a way that maximizes the overall
throughput while maintaining rough proportionality;

Step 2. Assign the total power Q to allocated subcarriers using the multi-

dimension waterfilling algorithm for the bad channel gain user group
and the equal power allocation for the good channel gain user group.

3.1 Subcarrier Allocation by Avoiding Using Ill-Conditioned Subcarrier

This step allocates the per user assignment of subcarriers kN , which is the number of

subcarrier for user k and is determined by the average channel gain of each user, in a
way that maximizes the overall throughput while maintaining rough proportionality.
In this subcarrier allocation algorithm, equal power distribution is assumed across all
subcarriers, and we define kΩ as the set of subcarriers assigned to user k. The

proposed algorithm is described below.

a.) Initialization

1) sort the users by average channel gains, suppose we get

1 2 m KH H H H≤ ≤ ... ≤ ≤ ... ≤ without loss of generality

2) divide the users into two groups:

 Novel Radio Resource Management Scheme with Low Complexity 265

 bad channel gain group: { }_ 1,2,...,user b m=

 good channel gain group: { }_ 1, 2,...,user g m m K= + +

3) set { }0, for 1, 2,..., and 1, 2,...,k kR k K A N= Ω = ∅ = =

b.) For 1k = to m

1) find n satisfying , ,k n k j for j Aη η≤ ∈ , (MMSVR: max min
, , ,k n k n k nη σ σ=)

2) let { }, 1,k k k kn A A nΩ = Ω ∪ Ν = Ν − = − and update kR according

to (2)

 c.) While
1

m

i
i

A N N
=

> −∑

1) { }_ 1,2,...,user b m=

find k satisfying ,1k k i iR R for all i i mγ γ≤ ≤ ≤

2) for the found k , find n satisfying

find n satisfying , ,k n k j for j Aη η≤ ∈ , (MMSVR: max min
, , ,k n k n k nη σ σ=)

3) for the found k and n ,

if 0kΝ >

 let { },k k n A A nΩ = Ω ∪ = −

 1k kN N= − and update kR according to (2)

else

 { }_ _user b user b k= −

 d.) redo step b.) and c.) for the good channel gain group, i.e., for user index from
1 to k m K= +

In the step a.) of the algorithm, the users are divided into the channel gain bad
group _user b and the good group _user g according to the average channel gain. And
then all the variables are initialized. kR keeps tracks of the throughput for each user

and A is the set of yet unallocated subcarriers.
The step b.) firstly assigns to each user of group _user b the unallocated subcarrier

that has the minimum MMSVR for that user. Note that an inherent advantage is
obtained by the bad channel gain group of users that are able to choose their best
subcarrier earlier than the other group.

The step c.) proceeds to assign subcarriers to each user of group _user b according
to the greedy policy that the user which needs a subcarrier most in each iteration gets
to choose the best subcarrier that has minimum MMSVR for it. The need of a user is
determined by the user who has the least throughput divided by its proportional
constant. Once the user gets his assignment of kN subcarriers, he can no longer be

assigned with any more subcarriers. A here denotes the cardinality of the set A .

266 J. Xu et al.

The step d.) will assign the remaining subcarriers to the good channel gain group.
We firstly change the condition “For 1 to k m= ” into “For 1 to k m K= + ” and redo

the second step b.). And then we change the condition
1

m

ii
A N N

=
> −∑ into A ≠ ∅

and change the selection range ()1 i m≤ ≤ into ()1m i K+ ≤ ≤ so that we can redo

the third step c.). Finally all of the subcarriers will be assigned.
By dividing the users into two groups, the users of group _user b get the inherent

advantage to choose their best subcarriers firstly. Thus the power allocated to them in
the next step will be deceased significantly compared with other algorithms without
giving a priority to bad user group in terms of subcarrier allocation. Accordingly the
power allocated to group _user g will be increased because of the fixed total power
in the system. In this way the system throughput can be maximized for the tradeoff
between the amount of allocated power and the number and quality of assigned
subcarriers for users. Furthermore the proportional fairness will also be roughly
guaranteed by step c.).

3.2 Power Allocation among Users and Subcarriers

The subcarrier algorithm in step 1 is for each user to use the subcarriers with low
MMSVR as much as possible. However, this is not optimum because equal power
distribution in all subcarriers is assumed. In this step, we propose a low complexity
and efficient power allocation algorithm based on the user grouping criteria in step 1.

For the bad user group, the power is allocated among the assigned subcarriers for
each user by using the multi-dimension water-filling method. In this way, the power
efficiency can be improved a lot because of the gain of waterfilling algorithm when
SNR is lower. The multi-dimension water-filling method is to find the optimal power
allocation as follows.

The power distribution over subcarriers is

()n
*
n q,q 0max=

where nq means the power for subcarrier n and it is the root of the following

equation,

()

()
1 0

0, 1, 2,...,
k nn

n

n

iM
k n

i
i k n n

n N
q N

λ
α

λ=

+ = =
+∑ (3)

where nk is the allocated user index on subcarrier n ; α is the water-filling level

which satisfies
' *

1
'

N

nn
q Q

=
=∑ where 'Q and 'N are the total power for bad user

group and the number of subcarriers for bad user group, respectively.
For the good user group, equal power allocation among the assigned subcarriers is

used because there is only a little bit difference between equal power allocation and
power allocation using water-filling algorithm when the SNR is high. In this way,
almost the same system throughput could be achieved and furthermore the complexity
could be reduced significantly.

 Novel Radio Resource Management Scheme with Low Complexity 267

Once the power allocation for each subcarrier is decided, all of the transmitter
antennas use the corresponding power for that subcarrier. Finally, the goal of maximizing
the total throughput while maintaining relatively proportional fairness will be achieved
after this proposed efficient and low complex power allocation scheme.

4 Simulation Results and Analysis

In this section, simulation results are presented to demonstrate the performance of the
proposed algorithm. In the simulations, the wireless channel between a couple of
transmit antenna and receiver antenna is modeled as a frequency selective channel
consisting of six independent Rayleigh multipaths. Each multipath component is
modeled by Clarke’s flat fading model. The number of users is 4, and we assume that
the average channel gain for user1 is 10 dB higher than user2, user3 and user4. The
number of antennas is T=R=2 and each couple of transmit antenna and receiver
antenna is independent to the other couples. The total transmit power is 1 W. The total
bandwidth B is 1 MHz, which is divided into 64 subcarriers.

In Fig. 2, we show the system throughput of the proposed algorithm in a four-user
MIMO-OFDM system vs. different fairness constraints, that is, m21 =γ , 2 3 4 1γ γ γ= = =

and m is from[]0,1,2,3,4,5 . Thus we have 6 sets of fairness constrains. Fig. 2 also

shows the system throughput achieved by the method in [18] which is system
throughput maximization scheme, and the system throughput achieved by a static
FDMA system, in which each user is allocated with an equal number of subcarrier
and it is not changing with the channel variation. The system throughputs in Fig.2 are
system throughputs averaged over 5000 channel realizations. It can be seen that the
two adaptive resource allocation schemes can achieve a significant throughput gain
over the static FDMA.

We also notice that the system throughput maximization method in [18] achieves
the maximum system throughput, because all the resources are allocated to the users
with the best channel gains. The system throughput achieved by the proposed
algorithm varies as the rate constraint changes. As more priority is allocated to user 1,
i.e., as the index m increases, higher total system throughput is achieved. This is
reasonable since user 1 has higher average channel gain and hence can more
efficiently utilize the resources. And we can see that the throughput distribution of the
method in [18] and static FDMA cannot be changed by varying the gamma set values,
because there is no fairness guarantee mechanism in these systems.

Fig. 3 shows the normalized throughput distribution among users for gamma-set index
m=3 where 81 =γ and 2 3 4 1γ γ γ= = = . The normalized throughput for user k is given

by ∑ =

4

1i
ik RR . The throughput distributions of four users MIMO OFDM downlink

system are shown using the proposed resource allocation algorithm, the throughput
maximization scheme in [18] and static FDMA scheme, respectively. It can be seen that
the total throughput maximization method in [18] achieves the largest total throughput
and user 1 gets most of the subcarriers and occupies most of the total throughput. The
throughput for user 2, user 3 and user 4 is very little. Static FDMA tends to allocate
similar throughput to each user, since all users get the same number of subcarriers to
transmit. However, with the proposed resource allocation algorithm, the throughput is
well distributed, very close to the defined ideal rate constraints, among users.

268 J. Xu et al.

Fig. 2. System throughput of 4 users MIMO-OFDM systems vs. various gamma sets

Fig. 3. Normalized throughput ratios distribution among users for the 4 users multiple antenna

systems with 81 =γ and 2 3 4 1γ γ γ= = =

 Novel Radio Resource Management Scheme with Low Complexity 269

5 Conclusions

This paper presents a new method to solve the subcarrier and power allocation
problem for the MIMO-OFDMA system. Allocations of subcarrier and power are
carried out separately. For the subcarrier allocation, it assigns the subcarriers for each
user by dividing the users into groups and also by avoiding using the large MMSVR
subcarriers in the second step. The proposed power allocation scheme adopts different
algorithms to different user groups in order to achieve high throughput with reduced
complexity. Simulation results show that the proposed method can achieve significant
throughput gain over the static FDMA. Using the proposed method the system
throughput is distributed more fairly among users.

Acknowledgments. This work was supported by Samsung Electronics under the
project on 4G wireless communication systems and Yonsei University Institute of
TMS Information Technology, a Brain Korea 21 program, Korea.

References

1. Pualraj, A., Gore, D., Nabar, R., Bolcskei, H.: An overview of MIMO communications - a
key to gigabit wireless. Proc. IEEE 92, 198–218 (2004)

2. Goldsmith, A., Jafar, S., Jindal, N., Vishwanath, S.: Capacity limits of MIMO channels.
IEEE J. Select. Areas Commun. 21, 684–702 (2003)

3. Stuber, G., Barry, J., McLaughlin, S., Li, Y., Ingram, M., Pratt, T.: Broadband MIMO-
OFDM wireless communications. Proc. IEEE 92, 271–294 (2004)

4. Van Zelst, A., Schenk, T.: Implementation of a MIMO OFDM-based wireless LAN
system. IEEE Trans. Signal Proc. 52, 483–494 (2004)

5. Bjerke, B., Proakis, J.: Multiple-antenna diversity techniques for transmission over fading
channels. Proc. IEEE Wireless communication and networking conference 3, 1038–1042
(1999)

6. Gesbert, D., Shafi, M., Shiu, D., Smith, P., Naguib, A.: From theory to practice: an
overview of MIMO spacetime coded wireless systems. IEEE J. Select. Areas Commun. 21,
281–302 (2003)

7. Telatar, I.E.: Capacity of multi-antenna Gaussian channels. European Trans. Telecomm.
Related Technol. 10, 585–595 (1999)

8. Chiani, M., Win, M.Z., Zanella, A.: The distribution of eigenvalues of a Wishart matrix
with correlation and application to MIMO capacity. Proc. of IEEE Globecom
conference 4, 1802–1805 (2003)

9. Martin, C., Ottersten, B.: Asymptotic eigenvalue distribution and capacity for MIMO
channels under correlated fading. IEEE Trans. Wireless Commun. 3, 1350–1359 (2004)

10. Malik, R.K.: The pseudo-Wishart distribution and its application to MIMO systems. IEEE
Trans. Inform. Theory 49, 2761–2769 (2003)

11. Huang, D., Letaief, K.B.: Pre-DFT processing using eigen-analysis for coded OFDM with
multiple receive antennas. IEEE Trans. Commun. 52, 2019–2027 (2004)

12. Huang, D., Letaief, K.B.: Symbol based space diversity for coded OFDM systems. IEEE
Trans. Wireless Commun. 3, 117–127 (2004)

270 J. Xu et al.

13. Wong, C.Y., Cheng, R.S., Letaief, K.B., Murch, R.D.: Multiuser OFDM with adaptive
subcarrier, bit, and power allocation. IEEE J. Select. Areas Commun. 17, 1747–1758
(1999)

14. Kivanc, D., Li, G., Liu, H.: Computationally efficient bandwidth allocation and power
control for OFDMA. IEEE Trans. Wireless Commun. 2, 1150–1158 (2003)

15. Shen, Z., Andrews, J.C., Evans, B.L.: Adaptive resource allocation in multiuser OFDM
systems with proportional rate constraints. IEEE Trans. Wireless Commun. 4, 2726–2737
(2005)

16. Pan, Y.H., Letaief, K.B., Cao, Z.G.: Dynamic spatial subchannel allocation with adaptive
beamforming for MIMO/OFDM systems. IEEE Trans. Wireless Commun. 3, 2097–2107
(2004)

17. Rey, F., Lamarca, M., Vazquez, G.: Robust power allocation algorithm for MIMO OFDM
system with imperfect CSI. IEEE Trans. Signal Proc. 53, 1070–1085 (2005)

18. Li G., Liu, H.: Capacity analysis on downlink MIMO OFDMA system. Submitted to IEEE
Trans. Wireless Commun. (2004)

19. Li, G., Liu, H.: On the optimality of OFDM in multiuser multicarrier MIMO systems.
Proc.IEEE Vehicular Technology Conference 4, 2107–2111 (2005)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 271–282, 2007.
© IFIP International Federation for Information Processing 2007

Modelling Protocols for Multiagent Interaction by F-logic

Hong Feng Lai

Department of Business Management, National United University
1, LeinDa road, Miaoli city, 360, Taiwan
walden.lai@msa.hinet.net

Abstract. This paper proposes a method to represent agent Unified Modelling
Language (AUML) in logic form using F-logic that provides deductive capability
and uniform knowledge integration base. The AUML is used to differentiate
relevant interaction more precisely at the analysis phase of developing a
multiagent system. However, the AUML lacks for foundation and logic
semantics. Thus we aim at constructing sufficient formality to facilitate formal
analysis and to explore the behaviour and message route of the AUML. The
AUML is transformed into F-logic language first by transformation rules.
Secondly, a logic interpretation of this agent structure is presented. The
transformation processes and results are illustrated using an example of
E-commerce system. Finally, the significance of this approach is discussed and
summarized.

Keywords: AUML, F-logic, message route, multiagent system, interaction
protocols.

1 Introduction

As heterogeneous mobile devices continue to grow, how to integrate various types of
information and knowledge is one of the most important issues in information
technology. Since web technology has great potential to develop a collaborative
environment, several strategies about information integration have been explored, e.g.
centralized and open distributed strategies. However, centralized strategy has been
shown not to be scalable. The open distributed strategy is growing and becoming
difficult to manage. Beyond these methods, agent-based system with mobility is
becoming a noticeable approach [1]. An agent is a computational process that
implements the autonomous (actions without inputs), and communicating functionality
of an application [2]. The agent-based system provides a convenient method to mobile
users. Applying agent-based technologies, the services across web could be designed to
be reactive, proactive, autonomous, and social.

In multiagent systems (MAS), agent interaction is ruled by interaction protocols.
The agent Unified Modelling Language (AUML) is an extension of the UML, which
proposes the standards for expressing the interactions of MAS. The interaction protocol
(IP) diagram of AUML can help the designers to differentiate roles and messages
between related agents more detailed. However, the IP diagrams do not guarantee the
compliance of autonomous and heterogeneous agents to requirements [3].

272 H.F. Lai

A logical specification describes system requirements formally. Through formal
semantics, it supports deductive capabilities that make specifications executable [4].
Mathematical foundations have been studied in several previous papers [5-8]. For
instance, first-order logic is exploited to establish a deductive foundation for entity
relationship model [5]. In [6], applying the Larch based logic [9] to represent the logical
semantics of OMT. In [7], a scheme for integrating object-oriented and logic
programming paradigms is proposed. In [8], dynamic master logic diagrams are used to
represent time-dependent behavior and knowledge of a dynamic system.

Since the AUML lacks for foundation and logic semantics [10], in this study we aim
at constructing sufficient formality to allow formal analysis and to verify the properties
of the AUML. To embed deductive capability in the AUML, we transform the AUML
into a logical specification language, F-logic, which is proposed by Kifer et al. [11].

How to transform the AUML into formal specifications is investigated in this study.
The transformation framework between the AUML and F-logic is displayed in Fig. 1.
The deductive AUML consists of three components: message space (a set of messages
in F-logic form), role space (a set of roles in F-logic form), and the deductive rules for
determining the message routes between message and role objects.

Fig. 1. The AUML/F-logic transformation framework

The structure of the paper is as follows. Section 2 gives an overview of F-logic. .
Section 3 describes interaction protocol using AUML. The transformation rules and
results between AUML and F-logic are presented in Section 4. Section 5 illustrates the
related work. Section 6 concludes the paper.

2 F-Logic

In this section, we make a short summary of F-logic including its vocabulary and
syntax. A comprehensive discussion of F-logic can be found in [11].

 Modelling Protocols for Multiagent Interaction by F-Logic 273

F-logic is a language with well-defined semantics that extends predicate logic and
provides a sound and complete resolution-based proof procedure. This language is
powerful in expressing object-oriented features. F-logic enhances the modeling
capability of first order logic by syntactic enrichment, while it preserves its
model-theoretic semantics by means of semantic structure. Elements are described by
identification terms (id-terms), which consist of variables, functions, or constants,
similar to terms in first order logic language.

The syntax of F-logic language, ℒ, consists of alphabetic symbols and the syntactic
rules required to construct the well-formed formulas. The alphabetic symbols of
F-logic language can be expressed in terms of its constituent parts:

a set of function symbols (object constructors), ℂ;
a set υ of variables;
a set ℘ of predicate symbols;

auxiliary symbols, such as: (,), [,], ⇒ , →, =>> , ↠, etc.;
and usual logical connectives and quantifiers, such as: ⋀ (and), ⋁ (or), ←

(implication), ¬ (not), ∀ (universal), and ∃ (existential).

An id-term consists of constructor f (a member of ℂ) and object variable (a member
of υ), similar to terms in first-order logic. For instance, f (X, g (a, Y)) is an id-term,
where f and g are object constructors, ‘a’ is a constant, and X and Y are object variables.
A ground F-term is a term not containing variables (variable-free). A ground F-term is
denoted by a symbol that begins with a lower-case, while a symbol that begins with a
capital letter denotes an id-term that may be non-ground.

An F-logic term (F-term) is defined as one of the following statements, which denote
objects, classes, methods and predicates:

(1) An is_a assertion F-term A:b means that object A is a member of class b, or a::b
denotes class a is a sub-class of class b. The is_a assertion enables attribute inheritance
and subset relationship.

(2) A complex F-term is expressed as O[semicolon-separated list of method
expressions], where O signifies an object or a class, and an method M expression can be
either a scalar data expression: M@A1,…,Ai→R, where A1,…,Ai, R is an id-term, or a

set-valued data expression (k≥0): M@A1,…,Ai ↠<<S1,…,Sk>>, and scalar signature
expression M@AT1,…,ATi ⇒ (RT1,…,RTk) or set-valued signature expression
M@AT1,…,ATi=>>(RT1,…,RTk) , where, A1,…, Ai, AT1,…,ATi are arguments of
method M, R,S1,…,Sk denotes the output of the method M, (RT1,…,RTk) represents the
types of the result of the method M. While a method does not need arguments, “@” will
be omitted.

The implementation and application of F-logic can be found in several studies.
FLORID [12] is a deductive engine for F-logic. In [13] FLORID with path expression
is used to extract, restructure and manage the semi-structured web data. In [14, 15],
they propose an operational knowledge specification language KARL, which contains
two sublanguage Logic-KARL (F-logic) and Procedure-KARL. For specifying
knowledge at conceptual and operational level, the domain layer and inference layer are
expressed in Logical-KARL, while the task layer is represented by Procedure-KARL.

274 H.F. Lai

Thus, the KARL specification of intermediate representation can bridge the gab
between an informal and an implementation of knowledge-based systems. In [16], a
practical deductive object-oriented database system FLORA is provided, which
integrates F-logic, Hilog and Transition logic, using complier optimization techniques
to achieve its performance.

In this study we apply FLORID to express interaction protocols of multiagent
system (MAS), i.e. to infer the roles and messages based on the deductive engine of
FLORID.

3 The AUML

In this section, we make a brief introduction of AUML. A comprehensive discussion of
AUML can be found in [10, 11].

3.1 Introduction to the AUML

The agent UML (AUML) is an extension of the UML, which proposes the standards for
expressing the interactions of MAS. AUML applies graphical specification technique
to describe interaction between agents. These approaches are partly based on the agent
communication language (ACL) of the Foundation for Intelligent Physical Agents
(FIPA) [2] using a subset of its communicative act library (CAL) of FIPA as messages.

3.2 Notations the Agent UML

An IP diagram indicates interactions between agents and roles along a timeline. Agents
are assigned to roles. A role is a specification of the action that an object should fill. An
object can switch roles at different times. Roles can be inserted or removed during the
lifetime of agents.

Messages between agent roles are shown as arrows (Fig. 2) signifying an
asynchronous communication. A diamond expresses a querying_if point that can result
in zero or more communications. The line branch (no diamonds) indicates that all
messages are sent concurrently. The empty diamond indicates that zero or more
messages may be sent. A crossed diamond shows that exactly one message may be sent.

The message route (sequence of message) in Fig. 2 begins with a customer (initiator)
which issues a request (cfp_P_order) to a manufacturer (participants). The
manufacturer can reply proposing a price for satisfying the request (propose_proposal),
or refusing (refuse_P_order). The customer must accept (accept_proposal) or reject
(reject_proposal) the received proposals. After having received the cfp_P_order, the
manufacturer must response to the customer by a given deadline, and informs the
customer of propose or refuse_P_order. Analogously, the customer must response to
the manufacturer by a given deadline. As the manufacturer receives the message of
accept_proposal, the manufacturer must check “if stock was sufficient”
(query_if_S_sufficient) whether the inventory level is true to satisfy the requirement of
the customer.

 Modelling Protocols for Multiagent Interaction by F-Logic 275

The AUML diagrams are useful to analyze interactions between agents.
Additionally, the agent UML can be taken as object interaction diagrams from the
dynamic model viewpoint.

However, there are some limits in AUML [17]. These limits bring about extending
or transforming the AUML to other model, e.g. cluttered AUML tends towards
misinterpreting; unable to combine roles and cardinalities; indeterminable at decision
points; hard to debug redundancy; unable to trace the history.

4 Transformation Rules and Deductive Rules

4.1 Introduction to the E-Commerce Example of a Multiagent System

In the E-commerce system, the member agent customer and manufacturer in Fig. 2
invoke buyer agent and seller agent respectively. Analogously, the member agent
vendor and manufacturer in Fig. 2 invoke seller agent and buyer agent respectively.
The manufacturer switches roles at different times, i.e. facing customer as a seller and
facing vendor as a buyer.

The message exchange in E-commerce can be modeled by mobile agent technology.
A buyer agent could do purchasing for a customer, including making orders,
negotiating, haggling, and potentially even paying.

A buyer agent can pass the customer’s preferences to the host. If a potential match
was met, the buyer agent could reply to the customer, or potentially finish the
transaction delegated by the customer.

A seller agent must check (query_if_S_sufficient) whether the inventory level is true
to satisfy the requirement of the customer, and negotiate price with buyer agent..

From implementation viewpoint, mobile agents are programs dispatching from one
computer and transporting to a remote computer. As messages passing to a remote
computer, the programs present their authorization and get access to local services and
data. The remote computer may act as a broker by putting agents together with common
interests and goals, and supporting a platform at which agents can coordinate.

4.2 Transformation Rules of the AUML/F-Logic

To create the message route of AUML IP diagrams involves a process of model
transformation. Model transformation is a mapping from a source model to a target
model using a set of transformation rules [4]. There is a natural correspondence
between the AUML and F-logic. Based on the composite elements and notations in the
AUML, the transformation rules from the agent UML into F-logic specifications are
listed below.

The following two transformation rules express how to define AUML objects in
F-logic form.

Trans_rule1. Each member_agent can be expressed as frame fields, and each role can
be defined by F-logic as follows.
member_agent[has_role=>>role; name=>string; type=>string].
role[name=>string; type=>string; use=>string].

276 H.F. Lai

Fig. 2. The interaction protocol in E-commerce

 Modelling Protocols for Multiagent Interaction by F-Logic 277

Trans_rule2. Each message can be described via its sender, receiver, name, and type.
The types of message includes: resouce_agent_role, delegation_agent_role,
wrapping_agent_role, coordination_agent_role, and discovery_agent_role. The
message and message_route can be defined by F-logic as follows:

message[sender=>role; receiver=>role; name=>string; type=>string].
message_route[sender=>role; receiver=>role;
 add@(message)=>message_route;
 add@(message_route)=>message_route].

The following two transformation rules express message and agent_role
hierarchical relationships in F-logic form respectively.

Trans_rule3. For each message and its subclass, the relationship can be represented by
‘is_a assertion’. This property can be denoted as follows:

refuse :: messgae.
reject :: messgae.
accept :: messgae.
inform :: messgae.
propose :: messgae.
query :: messgae.

Trans_rule4. For each agent_role and its subclass, the relationship can be represented
by ‘is_a assertion’. This property can be denoted as follows:

agent_role :: role.
resouce_agent_role :: agent_role.
delegation_agent_role :: agent_role.
wrapping_agent_role :: agent_role.
coordination_agent_role :: agent_role.
discovery_agent_role :: agent_role.

The resource_agent_role is used to manages local resources. The
delegation_agent_role is used to invoke agent service. The wrapping_agent_role is
used to transfer the coordination. The report_agent_role is used to support summarizing
and reporting service. The discovery_agent_role is used to discover available external
services.

Trans_rule5. For each vertical bar in AUML corresponds to a agent_role in F-logoic
as follows:

agent.role : agent_roleType.
The following three transformation rules express how to transform the

asynchronous message → of AUML in F-logic form.

Trans_rule6. For each message arrow of AUML can be expressed in F-logoic as
follows.

message_name:message[sender→agent1.role_i; receiver→agent2.role_j; type→
message_type].

278 H.F. Lai

Trans_rule7. For each message with diamond arrow can be expressed in F-logoic as
follows.

xor_message_name:message[sender→agent1.role_i; receiver→agent2.role_j;
type→ message_type].

Trans_rule8. For each message with line branch (no diamonds) and empty diamond of
AUML can be expressed in F-logoic as follows.
message_name:message[sender→agent1.role_i; receiver→agent2.role_j; type→

message_type].

4.3 The Deductive Rules of the AUML/F-Logic

Based on the transformation rules, the AUML of the E-commerce example (see Fig. 2)
can be transformed into F-logic form. The deductive AUML will be expressed in terms
of agent role space (a set of agent roles in F-logic), message space (a set of messages in
F-logic), structural assertions, and deductive rules.

The deductive rules express the relation between roles, message, and message_route
in AUML IP diagrams.

Deductive_rule1. These rules express how to add messages to message_routes as
follows.

P.E:message_route[sender→X; receiver→Z] :-
P:message_route[sender→X; receiver→Y], E:message[sender→Y; receiver→Z].

Deductive_rule2. This rule expresses how to concatenate message_routes to a new
message_route as follows.

P1[(P2.E)→P3] :- P1.P2[E→P3], E:message.

Deductive_rule3. These rules express how to detect loop routes and eliminate loop
routes in a message_route as follows.

P:loop:- P:message_route[sender→P.receiver].
P.C = P :- P.(C:loop)[].

4.4 The Query of the Logic-Based E-Commerce System

After implementing the deductive AUML, the logic-based E-commerce system consist
of a set of agent roles, a set of messages, a set of structural assertions, and some
deductive rules about these elements. Various types of queries can be evaluated and
answered by FLORID. For example, the query “?- M::message” state that “are there
any sub-class of message”.

% Answer to query : ?- M::messgae.
M/refuse
M/messgae
M/reject
M/accept
M/inform

 Modelling Protocols for Multiagent Interaction by F-Logic 279

M/propose
M/query
M/cfp

The query “?- R::agent_role” state that “are there any sub-class of agent_role”. The
answers are as follows:

% Answer to query : ?- R::agent_role.
R/agent_role
R/resouce_agent_role
R/delegation_agent_role
R/wrapping_agent_role
R/report_agent_role
R/discovery_agent_role

The message route is the sequence of messages passing to and fro on the IP
diagrams. These behaviour properties can be also described by reachability tree in Petri
net; or by message sequence chart in MSC [18]. However, a logic-based IP can provide
more information, e.g. finding the message route between any two agent roles. For
example, the query stated as “?- P:message_route[sender -> ven1.r21; receiver ->
ven1.r25]” means that what the message route is between agent role ven1.r21 and agent
role ven1.r25. The answers are as follows:

% Answer to query : ?- P:message_route[sender -> ven1.r21; receiver ->
ven1.r25].

P/ven1.r21.xor_propose_quotation.(man1.r6.xor_accept_quotation).(ven1.r23.in
form_sreceiver_parts).(man1.r7.inform_received).(ven1.r24.inform_payment).(man
1.r9.inform_paid)

P/ven1.r21.xor_refuse_order.(man1.r5.cfp_part_order).(ven1.r21.xor_propose_
quotation).(man1.r6.xor_accept_quotation).(ven1.r23.inform_sreceiver_parts).(man
1.r7.inform_received).(ven1.r24.inform_payment).(man1.r9.inform_paid)

% 2 output(s) printed

5 Related Work

To express and coordinate the activities of multiagent systems, two types of approaches
have been proposed: graphical and predicate approaches. The graphical approach using
diagrammatic notation for intuitive understanding includes: agent UML approach [10],
statechart approach [17], message sequence chart approach [18], Petri net approach
[19, 20]. The textual approach using rules and declarations for consistency checking
includes OMG IDL (Interface Description Language) [1] and logic-based approach [3,
17, 21].

Statecharts is a visual specification language for specifying discrete event system. It
extends finite state machines that was proposed by [22] and could be described as:
Statecharts = finite state machine + depth + orthogonality + broadcast communication.
Statecharts has many good properties that can be applied in object-oriented information
system. However, there are still some restrictions in MAS application domain. Many
extensions had been proposed for improving their descriptive ability. In [23] they apply

280 H.F. Lai

propositional dynamic logic (PDL) to extend the description capability of statecharts
for presenting interaction protocol.

The message sequence chart (MSC) diagrams are used to express basic protocols
and scenarios in telecommunication systems [18]. An MSC diagram consists of a set of
instances, which indicate that events may occur during the execution period. The types
of events may be the creation and stopping of an instance, the trigger of a local service,
the setting or resetting of a timer, the timeout, the sending or receiving of a message,
etc. The main difference between MSC and MAS is that MSC using an axe represents a
process of an instance, while MAS using isolated vertical bars signifies multi agent
roles.

Petri net [24] is the most frequently used tool for modeling systems. Petri nets and
Statecharts have equivalent representative capabilities because they are both
state-based models [25]. Applying PN to AUML modelling, the message is taken as a
place; the xor-message is expressed by a conflicting place; and the agent role is
represented by a transition [20]. The limits of IP in PN include: hard to read, limits in
model transformation, the problems of scalability and reusability [23].

The textual approaches using rules and declarations define the interaction of agents.
From object-oriented viewpoint, the MAS could be taken as a set of interacting objects.
To express the static and dynamical specifications of agents and roles in the
agent-enhanced mobile virtual communities [1], they apply OMG IDL to differentiate
agents and roles using interface specification sketch including require interfaces,
provide interface, behaviour interface, and policy interface. This method resembles
requirement decomposition while it lacks of deductive capability and can not check the
consistency of specifications.

To verify the compliance of agents’ behaviour to protocols, in [3] a logic-based
formalism Social Integrity Constraints using Java-Prolog-CHR (Constraint Handling
Rules) is proposed. An example of FIPA Contract-Net protocol is specified and
verified by this approach. To guarantee the global properties of procedurally
constructed MASs, in [21] a generalized linear temporal logic (GLTL) based agent
system is constructed. The workflow properties (similar to the message route in this
paer) are represented as temporal logic formulas and consequently can be verified by
model checker.

The above related work illustrates the various types of approaches for presenting
interaction protocol. In our approach, AUML/F-logic can be taken as a schema
transformation that transforms conceptual level to operational level. Also, it plays a
role of mediator for integrating objects in heterogeneous systems [26].

6 Conclusion

With the growing complexity of multiagent interaction in web-based applications, the
requirement of tools and techniques for representing mobile agent is growing in the
same way. This paper proposed a method to produce F-logic specifications for AUML
that extends its expressive power, and provides syntax, semantics, and inference rules.

This approach was illustrated using an example of electronic commerce systems,
which expressed how the various features of F-logic could be applied in AUML. These
logical specifications provided more reasoning power. Additionally, the formal
specification language is easily adapted to the system requirements.

 Modelling Protocols for Multiagent Interaction by F-Logic 281

The future work will explore the logic specifications of dynamical model of
electronic commerce systems, i.e. in a working environment such that new rules can be
inserted into the system. The transformation should reflect the corresponding logic
specifications and support the transformation rules.

Acknowledgment. Financial support for this work was provided by the National
Science Council Taiwan, under the contract NSC94-2416-H-239-003.

References

1. Loke, S.W., Rakotonirainy, A., Zaslavsky, A.: An enterprise viewpoint of wireless virtual
communities and the associated uses of software agents. In: Rahman, S.M. (ed.) Internet
Commerce and Software Agents: Cases, Technologies and Opportunities, pp. 265–287. Idea
Group Publishing, Hersey, PA, USA (2001)

2. FIPA.: FIPA Agent Management Specification. Foundation for Intelligent Physical
Agents(2002), //www.fipa.org

3. Alberti, M., Daolio, D., Torroni, P., Gavanelli, M., Lamma, E., Mello, P.: Specification and
verification of agent interaction protocols in a logic-based system. In: Proceedings of the
2004 ACM symposium on Applied computing, pp. 72–78 (2004)

4. Mineau, G.W., Missaoui, R., Godinx, R.: Conceptual modeling for data and knowledge
management. Data & Knowledge Engineering 33, 137–168 (2000)

5. Battista, G.D., Lenzerini, M.: Deductive entity relationship modeling. IEEE Transactions on
Knowledge and Data Engineering 5, 439–450 (1993)

6. Bourdeau, R.H., Chen, B.H.C.: A formal semantics for object model diagrams. IEEE
Transactions on Software Engineering 21, 799–821 (1995)

7. Lee, J.H.M., Pun, P.K.C.: Frame logic integration: A multi paradigm design methodology
and a programming language. Computer Languages 23, 25–42 (1997)

8. Hu, Y.-S., Modarres, M.: Time-dependent system knowledge representation based on
dynamic master logic diagrams. Control Engineering Practice 4, 89–98 (1996)

9. Guttag, J.V., Horning, J.J.: Larch: Languages and tools for formal specification. Springer,
Heidelberg (1993)

10. Bauer, B., Muller, J.P., Odell, J.: Agent UML: A formalism for specifying multiagent
interaction. In: Cuabcarubu, P., Wooldridge, M. (eds.) Agent-Oriented Software
Engineering, pp. 91–103. Springer, Heidelberg (2001)

11. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based
languages. Journal of the Association for Computing Machinery 42, 741–843 (1995)

12. FLORID Homepage (2006), http://dbis.informatik.uni-freiburg.de/
13. Ludäscher, B., Himmeröder, R., Lausen, G., W.M., Schlepphorst, C.: Managing

semistructured data with florid: a deductive object-oriented perspective. Information
systems 23, 589–613 (1998)

14. Fensel, D.: Graphical and formal knowledge specification with KARL. In: Proceedings of
the the International Conference on Expert Systems for Development, pp. 198–203 (1994)

15. Fensel, D., Angele, J., Studer, R.: The Knowledge acquisition and representation language,
KARL. IEEE Transactions on Knowledge and Data Engineering 10, 527–550 (1998)

16. Yang, G., Kifer, M.: FLORA: Implementing an efficient DOOD system using a tabling logic
engine. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber,
M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp.
1078–1093. Springer, Heidelberg (2000)

282 H.F. Lai

17. Paurobally, S., Chachkov, S., Jennings, N.R.: Developing agent interaction protocols using
graphical and logical methodologies. In: Dastani, M., Dix, J., El Fallah-Seghrouchni, A.
(eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp. 149–168. Springer, Heidelberg (2004)

18. Rudolph, E., Grabowski, J., Graubmann, P.: Tutorial on message sequence charts (MSC). In:
Proceedings of the FORTE/PSTV 1996 Conference (1996)

19. Ling, S., Loke, S.W.: Advanced Petri Nets for modelling mobile agent enabled
interorganizational workflows. In: Proceedings of the Ninth Annual IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems, pp. 245–252
(2002)

20. Ling, S., Loke, S.W.: Engineering Multiagent Systems Based on Interaction Protocols: A
Compositional Petri Net Approach. In: Camp, O. (ed.) Enterprise Information Systems V, pp.
279–285. Kluwer Academic, Netherlands (2004)

21. Pokorny, L.R., Ramakrishnan, C.R.: Modeling and verification of distributed autonomous
agents using logic programming. In: Leite, J.A., Omicini, A., Torroni, P., Yolum, p. (eds.)
DALT 2004. LNCS (LNAI), vol. 3476, pp. 148–165. Springer, Heidelberg (2005)

22. Harel, D.: Statecharts: a visual formalism for complex systems. Science Computer
Program 8, 231–274 (1987)

23. Paurobally, S., Cunningham, R., Jennings, N.R.: Developing agent interaction protocols
using graphical and logical methodologies. In: Workshop on Programming MAS, AAMAS
(2003)

24. Peterson, J.L.: Petri-Net Theory and Modeling of Systems. Prentice-Hall, Englewood Cliffs
(1981)

25. Bucci, G., Campanai, M., Nesi, P.: Tools for Specifying Real-Time Systems. Real-Time
Systems 8, 117–172 (1995)

26. Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25,
38–49 (1992)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 283–293, 2007.
© IFIP International Federation for Information Processing 2007

Adding Adaptability to Mailbox-Based Mobile IP

Liang Zhang1, Beihong Jin1, and Jiannong Cao2

1 Institute of Software, Chinese Academy of Sciences,
Hai Dian, Beijing, PRC

{zhangliang1216,jbh}@otcaix.iscas.ac.cn
2 The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong
csjcao@comp.polyu.edu.hk

Abstract. Mobile IP is one of the dominating protocols that provide mobility
support in the Internet. However, even with some proposed optimization tech-
niques, there is still space for improving the performance. In this paper, we pre-
sent a mailbox-based scheme to further improve the performance. In this
scheme, each mobile node migrating to a foreign network is associated with a
mailbox. A sender sends packets to the receiver’s mailbox, which will in turn
forward them to the receiver. During each handoff, a mobile node can decide
whether to move its mailbox and report the handoff to the home agent, or sim-
ply to report the handoff to the mailbox. In this way, both the workload on the
home agent and the registration delay can be reduced. Also, the scheme is adap-
tive. By applying the dynamic programming to compute the optimal mailbox’s
migration policy, the scheme can make the total cost minimized.

Keywords: mobile computing, mailbox, mobile IP, dynamic programming.

1 Introduction

The growth of wireless communication technologies and the advancement of laptop
and notebook computers induce a tremendous demand for mobile and nomadic com-
puting. Researchers have investigated Internet Protocol (IP) for mobile inter-
networking, leading to the development of a proposed standard for IP mobility sup-
port called Mobile IP [1].

However, Mobile IP suffers from the well-known triangle routing problem where
packages have to first take the detour to the home network before being forwarded to
the foreign network where the mobile node is currently residing. To deal with this
problem, Mobile IP route optimization [1] is proposed. Any node that communicates
with a mobile node maintains a binding cache. When the home agent intercepts a
packet for the mobile node outside the home network, it will send a binding update
message to the sender, informing it of the mobile node’s current care-of address. The
sender then updates its binding cache and tunnels any ensuing packets for the mobile
node directly to its care-of address. An extension to the registration process called
smooth handoff [1] enables a foreign agent to also make use of binding update to
reduce the packet loss during a handoff. The mobile node may request the new

284 L. Zhang, B. Jin, and J. Cao

foreign agent to send to the previous foreign agent a binding update message called
“Previous Foreign Agent Notification”, which will enable the previous foreign agent
to re-tunnel any packet for the mobile node to the new care-of address. Although
Mobile IP and route optimization provide general mechanisms for mobility support
in the Internet, there are still several performance problems that need to be addressed
[6].

In this paper, we present a mailbox-based scheme to alleviate the performance
problems stated above. Each mobile node migrating to a foreign network is associated
with a mailbox. A sender sends packets to the receiver’s mailbox, which will in turn
forward them to the receiver. During each handoff, a mobile node can decide whether
to move its mailbox and report the handoff to the home agent, or simply to report the
handoff to the mailbox. In this way, both the workload on the home agent and
the registration delay can be reduced. Since the mailbox is located somewhere in the
network closer to the receiver than the sender, the retransmission cost for the lost
packets can also be reduced. By separating the mailbox from its owner, we can
achieve adaptive location management that enables the dynamic tradeoff between the
packet delivery cost and the location registration cost to minimize the total cost.

The rest of the paper is organized as follows. Section 2 presents our mailbox-based
scheme. Section 3 proposes an adaptive algorithm to optimize the performance of our
scheme. Section 4 evaluates the performance. The final section concludes the paper.

2 A Mailbox-Based Scheme

In this paper, both home agents and foreign agents are referred to as mobility agents.
Each mobile node is associated with a mailbox, which is a data structure residing at a
mobility agent. As shown in Fig. 1, if a sender wants to send a packet to a mobile
node, it will simply send the packet to the receiver’s mailbox. Later, the receiver re-
ceives the packet from its mailbox.

Fig. 1. Mailbox-based scheme

Initially, the mailbox is residing in the same network as its owner. The mobile node
realizes that it has entered a new foreign network whenever it receives an “Agent
Advertisement” message [1] from a new foreign agent. Immediately, it sends a regis-
tration message to the old foreign agent where its mailbox resides. The old foreign
agent then decides whether or not to move the mailbox to the new foreign agent with
the consideration of two primary factors: the distance to the new foreign agent and the
communication traffic of the mobile node. If the mobile node is expected to receive
many packets while the distance is long, it will be costly to forward all these packets
to the new address and better to move the mailbox closer to the mobile node so as to

 Adding Adaptability to Mailbox-Based Mobile IP 285

achieve a more optimal route. On the other hand, if the mobile node seldom receives
packets or the distance is quite short, it is economical to leave the mailbox at where it
is to reduce the registration overhead. Therefore, how to decide the mailbox’s migra-
tion pattern adaptively according to the two factors can affect greatly the performance
of our scheme. We would like to postpone the discussion about this question in the
next section. As a summary, we differentiate two types of handoff in our scheme, i.e.,
handoff without mailbox and handoff with mailbox, and we name them local handoff
and home handoff, respectively.

Besides mailbox, another new data structure called address table is defined in each
mobility agent. Each entry in an address table has six attributes: 1) the home address
of the mobile node, 2) the mailbox’s address, 3) a valid tag, 4) a pointer to the mail-
box, 5) the care-of address of the mobile node, and 6) a time-to-live (TTL) timer. The
valid tag is used to indicate whether the mailbox is under migration or not, which also
implies whether the mailbox’s address is outdated or not. The TTL timer is used to
timeout trash entries in the address table. The scheme also defines operations for two
processes, Migrating and Packet-forwarding.

Fig. 2. Migrating

Upon receiving the advertisement from a new mobility agent MAa, the mobile node
MN determines that it has roamed to a new foreign network. It then initiates the regis-
tration process as shown in Fig. 2. It first uses gratuitous ARP [2] to update the ARP
caches of the nodes in the foreign network so that they will associate MN’s link layer
address with its home address. After that, it sends a “REGISTRATION” message to
MAa, within which the key information contained is the address of the mobility agent
MAm where the mailbox MB is currently residing.

Upon receiving the “REGISTRATION” message, MAa extracts the address of MAm
from the message, and sends a “MB_REGISTRATION” message to MAm.

Upon receiving the “MB_REGISTRATION” message, MAm makes a decision
whether or not to move MB to MAa. In case that MB does not migrate, MAm simply
updates the care-of address of MN to MAa. Otherwise, it will:

 set the valid tag of the corresponding entry in the address table to false, and
 send a “CREATE” message to MAa, requesting for a new mailbox MB’ for MN.
Upon receiving the “CREATE” message, MAa creates MB’ and adds an entry to its

address table to record this newly created mailbox. It also sends three messages:
 an “ACKNOLOGY” message to MN, informing it of the new address of MB’,
 an “MB_ACKNOLOGY” message to MAm, telling it the creation of MB’, and

286 L. Zhang, B. Jin, and J. Cao

 an “HA_REGISTRATION” message to the home agent HA, registering the new
address of the mailbox.
After receiving the “MB_ACKNOLOGY” message, MAm will:

 update the address of the mailbox in the address table to that of MB’,
 set the valid tag to true,
 activate the TTL timer,
 stream every packet buffered in MB to MB’,
 inform the new address of the mailbox to the senders of the buffered packets in MB
by sending “UPDATE” messages, and

 after all the buffered packets have been streamed out, deconstruct the mailbox and
setting null to these two attributes in the address table – the pointer to the mailbox
and the care-of address of the mobile node.

After receiving the “HA_REGISTRATION” message, HA updates the address of
the mailbox in its address table.

Fig. 3. Packet-forwarding

If a correspondent node CN wants to send a packet to MN, it will first check its
binding cache to see whether the address of MN’s mailbox has been cached locally or
not. If so, it will tunnel the packet to the cached address. Otherwise, it will send the
packet with regular IP routing to MN’s home address. Once the packet arrives in the
home network, HA will intercept the packet as it acts as a proxy ARP server for MN.

When a mobility agent receives a packet destined to MN, it will perform actions
according to Fig. 3. For a packet in MB to be forwarded to MN, MAm first checks the
valid tag. If it is false, i.e., the mailbox is migrating to a new foreign agent, MAm will
suspend the packet forwarding. It will rely on the migrating process to stream the
packet to the new location of the mailbox later. Otherwise, the valid tag is true and
MAm will directly tunnel the packet to the care-of address of MN.

3 An Adaptive Algorithm

In this section, we will first present the system model for a mobile network and the
walk model for a mobile node, which are adopted in many existing studies such as [3]
and [4]. The model assumes that the coverage area of a mobile network is partitioned
into cells. A cell is defined as the coverage area of a mobility agent that can exchange
packets with mobile nodes directly. One mobility agent serves only one cell and cells

 Adding Adaptability to Mailbox-Based Mobile IP 287

do not overlap with each other. A movement occurs when a mobile node moves from
the residing cell to one of its neighboring cells. The distance between any two cells in
the network is measured by the minimum number of cell boundary crossings for a
mobile node to travel from one cell to another. If we assume that a mobility agent is a
router in a cell that can communicate directly through wired lines with other mobility
agents in the neighboring cells, the distance between two mobility agents can be de-
fined as the distance between their cells.

 (x1,y1)

(x2,y2)

Fig. 4. System model Fig. 5. Walk model

We consider a grid configuration for a mobile network, which is composed of
equal-sized, rectangular and non-overlapping cells. With this configuration as shown
in Fig. 4, each cell has four neighbors and the distance between any two cells with the
coordinates (x1, y1) and (x2, y2) is |x2−x1|+|y2−y1|. We also consider a commonly used
walk model – the random walk model for a mobile node. In this model, a mobile node
moves to one of its four neighbors with equal probability of 1/4 as shown in Fig. 5.

Based on the model, we will develop an adaptive algorithm that can dynamically
adjust the mailbox’s migration pattern according to the two factors in order to opti-
mize the performance. The performance metric is the total communication cost over
the experimental period which includes both the location registration cost and the
packet forwarding cost. The communication cost is defined as the multiplication of
the number of messages sent, the message size and the traveling distance.

Table 1. Definition of parameters

Parameter Definition
fm(t) the (negative exponential) probability distribution function of the packet’s inter-arrival time
λ the mean packet arrival rate, i.e., fm(t) = λe-λt

fr(t) the (negative exponential) probability distribution function of the mobile node’s residence time at a cell
μ the mean residence time at a cell, i.e., fr(t) = μe-μt

η
the expected number of packets to be received at a cell, which is known as the packet-to-mobility ratio
λ/μ; it is actually the second primary factor that may affect the mailbox’s migration

Csd the proportionality constant between the signaling transmission cost and the transmission distance

Cpd the proportionality constant between the packet delivery cost and the transmission distance

Tsd the proportionality constant between the signaling transmission time and the transmission distance

w
the proportionality constant between the transmission cost (the transmission time) of the wireless link
and that of the wired link

M the number of correspondent nodes

In order to optimize the performance, we choose to use the dynamic programming
since it can help to make a sequence of inter-related choices to optimize the system
performance. Readers are referred to [5] for the detailed description and procedure

288 L. Zhang, B. Jin, and J. Cao

about the dynamic programming. Before applying the dynamic programming, let us
first precisely define our performance optimization problem. The experimental period
starts with the mobile node and its mailbox collocating at an initial foreign agent, and
ends after the mobile node has performed N migrations. The total communication cost
over this period can be expressed as follows.

 ()∑
=

+=
N

1i
packetsignalingtotal (i)Cost(i)CostCost (1)

where Costsignaling(i) and Costpacket(i) means the location registration cost during the
mobile node’s ith migration and the packet forwarding cost during the mobile node’s
residing at the new cell after its ith migration, respectively. Our performance optimi-
zation problem is to minimize (1).

Fig. 6 depicts the network scenario about the mobile node’s ith migration in our
scheme. The Current FA is the foreign agent after the mobile node’s ith migration
from the Previous FA. Therefore, the two foreign agents must be adjacent to each
other, i.e., d5 = d ± 1 where d is actually the first primary factor that may affect the
mailbox’s migration and the ± sign depends on whether the mobile node migrates
away from or close to the mailbox. In case of home handoff, the Current FA will
become the new residing place for the mailbox. Here d2, d4 and d7 are the average
distance to all the correspondent nodes.

Fig. 6. Network scenario in our scheme

Depending on whether the ith migration is a home handoff or a local handoff,
Costsignaling(i) can be expressed as follows. Readers are referred to Fig. 2 for details.

⎩
⎨
⎧

+
+++

=
handoff local a,d)d(w

handoff home a(i),Cost)ddd3(2w
(i)Cost

Cs

updateCs6
signaling

 (2)

where Costupdate(i) means the signaling cost for the binding updates to the correspon-
dent nodes during the mobile node’s ith migration and can be expressed as follows.

Cs4update ddM(i)Cost ××= (3)

Now come to discuss the expression of Costpacket(i). Normally, the packet forward-
ing cost, depending on the handoff type, can be expressed as follows.

⎪⎩

⎪
⎨
⎧

++
+

=
handoff local a,w)dd(d

handoff home a,w)d(d
(i)Cost

p

p

C4

C7

normal
 (4)

 Adding Adaptability to Mailbox-Based Mobile IP 289

However, as packet loss may occur during the mobile node’s migration, we have to
also consider the packet retransmission cost for those lost packets. In our scheme, the
lost packets are retransmitted from the nearby mailbox instead of the possibly far
away senders. Therefore, the cost for successfully delivering any lost packet to the
mobile node can be expressed as follows. Readers are referred to Fig. 6 for details.

Cp54sionretransmis w)ddwd(d (i)Cost ++++= (5)

During the period when the mobile node resides at the new cell after its ith migra-
tion, it is expected to receive η packets, within which a portion are retransmitted
packets since they were delivered based on the outdated location information. As we
know, the mailbox learns the new address of the mobile node only when it receives
the “MB_REGISTRATION” message from the new foreign agent MAa. Therefore,
the period of the outdated location information can be expressed as follows.

Tssionretransmis d)d(w(i)T += (6)

As the mean packet arrival rate is λ, the mean lost packets is λ×Tretransmission(i). The
mean packets that do not require retransmission are therefore η−λ×Tretransmission(i).
Costpacket(i) can now be expressed as follows.

(i)Cost(i)Tλ
(i)Cost(i))Tλ(η(i)Cost

sionretransmissionretransmis

normalsionretransmispacket

××
+××−= (7)

Fig. 7. Model for our cost optimization problem

Now let us start to formulate our cost optimization problem with the dynamic pro-
gramming. Fig. 7 graphically depicts the model where the dynamic programming is
utilized to optimize the communication cost for the next K migrations of the mobile

290 L. Zhang, B. Jin, and J. Cao

node. The circle represents the state, which means the distance between the mobile
node and its mailbox before the current migration; and the arrow represents the ac-
tion, which can be either a home handoff or a local handoff. Initially, the distance
between the mobile node and its mailbox is d5 according to Fig. 6. The mobile node
now starts its ith migration. If this migration results in a home handoff, the system
will go to state 0 since the mobile node and its mailbox are about to collocate. Other-
wise, the system goes to state d according to Fig. 6. Similarly, during the mobile
node’s (i+1)th migration, if the system state is 0, either the system will remain at state
0 should a home handoff takes place, or the system will go to state 1 should a local
handoff takes place; if the system state is d, not mentioning the home handoff, the
system’s next state will be either d+1 or d−1 depending on whether the mobile node
moves away from or close to its mailbox. We use a thick line to represent an action
with 100% certainty and a thin line to represent an action with possibility. With all the
necessary items for the dynamic programming defined, the backward induction algo-
rithm can be applied to derive the optimal decision policy for the mailbox’s migra-
tion. Readers are referred to [5] for details.

4 Performance Evaluation

In this section, we will evaluate the performance of our scheme with the adaptive
algorithm. First, let us conduct the performance modeling for the benchmark scheme
– Mobile IP route optimization with the smooth handoff extension. Fig. 8 depicts the
network scenario about the mobile node’s migration in this scheme. Here d8 is the
average distance from the Previous FA to all the correspondent nodes.

Fig. 8. Network scenario in the benchmark scheme

During each mobile node’s migration, different types of signaling messages will be
issued to the following entities: the home agent, the Previous FA and all the corre-
spondent nodes. Therefore, Costsignaling(i) can be expressed as follows.

 (i)Cost1)dd(w(i)Cost updateCs6signaling +++= (8)

Cs8update ddM(i)Cost ××= (9)

To derive Costpacket(i), we have to separately deal with the normal packet delivery
and the packet retransmission. Below list the expressions of the cost and the time
period of the normal packet delivery, and those of the packet retransmission. The

 Adding Adaptability to Mailbox-Based Mobile IP 291

packet retransmission period is after the mobile node’s migration to the new cell but
before the “Previous Foreign Agent Notification” message arrives at the Previous FA.

Cp7normal w)d(d(i)Cost += (10)

 (i)T1/μ(i)T sionretransmisnormal −= (11)

Cp78sionretransmis w)ddw(d(i)Cost +++= (12)

Tssionretransmis 1)dw((i)T += (13)

Therefore, Costpacket(i) can be expressed as follows.

(i)Cost(i)Tλ

(i)Cost(i)Tλ(i)Cost

sionretransmissionretransmis

normalnormalpacket

××
+××= (14)

As mentioned, our experiments start with the mobile node and its mailbox collocat-
ing at an initial foreign agent, where the distance to the home agent and the average
distance to the corresponding nodes are d1 and d2, respectively. We selectively choose
two (d1; d2) pairs: (100; 0) and (0; 100), where the first pair visualizes the scenario
when the mobile node is far away from the home agent but close to its correspondent
nodes, and the second pair shows the scenario in a reverse condition.

The experimental period lasts for 36 mobile node’s migrations; the signaling
transmission cost per hop

Csd is set to a normalized value 1; the packet delivery cost

per hop
Cpd is twice as high as

Csd ;
Tsd , which can be understood as the signaling

processing time on a router, is set to 0.05 sec; we assume the transmission cost (the
transmission delay) in the wireless environment is twice as high (long) as that in the
wired environment; and there are five active correspondent nodes.

Other parameters that affect the performance metric are d4, d6, d7, d8, η and K. As
the mobile node can move in any direction, the average value for d6 should be the
same as d1 and the average values for d4, d7 and d8 should be the same as d2. For sim-
plicity, we just replace d6 with d1, and d4, d7 and d8 with d2 in the equations. All these
distance values may be obtained from the routing table if it uses link state routing
protocols such as OSPF, and the packet-to-mobility ratio η is easy to obtain since the
mailbox acts as a relay and buffer station of the mobile node. We also select three Ks:
1, 5 and 10, where K=1 only considers the immediate benefit and K=10 takes more
future influence into the consideration.

Fig. 9 lists the experimental results. For all six diagrams, we use η as the x-axis,
and exam separately the signaling transmission cost, the packet forwarding cost and
the total communication cost under different experimental settings. We observe that
the signaling transmission cost increases as η rises. This is because as more packets
are received during each migration, it is more likely that the mailbox also moves, i.e.,
a home handoff occurs. For a home handoff, more signaling messages for the location
registration are needed than a local handoff. However, the packet forwarding cost
drops since after the mailbox’s migration, packets are routed in a direct path (sender
→ receiver (mailbox)), instead of the triangle routing (sender → mailbox → re-
ceiver), between the sender and the receiver.

292 L. Zhang, B. Jin, and J. Cao

0

200

400

600

800

1000

1200

1 4 9 14 19 24 29 34 39

η

S
i
g
n
a
l
i
n
g

T
r
a
n
s
m
i
s
s
i
o
n

K=1 K=5 K=10 Benchmark

0

1000

2000

3000

4000

5000

6000

1 4 9 14 19 24 29 34 39

η

S
i
g
n
a
l
i
n
g

T
r
a
n
s
m
i
s
s
i
o
n

K=1 K=5 K=10 Benchmark

(a) Signaling Transmission (d1; d2) = (100; 0) (b) Signaling Transmission (d1; d2) = (0; 100)

0

50

100

150

200

250

1 4 9 14 19 24 29 34 39

η

P
a
c
k
e
t

F
o
r
w
a
r
d
i
n
g
/
η

K=1 K=5 K=10 Benchmark

0

500

1000

1500

2000

2500

3000

1 4 9 14 19 24 29 34 39

η

P
a
c
k
e
t

F
o
r
w
a
r
d
i
n
g
/
η

K=1 K=5 K=10 Benchmark
(c) Packet Forwarding (d1; d2) = (100; 0) (d) Packet Forwarding (d1; d2) = (0; 100)

0

200

400

600

800

1000

1200

1400

1 4 9 14 19 24 29 34 39

η

T
o
t
a
l

C
o
s
t
/
η

K=1 K=5 K=10 Benchmark

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 9 14 19 24 29 34 39

η

T
o
t
a
l

C
o
s
t
/
η

K=1 K=5 K=10 Benchmark
(e) Total Communication (d1; d2) = (100; 0) (f) Total Communication (d1; d2) = (0; 100)

Fig. 9. Experimental result

We are pleased to discover that both the signaling transmission cost and the packet
forwarding cost of our scheme are smaller than those of the smooth handoff scheme.
For the signaling transmission cost, it is easy to understand the advantage of our
scheme since our scheme normally does not require the home agent be notified of
every mobile node’s migration while the smooth handoff scheme does. For the packet
forwarding cost, although the smooth handoff scheme may spend less for the normal
packet transmission, it would require significant cost for retransmitting lost packets,
especially when the distance to the senders d2 is long. This is because in our scheme,
the retransmission starts from the nearby mailbox while in the smooth handoff
scheme, the retransmission starts from the possibly distant senders. Finally, the total
cost of our scheme is smaller than that of the smooth handoff scheme.

Besides, a smaller K normally performs worse than a bigger K, which implies that
the dynamic programming configured with a smaller K does not produce the optimal
mailbox’s migration policy. This is because a smaller K only considers the myopic
benefit without thinking about the future effect. Generally speaking, the bigger K is,
the more future effect is considered, the more optimal migration policy of the mailbox
can be derived, and the less total communication cost is required.

5 Conclusion

In this paper, we propose a mailbox-based scheme with an adaptive algorithm to im-
prove the performance of Mobile IP in the following aspects: reduced workload on

 Adding Adaptability to Mailbox-Based Mobile IP 293

the home agent, fast handoff, reduced packet loss, high throughput, reduced retrans-
mission cost and delay, per-user-based adaptive location management, and dynamic
tradeoff between the packet delivery cost and the location registration cost. The ex-
periments conducted show a very sound result that demonstrates the benefits of using
the mailbox, especially when the home agent is far away from the current location of
the mobile node.

Acknowledgment

This work was supported by the National Natural Science Foundation of China under
Grant No. 60673123 and the National Hi-Tech Research and Development 863 Pro-
gram of China under Grant No. 2006AA01Z231.

References

1. Perkins, C.: IP Mobility Support for IPv4, RFC 3220 (January 2002)
2. Postel, J.: Multi-LAN Address Resolution, RFC 925 (October 1984)
3. Wang, Y., Chen, W., Ho, J.: Performance Analysis of Mobile IP Extended with Routing

Agents. In: Proceedings of European IASTED International Conference on Parallel and Dis-
tributed Systems (July 1998)

4. Akyildiz, F., Ho, J., Lin, Y.: Movement-Based Location Update and Selective Paging for
PCS Networks. The IEEE/ACM Transactions on Networking 4(4), 629–638 (1996)

5. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
6. Zhang, L., Cao, J., Das, S.K.: A Mailbox-based Scheme for Improving Mobile IP Perform-

ance. In: Proceedings of Mobile and Wireless Networks (May 2003)

Palpability Support Demonstrated

Jeppe Brønsted1, Erik Grönvall2, and David Fors3

1 Dept. of Computer Science, University of Aarhus
Aabogade 34, 8200 Aarhus N, Denmark

jb@daimi.au.dk
2 Communication Science Department, University of Siena

Via Roma 56, 53100 Siena, Italy
3 Dept. of Computer Science, Lund University

Ole Römers väg 3, 223 63 Lund, Sweden

Abstract. In ubiquitous computing, as more and more devices are em-
bedded into the environment, there is a risk that the user loses the under-
standing of the system. In normal use this is not always a problem, but
when breakdowns occur it is crucial that the user understands the system
to be able to handle the situation. The concept of palpable computing,
introduced by the PalCom project, denotes systems which support such
understandability. In PalCom, a set of prototype scenarios provide in-
put for an open software architecture and a conceptual framework for
palpable computing. One of these prototype scenarios is based on the
Active Surfaces concept in which therapists rehabilitate physically and
mentally impaired children by means of an activity that stimulates the
children both physically and cognitively.

In this paper we demonstrate how palpability can be supported in
a prototype of the Active Surfaces. Services on the tiles have been
developed using the PalCom service framework that allows them to
be combined into PalCom assemblies. The support for palpability is
shown by examples of use scenarios from the work of the therapist
who can inspect and alter the runtime state of the tiles to change
their configuration and cope with breakdown situations. The prototype
implementation runs on a standard PC simulating the network layer and
a first reference implementation has been made on the target embedded
platform.

Keywords: Palpable computing, ubiquitous computing, middleware,
services, assemblies, inspection, simulation framework.

1 Introduction

Palpable computing is a new perspective on ubiquitous computing, in which
traditional ubiquitous computing challenges such as invisibility and composi-
tion are complemented with visibility and deconstruction. The concept has been
formed based on the observation that when applied in real settings, ubiquitous
computing systems tend to become hard to understand for users. Mark Weiser
painted a vision of systems being ’physically invisible’ and that these systems

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 294–308, 2007.
c© IFIP International Federation for Information Processing 2007

Palpability Support Demonstrated 295

also mentally (as maybe physically) could disappear through use. Dr. Weiser
describes the concept well as follows; “Whenever people learn something suffi-
ciently well they cease to be aware of it.” and “The most profound technologies
are those that disappear” [1]. This implies not only that as we learn to master a
technology, we move the use (or perception) of it from a foreground to a back-
ground cue [2], but also that a technology that has the capacity to allow the
user to interact with or through it as a background process is a more thoughtful,
intense or reflective technology.

As part of the ubiquitous conceptual framework and closely related to the work
regarding foreground and background cues is the notion of ’calm technology’ [3].
Calm technology as described by Weiser and Brown regards how technology can
move from the centre of our attention out to the periphery, and between those
two states as required by the situation at hand. The vision of calm technology is
that technology should not overload us with information or require an ongoing
’active’ mental activity. Weiser and Brown argues that this can be reached in
two ways; 1) Allowing the technology (or information) to move between the
centre to the periphery of our attention (and between these two states) and 2)
by enhancing our peripheral reach. This is done by allowing more data to enter
the periphery cues. As described in their paper, a video conference could be
an example of technology that enhance the peripheral reach in respect to an
ordinary telephone call where the users cannot use facial and body expressions
as part of their communication [3].

In many ways, ubiquitous systems tries to embed the notion of ’ready at
hand’, meaning that these highly distributed, networked systems and devices
should adapt to the current needs of the user or users. In normal use the system
should be invisible and not interfere with the present task. However, when a
breakdown occurs the user should be able to inspect the system to determine
the reason and, if possible, resolve the situation. If the system is composed of
multiple devices, it should be possible to replace malfunctioning devices with
new ones without having to recompile or restart the system. We do not claim
that techniques such as self-reconfiguration, error detection and fault tolerance
should not be used. We make the observation that such mechanisms will never
be perfect and that we therefore, as a supplement, need a way to handle the
situations where the mechanisms are imperfect.

Palpable computing is researched in the EU IST project PalCom [4]. The main
output of the project is a conceptual framework for palpable computing, an open
architecture supporting palpable computing, and a collection of tools to be used
in development of palpable computing applications. A part of the work in the
project deals with developing palpable computing prototypes using participatory
design to provide input to the conceptual framework and the design of the open
architecture.

The Active Surfaces [5] concept provides support for physical-functional and
cognitive rehabilitation in a swimming pool setting. The concept has been
developed using participatory design techniques in corporation with thera-
pists and patients. Through analysis of the rehabilitation practice an activity

296 J. Brønsted, E. Grönvall, and D. Fors

(i.e. a number of different games) has been developed in which children assem-
ble floating tiles into meaningful configurations. Each of the tiles is a resource
constrained embedded system that communicates using only a low bandwidth
short-range infrared link. The only output available to the user is a set of light
emitting diodes and therefore the game is an example of a ubiquitous computing
system where it is essential that the physical and functional characteristics are
such that palpability can emerge during use.

For the software on the tiles, support for palpability is achieved by adhering to
the PalCom open architecture [6], and by building on the PalCom service frame-
work [7]. Services developed using the framework can be combined into PalCom
assemblies, which coordinate the services and provide support for inspection,
deconstruction and reconstruction. Through interaction with the assemblies, the
therapist can inspect and change the configurations of the tiles. This way, she
can adapt the therapeutic activity in the middle of an exercise, and the visibility
given by the assemblies helps her cope with unexpected breakdown situations.

The rest of the paper is structured as follows. In the next section we describe
the Active Surfaces concept and the physical and functional aspects of the pro-
totype. Section 3 presents the PalCom software architecture and demonstrates
how it can be used to support palpability in the implementation of the proto-
type. In Section 4 scenarios from therapist work are presented, together with an
evaluation of how the prototype supports palpable qualities. Section 5 sums up
conclusions and presents future work.

2 Active Surfaces

Active Surfaces is a concept developed for rehabilitation practitioners being
a support for physical-functional and cognitive rehabilitation treatments in a
swimming pool setting. Therapists working in cognitive and physical rehabil-
itation with disabled patients usually experience their job as challenging and
demanding. Every time the therapist starts a treatment she has to define a spe-
cific program and ad hoc solutions with the aim of designing a rehabilitation
intervention that could adapt to the individual patients’ needs. Thus, the work
of the therapist is mainly characterised by creativity both in designing engaging
activities and suitable tools.

The lack of integration of physical and cognitive rehabilitation represents a
constraint for current rehabilitation practice. The cognitive tasks are usually too
static and children may lose attention. On the other hand, motor rehabilitation
is very demanding at a physical level and is based on repetitive sequences of
actions: patients often perceive them as tiring and not engaging. Here the Active
Surfaces allow an integration of these two therapeutic goals with the activity.
Water as such is an interesting context from the activity perspective; Water
creates a safe context where impaired people can move autonomously relying
on the added support to the body, something they cannot do elsewhere. Apart
from this, water also poses specific and interesting research issues both for the
development of digital technologies and for the therapeutic practice.

Palpability Support Demonstrated 297

The work has been driven following a co-evolutionary method [8,9]. The ap-
proach integrates participatory design with creative concept design, using differ-
ent typologies of scenarios for converging ideas into solutions. The concept and
project has been developed together with children affected by different impair-
ments undergoing therapeutic activities in the swimming pool, their parents,
trainers and therapists at the swimming pool and at the ‘Le Scotte’ hospital
in Siena, Italy. The early phases of the fieldwork have been devoted to under-
stand the activity, to define requirements, and to collect best practices. On this
basis, the concept of the Active Surfaces has been developed, capitalising on
participatory design activities and creative workshops together with Travelling
Architect [10] and Future Lab [11] sessions.

2.1 The Prototype

Fig. 1. Tiles

The prototype consists of a set of
floating tiles (figure 1) that can be
connected to each other to form a
network. The tiles support multiple
games by having a simple compos-
able physical appearance and multi-
purpose programmable hardware. On
each of the tiles’ four sides magnets
are placed to make the tiles “snap”
together when they are in close vicin-
ity. On the top of the tile is a replace-
able plastic cover also held in place by magnets. The image on the cover depends
on the game. On each side of the tiles light emitting diodes (LEDs) provide visual
feedback to the user.

Inside each tile an embedded system uses infrared light to communi-
cate with and detect the presence of other tiles. Two tiles can only com-
municate if they are close to each other. Figure 2 shows an overview of
the hardware components in the tiles. The main computational unit is
the UNC20 module, which is an ARM7-based embedded system running
uClinux[12] at 55MHz with approximately 8MB ram. The UNC20 module

Tile

UNC20

DLP
(IR ports,
IR Modulator, LED
controller, LEDs)

RS-232

Fig. 2. Hardware

communicates with a sideboard using
a serial connection. The sideboard is
responsible for controlling the infrared
communication and the LEDs. The
bandwidth of the infrared communi-
cation is approximately 600 bits per
second.

2.2 Games

The tiles support multiple games and in the following we describe a few sug-
gestions. To change the current game the therapist connects the tile to a PDA

298 J. Brønsted, E. Grönvall, and D. Fors

running PalCom software. Since the PDA is not suited for a wet environment
this should be done prior to the training activity.

A lot of games can be imagined for the Active Surfaces. However, for a game
to be appropriate for the tiles it should support both physical and cognitive reha-
bilitation while at the same time be implementable on the resource-constrained
devices. Furthermore, to be able to help a wide range of patients the set of games
should be of varying difficulty, both on the physical and on the cognitive level.
Finally, the games should be open ended and configurable so that they can be
adapted and customised to each rehabilitation session.

In this section we describe three games with different properties with respect
to physical and cognitive rehabilitation. The first game, catch, is meant to only
require simple cognitive effort but challenges the patients reflexes, speed, and
coordination. The second game, scrabble, has the requirement that the patient
should be able to form words out of letters. The last game, puzzle, is a traditional
puzzle game in which an image is created by assembling the tiles in a specific
pattern.

Fig. 3. Catch

Catch. In the catch game the therapist
aligns a set of tiles and gives another tile
to the patient (at the bottom in figure 3).
When the game is started the point of the
game is for the patient to try to catch the
light by approaching her tile to the glowing
tile within a certain timeframe. If she suc-
ceeds another random tile will light up (not
hers) and she tries to catch that one. When
she eventually fails to catch the light before
the time limit her tile will blink how many
lights she caught. The game can be adapted
to the patient by configuring the length of the timeframe.

Scrabble. In the scrabble game each tile has a letter on the surface. The patient
uses the tiles to create words. When a tile is part of a word it lights up on all four
sides. Each tile should be aware of what letter it has on the face. The memory
requirement for the game depends on the number of tiles and on which letters
the tiles have. As an example at least 24 English words can be generated from
letters on the tiles in figure 41. Since this number grows exponentially with the
number of tiles it is not feasible to store all possible combinations on each tile.
Instead, only the valid words for a particular tile-letter configuration should
be uploaded to the tiles. The letter configuration should therefore be uploaded
along with the game before the training activity.

1 a, ad, at, act, arc, art, cad, car, cat, had, hat, rat, tad, tar, arch, card, cart, char,
chat, dart, hard, hart, chard, and chart

Palpability Support Demonstrated 299

C R DA
T

H
A
T

H
R DC

Fig. 4. Scrabble

Puzzle. In the puzzle game the face of each tile is part of a larger image
(see figure 5). Initially the tiles are spread in a random pattern after which
the patient starts to solve the puzzle. As the game progresses the patient gets
continuous feedback from the LEDs. When two tiles are connected correctly the
corresponding sides light up (fig. 5a). When all of a tile’s neighbours are correct
all sides of that tile light up (fig. 5b), and finally when the puzzle is solved the
outline of the solution lights up (fig. 5c).

(a) (b) (c)

Fig. 5. Puzzle

During the session the therapist can change the faces of the tiles to make a
new puzzle. To reprogram the tiles a special assembler tile is used. The assembler
tile has the same physical appearance as the other tiles, but also has a button.
To make the tiles remember the new solution they are arranged in the solution
pattern and the assembler tile is put next to one of the tiles and the button is
pressed. After this, the tiles will remember the new solution and can be scattered
randomly again. This way of programming the tiles by showing them the correct
solution has some similarities with programming by example [13] and physical
programming [14]. The LED feedback can be configured by the therapist to alter
the difficulty level of the game. It is, e.g., easier to solve the puzzle if all the
outer edges of the final solution will light up as the game is started.

300 J. Brønsted, E. Grönvall, and D. Fors

The different game types described above all have different game rules. These
rules defines the base of a game. Apart from them, different behaviour can be
configured to support the game rules and the activity. This can for example be
different output to the end-user to aid in accomplishing the task, i.e. the game.
This configuration can be physical and logical.

3 Implementation

In this section we demonstrate how the PalCom software architecture and run-
time system can be used to implement the Active Surfaces prototype in a way
that supports palpability. We describe the PalCom runtime system (section 3.1)
and a simulation framework that can be used to experiment with the tiles on
a standard PC (section 3.2). The top layer of the runtime system is the appli-
cation layer in which applications are built by composing services (section 3.3)
into assemblies (section 3.4). Finally, in section 3.5, the implementation of the
puzzle game is described.

3.1 PalCom Runtime System

Manual & task-driven Assembly Construction

Runtime Components Services Assemblies

Application Layer

Base J-libs

Pal-VM

J-Base JRE

Java VM (JVM)

Runtime Engine

Service Management

Assembly Management

Resource Mgt. Contingency Mgt.

GUI/Display (opt.)

Persistency (opt.)

Storage (opt.)

Middleware Management

Operating System (opt.)

Hardware

Execution Platform

Runtime Environment

Introspection Communication Discovery

Process & Thread

Core

or

Fig. 6. PalCom layered runtime system

The PalCom runtime system (see
figure 6) consists of four layers:
the execution platform, the runtime
environment, the middleware man-
agement layer, and the application
layer. The execution platform con-
sists of hardware and optionally an
operating system. Presently multiple
hardware platforms are supported
including the UNC20 [15] and stan-
dard PCs. The runtime environment
consists of standard libraries and a
runtime engine which can be Sun’s
Java VM or the Pal-VM [16], which
is a compact virtual machine spe-
cially designed for embedded sys-
tems for ubiquitous computing. If
the hardware platform is the UNC20
only the Pal-VM is supported. The
middleware management layer con-
sists of managers handling resources, services, assemblies, and contingencies.
For further description of the middleware managers we refer to [6]. At the time
of writing, the memory footprint of the middleware management layer is too
big to fit into the memory of the UNC20 (app. 8MB). Therefore, concurrently
with the development of the hardware for the tiles and the optimisation of the
middleware management layer, the software for the tiles has been developed to

Palpability Support Demonstrated 301

run on a standard PC with simulated infrared communication, on top of Sun’s
Java VM. When the middleware management layer fits into the memory of the
UNC20, the implementation of the prototype should be able to run unaltered
on the UNC20.

3.2 Simulation Framework

To ease the development of game logic and software for the tiles a simulation
framework (figure 7) has been developed. Having a simulator available makes
it possible to develop software and hardware in parallel and high level tools
that are not available for the embedded platform can be used for debugging and
profiling. Furthermore, testing involving repeated rearrangement of the tiles is
much easier done using a mouse in a graphical user interface than physically
moving the actual tiles around.

The simulator consists of a model of the swimming pool as a medium for in-
frared communication and a graphical user interface for manipulating the phys-
ical location of the tiles. The user interface is connected with the pool model
so that when a tile is moved in the user interface, the pool model is updated
accordingly.

:Tile

MAL

:Tile

MAL

:Tile

MAL

:Tile

MAL

:PoolModel

Fig. 7. Simulation framework

The model of the pool is also used in the medium abstraction layer of each
of the tiles. When a tile sends a message, the medium abstraction layer of the
tile accesses the pool model to determine which tiles the tile is connected to
(if any) and delivers the message accordingly. From an application developer’s
perspective it is transparent whether the simulation framework or the physical
hardware is used. The only part of the middleware that interacts with the simu-
lation framework is the media abstraction layer and therefore system behaviour
experienced on the simulator is likely to be similar on the embedded platform.

3.3 Services

The software implementing the functionality of the tiles is divided into services
using the PalCom service framework [7]. As described in [6] a PalCom service is
an entity that 1) contains a number of runtime components, 2) is discoverable,
and 3) can be invoked remotely. The interaction with the service is done using

302 J. Brønsted, E. Grönvall, and D. Fors

an explicitly defined service interface. A PalCom service has a set of commands,
in-going or out-going, that optionally can be grouped. An in-going command
specifies a point of entry to the service that is similar to a traditional interface
except that invocation of the command is done in an asynchronous manner
and that no results are returned. Outgoing commands specify what in-going
commands the service invokes. Both in-going and outgoing commands have types
specified by MIME [17] strings. We adopt the UML lollipop interface notation
for commands - provided interface (“closed lollipop”) for in-going commands
and required interface (“open lollipop”) for outgoing commands.

PalCom services can be bound or unbound. Bound services are tied to the
hardware device on which they run, and typically expose functionality in the
hardware for remote use. Unbound services, on the other hand, are not tied to
the hardware and can thus be moved to and installed on new devices. We use a
UML stereotype <<unbound>> for unbound services.

3.4 Assemblies

Services are connected by means of assemblies. The assembly is PalCom’s mech-
anism for service coordination, central in the project’s approach to support for
construction and deconstruction of palpable systems. A system that is con-
structed using assemblies can be inspected in a service browser [18], making
its inner structure visible at a certain level. This gives better understanding of
the system, and is particularly important when a system breaks down. Further-
more, the assembly concept targets construction of systems from services that
were not originally created for cooperation with each other. By inspecting the in-
terfaces of a set of services, it is possible to construct an assembly that combines
them. Service composition has previously been used to implement ubiquitous
computing applications [19].

Assemblies are defined by assembly scripts that can be loaded at runtime by
interacting with an assembly manager (see figure 6). When an assembly is loaded
the assembly manager makes the appropriate connections and governs the flow
of service invocations. We use the nesting mechanism in UML for assemblies.

One goal of the implementation of the tiles has been to make it possible to
replace the game logic easily without rebooting the devices. This is done using
assemblies. A set of basic services encapsulates the basic hardware functionality
of the tiles and each game is implemented as one or more unbound services
that can be connected to these services. The basic services of the tiles are a LED
service controlling the LEDs, a Connectivity service detecting the presence of
neighbour tiles, and a Touch service receiving input from the button if one is
present (as is the case for the assembler tile in the puzzle game). The combination
of the assembly and the unbound services for the game logic can be replaced
when switching to another game. At present only the puzzle game has been
implemented.

The split in functionality between an assembly and an unbound service is
normal for a PalCom system. The assembly captures the coordination logic be-
tween services, while the services perform most of the calculations. For adding

Palpability Support Demonstrated 303

behaviour to a set of services without programming a new service it is possible to
express some calculation in assembly scripts, but the assembly script language is
intended to be much simpler than the general-purpose programming languages
normally used for implementing services. Therefore, complex calculations are
implemented in unbound services that are incorporated when constructing an
assembly. Finding the right level of sophistication in the assembly script lan-
guage, and how much should be delegated to unbound services is a challenge
that is under active research in the project.

3.5 The Puzzle Game

As described in [20] each of the tiles can be in one of three states: sideHappy,
localHappy, or globalHappy. The states correspond to the types of feedback given
by the tiles in the game. In figure 5, the top-right tile is sideHappy in figure 5a,
localHappy in figure 5b, and globalHappy in figure 5c. Three rules determine
which state a tile is in:

1. A tile is sideHappy if it has less than four correct sides.2

2. It is localHappy if it has four correct sides but at least one of the other tiles
are sideHappy. This means that the tile has found its place in the puzzle,
but the complete puzzle is not solved.

3. If no tile is sideHappy then all tiles are globalHappy. The puzzle is solved.

As can be seen from these simple rules, the game has a notion of global state,
namely, whether there is at least one sideHappy node. This information is used
by the tiles to distinguish whether the tile is localHappy or globalHappy. If a
tile has less than four correct sides it does not need this information (because of
rule 1).

The global state is maintained by handling two situations: The first situation
occurs when a tile observes that it has four correct sides instead of three. It then
broadcasts (by using the publish-subscribe mechanism of the communication
model) a challenge to the other nodes requiring any sideHappy nodes to reply
immediately (also with a broadcast). If no responses are received within a certain
timeframe it is concluded that there are no sideHappy nodes and that the node
therefore instead of being sideHappy should be globalHappy. If a response is
received the node should be localHappy. When a localHappy node receives a
challenge it treats it as if it was originating from itself - the node sets a timer and
waits for responses. It is assumed that the solution of the puzzle is connected
and includes all nodes and therefore it cannot be the case that no nodes are
sideHappy in a proper subset of all the nodes. Therefore, if there is a sideHappy
node there is a path from that node to the node that initiated the challenge.

The second situation, inverse to the first one, occurs when a node observes
that it has three correct sides instead of four. The new state of the node is now
sideHappy. If the node was globalHappy before the other nodes are unaware that
2 We define a correct side of a tile to be a side that has a correct neighbour or has no

neighbour and should have no neighbour according to the solution.

304 J. Brønsted, E. Grönvall, and D. Fors

the node is now sideHappy, and therefore a message is broadcasted specifying
so. If the node was localHappy before, it can assume that there is at least one
sideHappy node in the graph it is connected to. The above paragraphs describe
how the global state is maintained. Alternately, this could be done using the
two-phase commit (2PC) protocol. The 2PC protocol uses, however, a lot more
communication and since the inter-node communication bandwidth is approxi-
mately 600 bits/second the protocol has been deemed inappropriate.

Fig. 8. Services in the puzzle game

Figure 8 shows an UML deployment di-
agram outlining the structure of the im-
plementation. In the puzzle game there
are two types of tiles - the normal tiles
and the assembler tile. The normal tiles
communicate with each other and with
the assembler tile using IR communica-
tion. In the normal tiles the PuzzleAsm
assembly (listed in figure 9) connects the
basic services to the unbound services
handling the game logic. The Puzzle ser-
vice receives connectivity events from the
Connectivity service (line 18–20 in figure 9) and determines the local state
of the tile. This information is sent to the LED service (line 21–26) and to the
Coord service (line 27–32) that coordinates the global state using the algorithm
specified above. If all tiles are correctly aligned the Coord service notifies the
LED service (line 33–35). The assembler tile contains a Configure service with
the responsibility of initiating and configuring the game and the PuzzleConfAsm
assembly to connect it to the basic services.

4 Evaluation

We argue that a system can be designed to have some palpable behaviour from an
activity perspective in the sense that the system is easily perceivable and allows
for spontaneous interaction. During normal use it can be very hard for a user to
perceive the difference between a system running a palpable framework or not.
But if a breakdown occurs, these systems lose all their palpable qualities if the
qualities only were implemented ’in the interface’. On the other hand, a system
can run the palpable framework, without a user perceiving any palpability in the
use of the system. If the system is not designed to communicate its palpability to
the users, palpability will not be perceived by the users. But finally, if combined,
a much higher level of palpability can be reached within a system. Palpability is
not only about internal structure of the software, it is also about communication
and interaction.

In Active Surfaces, as in other distributed systems that are characterised by a
high level of configurability and limited output capability, the contingencies that
might occur over time is of special interest and have to be dealt with. Especially
those that can occur in a multi-user environment. Multi-user not only with

Palpability Support Demonstrated 305

1 assembly PuzzleAsm {
2 devices {
3 device = urn:palcom://Tile_1;
4 }
5 services {
6 Connectivity on device = Connectivity;
7 Puzzle on device = Puzzle;
8 HappyCoord on device = HappyCoord;
9 LED on device = LED;

10 }
11 connections {
12 Connectivity -> this;
13 Puzzle -> this;
14 HappyCoord -> this;
15 LED -> this;
16 }
17 script {
18 when connectivityUpdate from Connectivity {
19 send connectivityUpdated(thisevent.param) to Puzzle;
20 }
21 when localHappy from Puzzle {
22 send setled(’1 1 1 1’) to LED;
23 }
24 when sideHappy from Puzzle {
25 send setled(thisevent.sides) to LED;
26 }
27 when localHappy from Puzzle {
28 send localHappy() to HappyCoord;
29 }
30 when sideHappy from Puzzle {
31 send sideHappy() to HappyCoord;
32 }
33 when globalHappy from HappyCoord {
34 send setled(’2 2 2 2’) to LED;
35 }
36 }
37 }

Fig. 9. Puzzle assembly script

respect to the number of users, but also with respect to different kinds of users.
The challenge here is to allow these users to be in control [16], a key challenge in
ubiquitous computing addressed by Palpable computing. We will try to visualise
this point with a simple scenario.

One day two therapists work at the swimming pool. During the day dif-
ferent children arrive to start their sessions. One of the therapists uses
the assembler tile to program and then configure 5 tiles to take part in
the therapeutic activity concerning one of the children. She makes a puz-
zle game with stable and blinking light feedback to indicate the different
states of the system. While she is at lunch, her colleague takes 7 tiles
to use with another child. By mistake, she includes one of the tiles con-
figured in the ’first’ game. As the first therapist returns after lunch, she
tries to continue the activity. Now one of the tiles acts in a strange way,
or not at all. As the second therapist now has finished her work, the first
therapist cannot consult her to realise that she might have altered the
game. As the first therapist perceives the situation, the Active Surfaces
worked before lunch, and now they do not.

In distributed and resource constrained systems, many error situations
can occur and normally it can be hard for a user to find the reason behind a

306 J. Brønsted, E. Grönvall, and D. Fors

problem or a mismatch. The assembler tile introduced before in this paper, can,
besides being used in the therapeutic activity, also be used as an inspection tool.
The therapist can utilise the IR communication protocol to inspect the running
services within each tile. Through the inspection the therapist can understand
what services and assemblies are running, how they are configured and detect
whether there are resource problems that have to be solved. The therapist starts
to inspect the game service, and realises immediately that the tile configuration
has been altered. It was not a system error. The therapist reconfigures the tile
and can carry on the activity in the swimming pool.

The Active Surfaces system has been developed together with the users
(mainly therapists) of the system. The use of the Participatory Design [21]
method including different iterations of mock-ups, prototypes and Wizard of
Oz [22] sessions indicate that end-users can perceive and control the Active Sur-
faces as described above. Further full-scale trials have to be carried out to fully
support this claim.

The simple scenario demonstrates the need for inspection and user control.
Here the therapist initially perceives the behavioural mismatch as a bug or error
in the system. In reality all components behave as they should, but one of the
tiles have been reconfigured without the knowledge of the current user. It is an
example of an error occurring over time in one of the distributed components,
even when the system should have been idle. The user must be provided with
tools that allow him to understand or ’look inside’ the system to overcome the
mismatch. It is important that the user understands that this is not an error; it
is a misconfiguration that can be overcome.

5 Conclusions and Future Work

In this paper we have described the implementation of the Active Surfaces proto-
type, which is used in physical and cognitive rehabilitation work. We have shown
in an example scenario how palpable qualities in a system can be valuable when
the system behaves in unexpected ways. In those situations, it is beneficial for
the user to have a system that is built as a set of services combined into assem-
blies. Palpable system allows for inspection, so errors and misconfigurations can
be located and corrected by end users.

The Active Surfaces prototype has been implemented in a distributed, em-
bedded system, executing in a set of floating tiles, and in a simulation framework
running on a standard PC. Experiences gained during the work on the prototype
provide input to the on-going development of the PalCom assembly concept. The
prototype implementation has helped concretise requirements for supporting
more powerful coordination logic, including coordination based on broadcast
communication. The structure of the tile games calls for assemblies that span
over multiple physical devices, and for decentralised assemblies that do not
require particular devices always to be present. When assembly descriptions can

Palpability Support Demonstrated 307

express such behaviour, less coordination logic has to be delegated to unbound
services.

Acknowledgements. Thanks to Laura Cardosi, parents and children for their
open-minded collaboration and continuous support during fieldwork and partic-
ipatory design. We also would like to thank our colleagues at our universities,
especially Alessandro Pollini, Patrizia Marti, Alessia Rullo, Boris Magnusson,
Jacob Frølund, Henrik Gammelmark, and Mie Schou Olsen. The research was
part of the European IST project PalCom.

References

1. Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput. Com-
mun. Rev. 3(3), 3–11 (1999)

2. Buxton, W.: Integrating the periphery and context: A new model of telematics. In:
Proceedings of Graphics Interface, pp. 239–246 (1995)

3. Weiser, M., Brown, J.S.: Designing calm technology. PowerGrid Journal (1996)

4. PalCom - making computing palpable, http://www.ist-palcom.org
5. Grönvall, E., Marti, P., Pollini, A., Rullo, A.: Active surfaces: a novel concept for

end-user composition. In: NordiCHI 2006. Proceedings of the 4th Nordic conference
on Human-computer interaction, pp. 96–104. ACM Press, New York (2006)

6. PalCom: PalCom External Report no 50: Deliverable 39 (2.2.2): PalCom Open
Architecture. Technical report, PalCom Project IST-002057 (2007)

7. Svensson, D.: PalCom Working Note #112: Service framework. Technical report,
PalCom Project IST-002057 (2006)

8. Marti, P., Rizzo, A.: Levels of design: from usability to experience. In: Proceedings
of HCI International (July 2003)

9. Marti, P., Moderini, C.: Creative design in safety critical systems. In: Proceedings
of ECCE 11 (September 2002)

10. Corry, A.V., Hansen, K.M., Svensson, D.: Traveling architects – a new way of
herding cats. Quality of Software Architectures, pp. 111–126 (2006)

11. Büscher, M., Kristensen, M., Mogensen, P.: Making the future palpable: Notes from
a major incident future laboratory. In: Proceedings of the 4th International Con-
ference on Information Systems for Crisis Response and Management (ISCRAM)
(May 2007)

12. uClinux, http://www.uclinux.org/
13. Myers, B.A.: Visual programming, programming by example, and program visual-

ization: a taxonomy. SIGCHI Bull. 17(4), 59–66 (1986)

14. Montemayor, J., Druin, A., Farber, A., Simms, S., Churaman, W., D’Amour, A.:
Physical programming: designing tools for children to create physical interactive
environments. In: CHI 2002. Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 299–306. ACM Press, New York (2002)

15. UNC20, http://www.unc20.net/
16. Schultz, U.P., Corry, E., Lund, K.V.: Virtual machines for ambient computing:

Virtual machines for ambient computing: A palpable computing perspective. In:
Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, Springer, Heidelberg (2005)

17. MIME Media Types, http://www.iana.org/assignments/media-types/

http://www.ist-palcom.org
http://www.uclinux.org/
http://www.unc20.net/
http://www.iana.org/assignments/media-types/

308 J. Brønsted, E. Grönvall, and D. Fors

18. PalCom: PalCom External Report no 57: Deliverable 43 (2.6.2): End-User Com-
position: Software support for assemblies. Technical report, PalCom Project IST-
002057 (2007)

19. Brønsted, J., Hansen, K.M., Ingstrup, M.: A survey of service composition mecha-
nisms in ubiquitous computing. In: Second Workshop on Requirements and Solu-
tions for Pervasive Software Infrastructures (RSPSI) at Ubicomp (to appear, 2007)

20. Grönvall, E., Pollini, A., Rullo, A., Svensson, D.: Designing game logics for dynamic
active surfaces. Presented at MUIA 2006: third international workshop on mobile
and ubiquitous information access (2006)

21. Greenbaum, J., Kyng, M.: Design at work: cooperative design of computer systems.
Lawrence Erlbaum Associates, Inc, Mahwah (1992)

22. Erdmann, R.L., Neal, A.S.: Laboratory vs. field experimentation in human factors–
an evaluation of an experimental self-service airline ticket vendor. Human Fac-
tors 13(6), 521–531 (1971)

GPS-Based Location Extraction and Presence

Management for Mobile Instant Messenger�

Dexter H. Hu and Cho-Li Wang

Department of Computer Science, The University of Hong Kong,
Pokfulam Road, Hong Kong
{hyhu,clwang}@cs.hku.hk

Abstract. Location is the most essential presence information for mo-
bile users. In this paper, we present an improved time-based clustering
technique for extracting significant locations from GPS data stream. This
new location extraction mechanism is incorporated with Google Maps
for realizing cooperative place annotation on mobile instant messengers
(MIM). To enhance the context-awareness of the MIM system, we fur-
ther develop an ontology-based presence model for inferring the location
clues of IM buddies. The GPS-based location extraction algorithm has
been implemented on a Smartphone and evaluated using a real-life GPS
trace. We show that the proposed clustering algorithm can achieve more
accurate results as it considers the time interval of intermittent location
revisits. The incorporation of location information with the high-level
contexts, such as mobile user’s current activity and their social relation-
ship, can achieve more responsive and accurate presence update.

1 Introduction

Instant Messenger (IM), characterized by its instantaneous message delivery and
presence awareness, has become an important part of our everyday life. With the
advancement of cellular technology (e.g., GPRS), it has become possible to get
the instant messenger services through mobile phones. As the mobile IM users
could potentially move from place to place, location information becomes the
most essential contextual cue among the mobile IM users. Location awareness
among the communicating buddies makes collaboration more effective in field-
work or on-site business as the communication attempts can be initiated without
being “blind” or intrusive.

In recent years, owing to the low-cost and lightweight Global Positioning
System (GPS) solutions, more and more mobile devices are equipped with GPS
functionality. Geospatial data can be obtained by mobile users in real time. To
make the GPS-based location service be truly useful for the mobile IM users, we
address three issues in this research. First, the solution must be able to filter out
useless GPS location data on the fly, as user’s mobility is highly dynamic and

� This work is supported by National Natural Science Foundation of China (NSFC)
Grant No. 60533040.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 309–320, 2007.
c© IFIP International Federation for Information Processing 2007

310 D.H. Hu and C.-L. Wang

evolving. Moreover, the GPS-based location service should have an accurate and
efficient location model to extract most of the places that users deem important
in real life.

Second, after detecting the significant locations, raw location data (longitude,
latitude, etc.) should be translated to more symbolic, personally meaningful
place annotations. With the location extraction unit built on the mobile IM,
all IM users become the location information providers. Users potentially can
acquire location information from their buddies through relating new locations
to some existing annotations. As thus, mobile users can rapidly access spatial
information through such location knowledge sharing. So far this feature is not
available in most mobile IM solutions.

Third, most instant messengers support presence management which checks
the presence of the user’s buddies (e.g., “busy”, “off line”, “away”) and provides
a visual indication of each buddy’s presence status on the IM client. Location
awareness could potentially enable the development of more advanced presence
management scheme for MIM. For example, the presence management in MIM
should further consider what sort of presence information should be available
to whom, and under which circumstances according to the given location infor-
mation. It also requires to incorporate other context information (e.g., activity
status, people’s relationship) to infer each buddy’s presence status.

In this paper, we present a mobile instant messenger (MIM) with three new
features: (1) Improved location extraction algorithm, an on-line clustering algo-
rithm to extract significant locations more accurately from raw GPS data. We
assume there is no location knowledge (e.g., GPS trace) priori the execution
of the clustering as the location service is usually needed in a new or partial
familiar environment where not every place or path is known. (2) Cooperative
place annotation. Google Maps is integrated to allow mobile users to share place
markers among IM buddies for creating his/her personal map. (3) Context-aware
presence management. Web Ontology Language (OWL) [3] is used to model bud-
dies’ relationship, locations, and activity for automatic presence management.
We rely on public Web services like Google Calendar as sources of user contexts.

The rest of this paper is organized as follows. Section 2 explains the i-Cluster
location extraction algorithm and cooperative place annotation. Section 3 dis-
cusses the context-aware presence management in MIM. Section 4 highlights the
design of the MIM system. Section 5 reports the implementation details of of
MIM and evaluation of its features. Conclusions are discussed in Section 6.

2 Location Extraction and Place Annotation

Identifying significant locations from user’s trace is basically a clustering problem
[4]. In the past, various location extraction solutions have been proposed based
on different sources, such as GPS coordinates [2], GSM cell transition data [5],
and Wi-Fi (or Bluetooth) beacons [1]. Intuitively, significant places are usually
location visits having a recognizable duration [1] [2]. In some cases, we are also
interested in places which may not have a long stay duration, but are revisited

GPS-Based Location Extraction and Presence Management 311

shortly [5] [6]. This type of places include entrance of a parking lot, main gate
of a university, junctions of street, etc. There are also situations, where a user’s
on-going task is disrupted unexpectedly and the user returns to the same place
shortly afterwards to finish the task. These are all strong indicators of meaningful
locations. We propose an improved time-based clustering algorithm (named i-
Cluster), which can further extract these types of places.

The original time-based clustering algorithm [1] (called TBC afterwards) de-
termines significant places where the user stays longer than a given time thresh-
old t. A new run of clustering is started when distance between the new location
and the centroid of the current cluster is larger than a threshold d. In general,
it is difficult to tune the two parameters in order to extract all significant places
aforementioned in real life.

Our algorithm takes additional consideration to the junction area of user’s
trace. We introduce a third parameter tintv and use an auxiliary data structure
Tempplaces. Tempplaces keeps track of those visited places with a duration of
stay less than t, which are temporarily not qualified as significant places by the
TBC algorithm. tintv is a given threshold value that specifies the tolerable time
interval of intermittent location revisits. Two temporary clusters in Tempplaces
will be merged if user moves away from a cluster and returns within tintv time.

The pseudo code of the i-Cluster is shown in Algorithm 1. We follow the
same definition of parameter d and t as in the TBC algorithm. There are addi-
tional variables used in i-Cluster. The input to i-Cluster is loc, which is the new
reading of GPS location data. cl is the current cluster, which records the cen-
troid coordinate, first timestamp, last timestamp, and the size (number of GPS
points) of the cluster. Places is used to record the extracted significant places.
Function Distance() calculates the distance from a given point to the centroid
of a cluster. Function Duration() measures the time duration of a user staying
in the clustered area. To cater for the GPS positioning error and make sure the
user is really moving away, plocs is used to temporarily keep a small number
of pending location data. We report departure of user from current cluster if at
least l samples are collected in plocs.

We explain the i-Cluster algorithm as follows. In line 1-3 (also line 29-30),
we add the loc to current cluster cl if its distance to cl is shorter than d. plocs is
cleared whenever loc falls within cl (line 3, 28). In line 6-7, a significant place is
added to Places if cl’s duration is longer than t. Otherwise, cl will be inserted to
Tempplaces (line 9-25) for potential merge. The merging process scans through
Tempplaces in reverse time order (line 11), and tries to merge cl with a most
recent temporary cluster created within tintv time earlier than cl (line 13), which
satisfies (1) the summation of the duration is no less than t, and (2) the distance
between the centroids of the two clusters is no longer than d (line 16). Other
temporary clusters beyond the tintv time window are removed (line 22). The
time gap (line 13) is the difference of the later cluster’s first timestamp and the
earlier cluster’s last timestamp. After these steps, the algorithm starts a new
cluster from plocs.end (line 26-28), as the user is moving away. We make sure
there are at least l location data received in between two consecutive clusters.

312 D.H. Hu and C.-L. Wang

Note that we merge two nearby clusters found in Tempplaces by measuring the
distance between the centroids of them. We set the merge distance threshold d
(line 16) instead of a small one (e.g., 2 meters), as the centroid of cluster does
not timely reflect the current position of the user. User’s current position may
in fact be very close to the centroid of the cluster to be merged with the current
cluster, while the distance between the two centroids is still in a distance of d.

Algorithm 1. i-Cluster (loc)
1: if Distance(cl, loc) < d then
2: add loc to cl {/*Add the new data to current cluster if it’s within distance range*/}
3: clear plocs
4: else
5: if plocs.length > l then
6: if Duration(cl) > t then
7: add cl to Places {/*A significant place found*/}
8: else
9: merged ⇐ false {/*Add the temporary cluster to Tempplaces for potential merge*/}
10: add cl to the end of Tempplaces
11: for j = Size(Tempplaces) − 2 to 0 do
12: tc ⇐ jth cluster in Tempplaces
13: if (Firsttimestamp(cl) − Lasttimestamp(tc)) < tintv then
14: dist ⇐ Distance(tc, clcentroid)
15: sum ⇐ Duration(cl) + Duration(tc)
16: if dist ≤ d and sum ≥ t and merged = false then
17: merge cl, tc to a single cluster added to Places
18: remove cl, tc from Tempplaces
19: merged ⇐ true
20: end if
21: else
22: remove tc from Tempplaces
23: end if
24: end for
25: end if
26: clear cl
27: add plocs.end to cl
28: clear plocs
29: if Distance(cl, loc) < d then
30: add loc to cl
31: else
32: add loc to plocs
33: end if
34: else
35: add loc to plocs
36: end if
37: end if

The i-Cluster algorithm has several merits. First it is space-efficient as we
do not keep the GPS data belonged to a cluster. Besides, the memory size of
Tempplaces is bounded by the intermittent time value tintv and the average
speed v of user, since we only keep clusters within a time window of tintv. In a
worst case when the user keeps moving, the expected number of clusters nc in
Tempplaces can be estimated as:

nc =
tintv

2d
v

=
tintvv

2d
(1)

In a typical case, where d = 40 meters, tintv = 1200 seconds (20 minutes), v = 5
km/h (the average walking speed of pedestrians), nc is roughly 20. So the space

GPS-Based Location Extraction and Presence Management 313

overhead induced by i-Cluster algorithm is not large, and the time complexity of
merging clusters O(nc) is thereby tolerable in resource-restricted mobile devices.
As the cluster merging step is quite efficient, the performance of i-Cluster is as
good as the TBC algorithm.

After detecting the significant locations, raw location data (longitude, lat-
itude, etc.) should be converted to meaningful place labels. We implement a
place annotation function similar to those used Google Maps [7] and GeoNote
[8] on our MIM. Users can either enter their annotation (i.e., “points of interest”)
manually, then upload to a central map server, or they can select a place label
among those created by their buddies whoever visited the same place before. The
place annotation selection is usually subjective and it depends on user’s focus of
interest on the spot. We call this cooperative place annotation. More details are
discussed in Section 4.

3 Context-Aware Presence Management

The co-awareness of buddy’s location context can avoid unnecessary conversa-
tions (e.g., “Where’re you?”, “What’re you doing now?”), and achieve more
efficient collaboration. For example, we can schedule a meeting at a place where
each person is most close to, and when every member is available.

We further consider the connectedness implications of presence [9] in terms
of MIM user’s social networks and community. Given the useful location anno-
tations generated by all users, the presence management subsystem determines
what sort of location data be revealed to user’s buddies. In our design, user’s
presence is represented by the triple “Status:Activity@Place”. The subsystem
will derive customized location indicators according to the activity they are cur-
rently involved and the social relationship between users and their buddies (or
their roles in a group activity). In other words, a user’s physical location is
interpreted differently and different place labels could be displayed on his/her
buddies’ mobile phones.

We use the Web Ontology Language (OWL) [3] to model buddy relation-
ship and domain knowledge involved in IM communications. By inferring on
the ontology-based framework, we update buddies’ presence in the buddylist
accordingly. This method also helps to rank location recommendations while
performing the cooperative place annotation. For example, the location recom-
mendations by buddies to participate the coming group activity could be ranked
higher.

Figure 1 shows the ontology model used in our MIM. The presence ontology is
incorporated with location, activity, and status ontologies. The hasPeoplerelation
property of user captures the social relationship between people. Currently, we
define three sub-properties to reflect the common buddy relationship, including
family, colleagues, and friends. These properties appear as hasFamilyRelation,
hasWorkRelation, and hasFriendRelation in the ontology model.

The buddylist on the client is automatically refreshed whenever any salient
context changes happen to buddies. The process is divided into three steps:

314 D.H. Hu and C.-L. Wang

Owl:ContextEntity

Time

Location

User

Activity

Group Presence

Status

hasScheduleTime

hasLocation

hasLocation

ha
sL

oc
ati

on

hasPresence
hasBuddy

hasGroup

hasStatus

hasActivity

hasLocation

hasStatus

hasParticipant

hasActivity

hasPeoplerelation

CurrentTime
TimeInterval

……

hasJabberID: string
hasPresence:
Presence
hasGroup: Group

……

hasLocation: Location
hasStatus: Status
hasActivity: Activity

hasGroupName: string
hasGroupActivity: Activity
hasBuddy: User

hasActivityName: string
hasLocation: Location
hasScheduleTime: Time
hasParticipant: User

Jonny`s home
Yummy restaurant
Sport Center
Playground

……

Busy:Meeting@office of Joe
Busy:Repairing@client A
Available:Eating@Yummy
restaurant
Away:Unkonwn@Unkown

……

isSubClassof
relationship

hasActivity

Fig. 1. Diagrammatic view of the MIM ontology model

1. Decide the current activity of the user (if any), which is triggered by location
update of i-Cluster, starting of a scheduled event’s time, etc.

2. Determine user’s new presence to buddies based on the rules defined.
3. Generate each buddy’s new buddylist pushed to client according to the up-

date priority: (1) the buddylist showing members involved in the current
activity, (2) the buddylist recording people nearby user’s current location,
and (3) buddy relationship.

4 The MIM System Design

The design of MIM is extended from Smart Instant Messenger (SIM) system
[11], which was developed atop of the Jabber IM platform [13]. Figure 2 shows
the MIM system architecture and communications between each component.
The MIM client communicates with other buddies via the Jabber Server using
the instant messenger protocols XMPP. It performs i-Cluster for detecting sig-
nificant places as a background task on a GPS-connected mobile phone. It also
handles the map download, rendering, and display of various types of buddylist.
These are related to the GUI design.

On the server side, the Jabber server serves as a gateway to mediate the
communications between MIM client and other server-side components. There
is a packet listener in the Jabber server to parse the XMPP packet type, and
activate the corresponding back-end service. There are four other components
in the server side. Among them, the Jena server is the most complicated one.
It realizes the context-aware presence management scheme based on the new
ontology model. The Jena server employs a context listener to monitor each

GPS-Based Location Extraction and Presence Management 315

Internet

Database

MIM Client composes
 Location, Schedule, Map packets

Jabber Server

XMPP Packets

Google Map
Generator

Google Calendar
Updater

Packet Listener

up
da

te
Lo

ca
tio

n(
)

re
tu

rn
O

pt
io

ns
()

Context
Listener

uploadActivit() requestMap()

Location DB
Operator

Jena Server

IM Functions

i-Cluster
component

Map Display

IM Functions

i-Cluster
Component

Map DisplayWiFi or GPRS WiFi or GPRS

Dynam
ic B

uddy lis t

Server Side

GPS InfoGPS Info

MIM Client composes
 Location, Schedule, Map packets

Fig. 2. Overview of the MIM System

buddy’s location changes and calendar events. Based on these high-level contexts,
Jena server infers the current activities of all users. Upon detecting a location
change from a MIM client, Jena server determines the “Status:Activity@Place”
triple to be sent to his/her buddies and when to deliver. The decision of location
annotation and delivery time is user-dependent as it is based on the relationship
between the user and his buddy, and the activity they are currently involved. To
facilitate calendar entry creation and event query, the Google calendar updater
is added.

The main function of the location database operator (LDBO) is to perform
insertion, deletion, and query operations on the location database. LDBO stores
various annotated location information produced by users through i-Cluster
component in the MIM client. It records user’s id registered in Jabber server,
place’s GPS coordinates and its semantic label, creation time of place data, and
hit number which is the number of times a place’s semantic label ever chosen
by others MIM users. LDBO can reply queries with location recommendations
that satisfy a given distance criterion or time range. It also provides the initial
ranking of the location recommendations according to the hit number. These
location recommendations will be further analyzed by the Jena server to derive
more accurate recommendations based on other reasoning rules discussed in the
previous section. To deal with the map generation, a Google map generator is
designed to resize the map images and add location markers. It also caches the
map images downloaded from Google Maps.

For supporting communication between MIM client and various server-side
components, the XMPP protocol of Jabber is extended by defining three new
types of custom packets [13]: location, google-calendar-event (schedule), google-
map-request (map).

316 D.H. Hu and C.-L. Wang

When MIM client detects that a user has stayed at a place for a short period
of time, it automatically sends a location request to Jabber server. The request
packet containing the latitude and longitude of user’s current location is first
handled by the Jabber server, which parses the type of the XMPP packet and
forwards it to LDBO. LDBO will reply with the requested place’s semantic la-
bels filtered by Jena server. In case it is a new location (i.e., no recommendation
available), or the user decides to annotate himself (i.e., rejecting all recommen-
dations), the i-Cluster is resumed. Once it detects a significant place, it alerts
user to enter a semantic location label. The location information is then sent
to the Jabber server with a google-calendar-event packet containing centroid’s
GPS coordinates, starting time, ending time, user id, and the added semantic
location label.

In case the received XMPP packet is a map packet, for requesting location
information of other user(s) on the buddylist, the Jabber server will forward the
request to the Google Map generator to create maps with location indication of
buddies. It can either reply to client with an online map URL or transfer the
converted map image with place markers.

5 Implementation and Evaluation

5.1 MIM Client and Map Display

We implemented two versions of MIM client on a Dopod C720W Smartphone
running Windows Mobile 5.0 operating system in both C# and Java in the J2ME
(MIDP 2.0) platform.

Figure 3 (a) shows the GUI of MIM client produced from Windows Mobile
5.0 Smartphone emulator. Figure 3 (b) shows the presence of Jo’s friends, col-
leagues, families, including status icon, activity and location. Note that this test
used the RFID reader to detect users’ indoor location. The activity informa-
tion was retrieved from the Google Calendar. Upon selecting a group/buddy,
the user can choose to fetch and view google map image with location makers
of the buddy/group members. The image size parameters sent to MIM server is
determined by the screen size of the smartphone.

5.2 Evaluation of i-Cluster Algorithm

In this experiment, the Smartphone reads GPS data from a Holux GPSlim236
GPS receiver [14] via Bluetooth connection, as the C720W Smartphone does not
have a built-in GPS receiver.

A sample user trace was collected by walking around the Sai Wan area of
Hong Kong Island for a total time of 2.6 hours. The GPS receiver reports GPS
position reading one per second. A total of 9373 GPS data points are collected.
The MIM client only made use of longitude, latitude, and timestamp of the GPS
position reading. Figure 4 (a) shows the area the mobile user has visited.

We set the parameters of the i-Cluster algorithm as d = 40 meters, t = 300
seconds, tintv = 1200 seconds, and l = 10. The values of d and t are determined

GPS-Based Location Extraction and Presence Management 317

(c)Map with buddy
locations

(a) MIM Login GUI (b) Buddylist of Jo

Fig. 3. MIM Client GUI and Map Display

(a) Seven extracted places:
 a: the King George V Memorial Park
 b: a 7-Eleven convenience store
 c: a Pizza-Box store
 d: a Bus station
 e: the Flora Ho Sports Centre
 f: the Pokfulam Road Playground
 g: a restaurant

a

f

e

d

b
c

g

(b) The zoom-in view of location points
nearby place b

(c) The centroid of clusters in Tempplaces
where Cluster 4 and 10 are merged

merged

1

2

3

1213
4

6

11

5
7

8

9
10

14

(a)

(b) (c)

Fig. 4. The experiment shown in Google Maps format

according to the knee point in [1]. We set l = 10 for keeping the pending loca-
tions. The value of tintv is set to 20 minutes as we believe when an important
task is disrupted unexpectedly, the user usually will come back to the same
place soon. To evaluate the accuracy of the i-Cluster algorithm, we disable the

318 D.H. Hu and C.-L. Wang

stationary detection function, i.e., the MIM client is not allowed to query loca-
tion recommendation from MIM server.

Figure 4 (a) shows the seven extracted significant places by i-Cluster. They
are plotted by the GPS visualizer [15] as waypoints in Google Maps format. We
found the reported locations are very close to the places we visited by viewing
the street map.

We further investigate those clusters detected by i-Cluster. Figure 4 (b) shows
the GPS data points nearby place b. Figure 4 (c) shows the centroids of the
corresponding clusters in the Tempplaces. They are numbered from 1 to 14
in time order. In the experiment, we stayed at the 7-Eleven convenience store
shortly (about 3.2 minutes), left for an ATM machine, then came back again
through another block after 6.5 minutes, and stayed another 3.4 minutes at the
store. As shown, cluster 4 and cluster 10 are merged into a single cluster as
place b (the 7-Eleven convenience store in Figure 4 (a)), which would be simply
ignored if TBC algorithm is used.

5.3 Presence Reasoning Logic

We use Jena’s Rule Java object [12] to define reasoning rules for determining
user’s new presence. The basic rules are in a human readable form of
“antecedent => consequent”.

Table 1. Basic rules for inferring user’s presence

Cases Antecedents Consequents
Determine the presence hasTime(CurrentTime, “Work time”) hasAvailableStatus(?x1, ?x2)
shown to a colleague hasWorkRelation(?x1, ?x2) hasSameGroup(?x1,?x2)

hasSameActiviy(?x1, ?x2)
Determine the presence hasTime(CurrentTime, “Work time”) hasBusyStatus(?x1,?x2)
shown to family member hasFamiliyRelation(?x1, ?x2) hasActivityHidden(?x1,?x2)

hasLocationShown(?x1,?x2)
Determine the presence hasTime(CurrentTime, “Work time”) hasAwayStatus(?x1,?x2)
shown to friend hasFriendRelation(?x1, ?x2) hasActivityHidden(?x1,?x2)

hasLocationHidden(?x1,?x2)
Determine the presence hasTime(CurrentTime, “Off-duty”) hasAwayStatus(?x1,?x2)
shown to colleague hasWorkRelation(?x1, ?x2) hasActivityHidden(?x1,?x2)
when it’s off-duty hasLocationHidden(?x1,?x2)
Determine the presence hasTime(CurrentTime, “Off-duty”) hasAvailableStatus(?x1,?x2)
shown to friends hasFriendRelation(?x1, ?x2) hasActivityShown(?x1,?x2)
when it’s off-duty hasLocationShown(?x1,?x2)
Determine the presence hasTime(CurrentTime, “Off-duty”) hasAvailableStatus(?x1,?x2)
shown to family member hasFamilyRelation(?x1, ?x2) hasActivityShown(?x1,?x2)
when it’s off-duty hasLocationShown(?x1,?x2)

Table 1 shows the rules we used in MIM for automatic update of user’s pres-
ence. The first three rules infer user’s availability to his co-workers during work
time, but avoid exposure to friends and family members. The last three show
user’s presence to his friends and families, whereas hide it from colleagues to
avoid disturbance during his spare time.

We evaluated the responsiveness of MIM presence model performed by the
Jena server. In this evaluation, the MIM client was connected to a desktop

GPS-Based Location Extraction and Presence Management 319

server via Wi-Fi connection. We found the average processing time for a typical
reasoning on context changes is around 2-4 seconds. We will investigate more
time-efficient reasoning solutions in the future.

6 Conclusion and Future Work

In this paper, we present a GPS-based location extraction system to support
MIM. We designed the i-Cluster algorithm to better locate the significant places
that would be ignored by previous time-based clustering algorithms. We found
the cooperative place annotation scheme can greatly reduce the computing cost
of the GPS-based location extraction method and produce more accurate loca-
tion information. With the wide adoption of low-cost GPS receiver built on mo-
bile devices, the co-awareness of the location information has a good potential
to develop more powerful context-aware applications. We modeled IM-related
concepts and people’s relationship using ontologies to automate the presence
inference. We believe this is an emerging trend in the development of IM. In
the future, we shall further extend our MIM presence model and study more
intelligent and faster reasoning solutions.

Lastly, we found the powerful Web services have made it very convenient to
build the proposed MIM functions. We suggest that the location-aware pres-
ence management should make use of public Web services like Google Maps
and Google Calendar. The “attachment” of user’s context information to the
public Web with more reliable and stable services is a viable solution to realize
“pervasive” context-aware computing, especially for mobile users.

References

1. Kang, J.H., Welbourne, W., Stewart, B., Borriello, G.: Extracting Places from
Traces of Locations. In: Proc. WMASH, pp. 110–118. ACM Press, New York (2004)

2. Ashbrook, D., Starner, T.: Using GPS to Learn Significant Locations and Predict
Movement Across Multiple Users. Personal and Ubiquitous Computing 7(5), 275–
286 (2003)

3. OWL Web Ontology Language, http://www.w3.org/TR/owl-features
4. Zha, H., Ding, C., Gu, M., He, X., Simon, H.D.: Spectral Relaxation for K-means

Clustering. Neural Information Processing Systems 14, 1057–1064 (2001)

5. Nurmi, P., Koolwaaij, J.: Identifying Meaningful Locations. In: 3rd Annual Inter-
national Conference on Mobile and Ubiquitous Systems: Networks and Services,
San Jose, CA (July 17–21, 2006)

6. Schmid, F., Richter, K.F.: Extracting Places from Location Data Streams. In: Zipf,
A. (eds.), Workshop Proceedings (UbiGIS), Münster, Germany

7. Google Maps API, http://www.google.com/apis/maps
8. Espinoza, F., Persson, P., Sandin, A., Nyström, H., Cacciatore, E., Bylund, M.:

GeoNotes: Social and Navigational Aspects of Location-Based Information Sys-
tems. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) Ubicomp 2001: Ubiquitous
Computing. LNCS, vol. 2201, pp. 2–17. Springer, Heidelberg (2001)

http://www.w3.org/TR/owl-features
http://www.google.com/apis/maps

320 D.H. Hu and C.-L. Wang

9. Rettie, R.: Connectedness, Awareness and Social Presence. In: Proc. PRESENCE
2003, online proceedings

10. Google Calendar Data API,
http://code.google.com/apis/calendar/overview.html

11. Law, C.F., Zhang, X., Chan, M.S.M., Wang, C.L.: Smart Instant Messenger in
Pervasive Computing Environments. In: The First International Conference on
Grid and Pervasive Computing, Taichung City, Taiwan (May 3-5, 2006)

12. Jena: a Semantic Web Framework for Java, http://jena.sourceforge.net
13. Jabber Instant Messenger, http://www.jabber.org
14. GPSlim236 GPS Receiver,

http://www.holux-uk.com/Products/gpslim236/index.shtml
15. GPS Visualizer, http://www.gpsvisualizer.com/map

http://code.google.com/apis/calendar/overview.html
http://jena.sourceforge.net
http://www.jabber.org
http://www.holux-uk.com/Products/gpslim236/index.shtml
http://www.gpsvisualizer.com/map

Bilateration: An Attack-Resistant Localization

Algorithm of Wireless Sensor Network�

Xin Li1, Bei Hua2,��, Yi Shang3, Yan Guo4, and LiHua Yue5

1,2,4,5Department of Computer Science and Technology
University of Science and Technology of China, Hefei 230027, China

1,2,4Mobile Computing Laboratory
Suzhou Institute for Advanced Study, Suzhou, Jiangsu 215123, China

{xinxinol,guoyan6}@mail.ustc.edu.cn, {bhua,llyue}@ustc.edu.cn
3Department of Computer Science

University of Missouri-Columbia, Columbia, MO 65211, USA
shangy@missouri.edu

Abstract. Most of the state-of-the-art localization algorithms in wire-
less sensor networks (WSNs) are vulnerable to attacks from malicious
or compromised network nodes, whereas the secure localization schemes
proposed so far are too complex to be applied to power constrained
WSNs. This paper provides a novel secure scheme “Bilateration” which
is derived from multilateration but can be calculated more accurately
and quickly to resolve the positions of unknown nodes without explic-
itly distinguishing what kind of location attacks the WSN is facing. This
paper also compares Bilateration with three existing multilateration so-
lutions that optimize the location estimation accuracy via LS, LMS and
LLMS respectively in a simulated threat environment. The experiment
results show that Bilateration gets the best tradeoff among estimation
error, filtering ability and computational complexity.

Keywords: localization, WSNs, multilateration, Bilateration, LS.

1 Introduction and Related Work

A WSN may run in a hostile environment without any supervision, where the
attackers may easily threat the functionality of position-aware applications by
exploiting the vulnerabilities of the localization schemes. There are mainly two
types of attacks aiming at the localization process in WSNs [2]. The first type is
launched by malicious nodes that are not a part of the network and controlled by
an attacker. Typical attacks include modifying distance, jamming communica-
tion and creating wormholes [3] [4] in the network. The second type is launched
by compromised nodes that are a part of the network and can authenticate

� This work was supported by the National Natural Science Foundation of China
under Grant No.60673173 and No.60673111, and the Fund for Foreign Scholars in
University Research and Teaching Programs.

�� To whom correspondence should be addressed.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 321–332, 2007.
c© IFIP International Federation for Information Processing 2007

322 X. Li et al.

themselves as honest nodes, but are controlled by an attacker. They report false
positions and disseminate false topology information. Most of the existing local-
ization algorithms don’t have the ability to filter out incorrect information, thus
are vulnerable to various location attacks.

Recently, some secure localization schemes have been proposed to resist the
attacks launched by compromised or malicious nodes. The most common tech-
niques include location-verification[5], distance-verification[6][7], distance-
bounding plus some symmetric key cryptography[8], RSS measurements[10] and
“packet leashes”[4]. However these methods always require powerful calculation
ability, precise synchronization, fast transmission, or somewhat training, etc,
which are not suitable for such tiny, low-cost, power constrained sensor nodes.
Alternatively, localization based on least median squares (LMS)[9] has been in-
troduced to improve the resilience and accuracy of localization, which however
is not suitable to WSN as well due to the heavy burden of calculation. Then
[9] chooses to formulate a linearization of the LS (LLMS) location estimator in
order to reduce the computational complexity of LMS at the cost of accuracy.

The main contributions of our work are in two aspects. Firstly, unlike the tra-
ditional secure localizations which introduce countermeasures to every possible
attack, we propose a novel secure localization mechanism Bilateration, which
is efficient in calculation and independent of the type of attacks. Secondly, we
compare the performance of Bilateration with three multilateration solutions
using LS, LMS, LLMS in the simulated settings, and the results show that our
method outperforms the other secure schemes in estimation accuracy, filtering
ability and computational complexity.

The remainder of this paper is organized as follows. Section 2 formulates
the secure localization problem; section 3 overviews the basic idea of LS, LMS
and LLMS; section 4 describes Bilateration algorithm; section 5 compares the
performance of the above four algorithms; section 6 concludes the paper.

2 Problem Formulation

We consider a homogeneous network consisting of a set of wireless sensor nodes,
including anchors and unknown nodes. Sensor nodes are equipped with radio
transceivers, and two nodes can communicate with each other if the distance
between them is within node’s radio range. Each node can measure the distance
to other nodes through TDOA, RSSI or something like DV-HOP with a white
Gaussian noise:

dmeasured=dreal+noise, noise∼N(0,V D) (1)

The most remarkable feature of Bilateration is that it only cares about the
result of attack, i.e., the received distance and/or reference location might be
false, but needs not distinguish who launches the attack or what kind of attack
it is. To simply the description, in this paper we use compromised nodes to refer
to both malicious nodes and compromised nodes that issue false distance and/or

Bilateration: An Attack-Resistant Localization Algorithm of WSNs 323

reference location information in the network. The threat model we consider is as
follows: a few anchor nodes have been compromised and purposely disseminate
randomly false reference positions; moreover compromised nodes may not be
detected by other means.

Suppose an unknown node located at (x0,y0) has collected a set of reference
positions {(x1,y1),···,(xn,yn)} and measured distances {d1,···,dn} to these nodes.
In an idealistic environment setting without any noise and threat, these positions
and distances satisfy the following n equations:[-4mm]

(x1−x0)2+(y1−y0)2=d2
1

...

(xn−x0)2+(yn−y0)2=d2
n

(2)

If n≥3, (x0,y0) can be uniquely determined by solving any 3 of the equations
if the selected anchors are not in a line. This method is the classical trilateration
algorithm. In a 2D plane, solution of trilateration is the intersection of three
circles centered at three anchors(fig.1(a)), and solution of multilateration (2) is
the intersection of all n circles (fig.1(b)). However, in a real noisy environment
with imprecise reference location and/or distance measurements, n circles do not
intersect at one point. Therefore an objective function (3) is used to minimize
the error between estimated position and real position.

(a) Trilateration (b) Multilateration (c) Outliers

Fig. 1. Multilateration and Outliers

Generally speaking, in a noisy environment without compromised nodes, mul-
tilateration with LS is not a bad choice. However, in an environment with some
compromised nodes, LS is not good since the estimated position (x̂0,ŷ0) may be
adversely “removed” far away from the optimal position by compromised nodes.
In order to get rid of the “outliers” (see fig.1(c)) caused by compromised nodes,
LMS and linear LMS are applied to replace LS in estimation process.

324 X. Li et al.

3 LS, LMS and LLMS

3.1 Least Square

Multilateration with LS is to minimize the difference between the estimated
position (x̂0,ŷ0) and the real position (x0,y0) of a node, see (3).

(x̂0,ŷ0)=arg min
(x0,y0)

n∑

i=1

[
√

(xi−x0)2+(yi−y0)2−di]2 (3)

This method usually involves some kind of iterative searching technique such
as gradient descent or Newton method. To avoid local minimum LS must run
several times with different initial starting points, which is expensive in terms of
computing overhead. Moreover, it is vulnerable in the presence of compromised
nodes, e.g., if an unknown node receives a false position sent by a compromised
node, the estimated position may deviate significantly from its true value even
if the measured distance is accurate. This is because pure LS tries to achieve a
global optimality of all samples including outliers.

3.2 Least Median Square

To increase the resilience of multilateration with LS, least median squares (LMS)
is proposed in [9]. Instead of minimizing the summation of the residue squares,
LMS tries to minimize the median of the residue squares:

(x̂0,ŷ0)=arg min
(x0,y0)

medi[
√

(xi−x0)2+(yi−y0)2−di]2 (4)

According to [9], the procedure for implementing the robust LMS algorithm is
summarized as follows:

1. Set n=4 as the appropriate subset size.

2. Set M=

{
20, if n>6
(
n
4

)
, otherwise

as the appropriate total number of subsets.

3. Randomly draw M subsets of size n from the heard anchors {(x0,y0),···,
(xn,yn)}. Calculate the estimation (x̂0,ŷ0)j using LS for each subset and the
corresponding median of residues {r2

ij} for every (x̂0,ŷ0)j . Here i=1,2,···,n is
the index for heard anchors, while j=1,2,···,M is the index for the subsets.

4. Set m=arg minj medi{r2
ij}, then (x̂0,ŷ0)mis the subset estimation with the

least median of residues, and {rim} is the corresponding residues.
5. Calculate s0=1.4826(1+ 5

n−2)
√

medir2
im.

6. Assign weight ωi to each heard positions with equation ωi=

{
1,

∣
∣
∣ ri

s0

∣
∣
∣≤λ

0, otherwise
.

7. Do LS to all heard positions with weights {ωi} to get the final (x̂0,ŷ0).

Bilateration: An Attack-Resistant Localization Algorithm of WSNs 325

3.3 Linear LMS

Considering that finding estimation for M subsets requires a lot of computation,
[9] transforms nonlinear LS into linear LS, which is a suboptimal but more
computationally efficient algorithm.

1. Average all the left parts and right parts of (2):

1
n

n∑

i=1

[(xi−x0)2+(yi−y0)2]=
1
n

n∑

i=1

d2
i (5)

2. Subtract (5) from each equation in (2), and linearizes to get the following
new equations:

(x1−
1
n

n∑

i=1

xi)x0+(y1−
1
n

n∑

i=1

yi)y0=
1
2
(x2

1+y2
1−d2

1−
1
n

n∑

i=1

(x2
i +y2

i −d2
i))

...

(xn− 1
n

n∑

i=1

xi)x0+(yn− 1
n

n∑

i=1

yi)y0=
1
2
(x2

n+y2
n−d2

n− 1
n

n∑

i=1

(x2
i +y2

i −d2
i))

(6)

3. Estimate (x̂0,ŷ0) by linear least squares.

Transforming nonlinear LS into linear LS saves much computation, since the
solution can be calculated directly from (6) without iterative searching and re-
peating. Furthermore, the solution of linear LS can be used as the starting point
of nonlinear LS to prevent nonlinear LS from getting trapped in a local mini-
mum. In our simulation, we use this starting point to do nonlinear LS.

However, due to the subtraction, the optimal solution of linear equations in
(6) is not exactly the same as that of nonlinear LS in (2), which means much
accuracy is lost, especially when the number of heard anchors is small. In the
experiments of [9], as the number of heard anchors is fixed to 30, linear LS is
acceptable as it still performs very well. However, 30 heard anchors per unknown
node is not practical in the realistic settings.

4 Bilateration

Due to inherent limitation, the performance of LMS and LLMS is poor when
the number of heard anchors is small, or the percentage of outliers exceeds
50% even if there are still many usable samples. The goal of bilateration is to
achieve the same accuracy as LMS and the same computational speed as LLMS,
meanwhile its performance is less affected by the number of heard anchors and
the percentage of outliers.

In an idealistic environment without measurement noise and attacks, if n=2
we can solve (2) as follows:

326 X. Li et al.

x0=
−(mn−ny1−x1)

1+n2 ±
√

2(nx1+m)y1−y2
1−n2x2

1−2mnx1−m2+(1+n2)d2
1

1+n2

y0=m+nx0

m=
1
2

(x2
1−x2

2)+(y2
1−y2

2)−(d2
1−d2

2)
y1−y2

n=−x1−x2

y1−y2

(7)

Evaluation of (7) is very fast given the value of {(x1,y1),(x2,y2),d1,d2}. The
real solutions for (x0,y0) are called candidate positions, which in a 2D plane
are the intersections of two circles (see fig.2(a)); the complex solutions are not
considered in this paper (see fig.2(b)). If another two anchors (at least one of
the them doesn’t belong to {(x1,y1),(x2,y2)}) and corresponding distances are
selected, another two candidate positions are solved for (x0,y0). Among the 4
candidate positions, at least 2 positions overlap each other, and this overlapped
point is the correct solution for (x0,y0) (see fig. 2(c)). If more anchor positions
and distances are available, more overlapped points will occur. In this way, even
most of the heard anchors are compromised, this method can correctly locate
an unknown node as long as at least three anchors and corresponding distance
measurements are accurate.

(a) Two real solutions (b) No real solutions (c) Overlapped solutions

Fig. 2. Bilateration

In real noisy environment, there may be no overlapped points due to distance
error. However, there is reason to believe that correct positions should be close
to each other if the distance error is bounded. We define:

Correct candidate positions: a group of candidate positions, in which there
is at least one position whose distances to the other members are less than the
threshold δ.
Candidate neighbors: two candidate positions between which the distance is
within δ.

For an unknown node μ, the procedure for implementing our Bilateration
algorithm is summarized as follows:

1. If n≤3, set μ as un-localized and terminate the algorithm. This situation
will not be considered in our performance comparison, because there is no
way to distinguish which position is false.

Bilateration: An Attack-Resistant Localization Algorithm of WSNs 327

Fig. 3. Who is the compromised node

2. Exhaust all the combinations of two anchors and the corresponding measured
distances {(ai,di),(aj ,dj)} to evalute (7), and suppose M candidate positions
{c1,···,cM} have been solved from the

(
n
2

)
combinations.

3. For each candidate position ci, calculate {Di1,···,Dii−1,Dii+1,···,DiM}, where
Dij is the distance between ci and cj , i,j=1,2,···,M is the index to candidate
positions.

4. For each ci, find out all the distances shorter than the threshold δ and get
{Dip,···,Dit|Dip<δ∧···∧Dit<δ,Dip,···,Dit∈{Di1,···,Dii−1,Dii+1,···,DiM}}, set
ni=|Dip,···,Dit|. (|·|denotes the cardinality of a set).

5. Find out m=argmaxi{ni}, suppose {Dmp,···,Dmt} are the distances between
cm and its candidate neighbors {cp,···,ct}; find out the corresponding anchors
{al,···,aq}⊆{a1,···,an} from which {cm,cp,···,ct} are solved; set the weights of
{al,···,aq} as 1; set the weights of the other heard anchors as -1.

6. Exchange the weight table with its neighbors.
7. Collect all the weight tables from its neighbors; pick out the common heard

anchors; add their weights together; set the anchors whose weight is less than
the average weight as the compromised nodes. (see fig.3)

8. Delete the candidate positions caused by compromised nodes from {c1,···,
cM}; set the average of all the left candidate positions as the final estimated
position eμ.

If the unknown node hears 4 different positions including 1 false position, LMS
and LLMS are unable to deal with this situation, whereas our scheme can find
out the correct positions if the distance between the correct candidate positions
is shorter than δ .

5 Simulation

To evaluate Bilateration, we simulated it and multilateration with LS, LMS,
and LLMS (abbr. to LS, LMS and LLMS) on Matlab, and compared them in
terms of estimation error, ability of false position filtering, and computational
complexity in simulation environment. Estimation error is the average variance
between estimated locations and real locations. Ability of false position filtering
is the average number of false positions that are used in the location estimation
of each unknown node. Each data point represents the average value of 500 trials

328 X. Li et al.

with different random seeds. We use ideal LS as a benchmark in the performance
comparisons, which can filter out all the compromised anchors before estimation.

In our simulation settings, we have the following definitions and assumptions.

– Anchors and unknown nodes are uniformly distributed in an area of 200×
200m2.

– The coordinates of false positions, x and y, are independent and identically
follow normal distribution N(100,V P), where VP varies from 20 to 200m.

– The noise of measured distance obeys normal distribution N(0,V D), where
VD varies from 0 to 50m.

– R is the radio range of node, and is fixed to 50m in our experiments.
– NA is the average number of heard anchors by each unknown node.
– NU is the average number of heard unknown nodes by each unknown node.
– CP is the percentage of compromised anchors, and varies from 0 to 1.

In the following experiments, without specification, the default environment
settings are: V P=20m, V D=5m, NA=7.5, NU=7.5 and CP=0.2. After a lot of
experiments with different δ and λ, we find out that the optimal δ for Bilateration
is 10, and the optimal λ for both LMS and LLMS is 1.5. We omit the detailed
performance comparison due to limitation of space.

5.1 Influence of Average Number of Anchors

In this experiment, we investigate the influence of average number of heard
anchors (NA) on the performance of the four localization algorithms.

In fig.4(a), except for LS whose estimation error increases about 5% when
NA increases from 5 to 25 due to its lack of filtering ability, the estimation error
of other four algorithms (including Ideal LS) decreases. Bilateration has lower
estimation error than LMS and LLMS, but their gap shrinks when NA increases.

Fig.4(b) compares the filtering ability of all algorithms. Since LS doesn’t filter
out outliers and CP is fixed, the false positions used by LS increases with NA.
The number of unfiltered false positions used by Bilateration is smaller than that
used by LMS and LLMS; that is to say, Bilateration has stronger filtering ability

(a) Estimation Error (b) Unfiltered False Positions

Fig. 4. Influence of Average Number of Anchors

Bilateration: An Attack-Resistant Localization Algorithm of WSNs 329

than LMS and LLMS. This explains why Bilateration has lower estimation error
than LMS in a hostile environment: the stronger filtering ability compensates
for the suboptimal estimation accuracy.

In fig.4(a), the estimation error of Bilateration is close to that of Ideal LS all
the time, whereas LMS and LLMS requires many more anchors to get the same
accuracy. Since there are only a few anchors in a real wireless sensor network,
this result shows that Bilateration is more suitable to real settings.

5.2 Influence of Percentage of Compromised Nodes

In this experiment, we investigate the influence of compromised percentage (CP)
on the performance of algorithms. It is interesting to observe that ideal LS
terminates when CP reaches 0.6, this is because the number of un-compromised
anchors is smaller than 3 for each unknown nodes with NA=7.5. Therefore it is
meaningless to discuss the performance for CP larger than 0.6.

(a) Estimation Error (b) Unfiltered False Positions

Fig. 5. Influence of Percentage of Compromised Nodes

In fig.5(a), the estimation error of Bilateration is lower than that of LS, LMS
and LLMS all the time when CP is smaller than 0.6, which shows that Bilat-
eration is less affected by CP. However the four curves tend to approach when
CP increases, since there is no difference among them when no right position is
available.

In fig.5(b), the number of unfiltered false positions used by Bilateration is
smaller than that used by LS, LMS and LLMS, which shows that Bilateration
has the strongest filtering ability.

5.3 Influence of Distance Measurement Error

In this experiment, we investigate the influence on distance measurement error
on the performance of algorithms.

In fig.6(a), the estimation error of Bilateration increases rapidly as the vari-
ance of distance (VD) increases. The estimation error of Bilateration is lower
than that of LS, LMS and LLMS when VD is less than 13, then it exceeds them

330 X. Li et al.

(a) Estimation Error (b) Unfiltered False Positions

Fig. 6. Influence of Distance Measurement Error

quickly. We observe that the estimation error of Bilateration does not reach 0
even when VD is 0, since δ=10 allows some false positions to participate in the
location estimation (fig.6(b)). If δ is set to 0, then Bilateration can filter out all
the false positions when VD is 0. LMS and LLMS outperform LS when VD is
less than 22 and 15 respectively, and then lost their advantage as well.

In fig.6(b), the number of unfiltered false positions used by all the four algo-
rithms increase as VD increase, since large distance error makes it more difficult
to distinguish between correct position and false position. Therefore if the mea-
sured distance is not accurate enough, the filtering ability of algorithm has no
meaning.

This experiment shows that Bilateration is more suitable to work in an envi-
ronment with moderate noise that is less than 24% or radio range.

5.4 Tradeoff Between Performance and Communication Complexity

Bilateration is the only algorithm which needs to communicate with heard un-
known nodes to identify the compromised nodes. However, the performance of
Bilateration with small NA is not sensitive to the average number of unknown
nodes. Meanwhile, the performance of the other three algorithms are not sensitive
to the average number of unknown nodes (Fig.7(a)(b)). So, in this experiment,
we only evaluate Bilateration with NA=25 and different CPs.

Fig.7(c)(d) evaluate Bilateration with different CPs. The estimation error and
unfiltered false positions of Bilateration with bigger CP decreases more rapidly
than those with smaller CP as NU increases. So the strategy of exchanging weight
tables is more useful for Bilateration with big NA and CP. In other words, if CP
or NA is not big we can abandon this strategy to save energy.

5.5 Computation Complexity Analysis

Since Bilateration, LMS and LLMS primarily differ in the means of estimation,
we only analyze the amount of computation involved in estimation. Suppose that
an unknown node μ hears n anchors.

Bilateration: An Attack-Resistant Localization Algorithm of WSNs 331

(a) Estimation Error (b) Unfiltered False Positions

(c) Estimation Error (d) Unfiltered False Positions

Fig. 7. Influence of Average Number of Unknown nodes

In LMS, μ needs to do LS estimation
(
n
4

)
+1 times, when n≤6 or 21 times

when n>6. In each round of LS estimation except for the last round, four anchor
positions are involved in the estimation calculation, and in the last round all the
unfiltered positions are involved. In order to avoid local minimum, solution of
linear LS is used as a start point to search the global optimality, which adds
another

(
n
4

)
+1 or 21 times of linear LS calculation. It is possible to use LS

without preliminary linear LS, however, LS may need to search more times for
optimal solution from different start point, and moreover the solution may be
trapped into local minimum.

In LLMS, μ needs to do linear LS
(
n
4

)
+1 times when n≤6 or 21 times when

n>6. The amount of computation involved in linear LS is much less than that
involved in LS.

In Bilateration, μ needs to evaluate (7)
(
n
2

)
times to find out all the candidate

positions, and then perform 4
(
n
2

)2 times of distance calculation between each
candidate position to every other candidate position. All the computation only
involves simple algebraic calculation, so Bilateraton runs much faster than LMS
and comparable with LLMS, which was verified by our experiments as well.

6 Conclusion and Future Work

In this paper we propose Bilateration, an attack-resistant localization algorithm
that tries to find a set of close-by positions from all candidate positions and use

332 X. Li et al.

the average of these close-by positions as the estimated position. Bilateration is
resilient to all kinds of position and distance cheating attacks in the sense that
it only cares about the result of attacks rather than the process of attacks; and
is more close to the real world.

In the threat model of this paper, we assume that compromised nodes do
not cooperate and disseminate randomly false positions. If some or all of the
compromised nodes cooperate to give false but specious positions, e.g., each
compromised node reports a position that is a fixed displacement to its real
position, then detecting and filtering these nodes is difficult. In the future, we
will evaluate Bilateration and other three localization algorithms under this kind
of attack.

References

1. Lymberopoulos, D., Lindsey, Q.: An Empirical Analysis of Radio Signal Strength
Variability in IEEE 802.15.4 Networks using Monopole Antennas, ENALAB Tech-
nical Report 050501, Yale University (2006)

2. Capkun, S., Hubaux, J.P.: Secure positioning in sensor networks, Technical report
(May 2004)

3. Xu, W., Wood, T., Trappe, W., Zhang, Y.: Channel surfing and spatial retreats:
defenses against wireless denial of service. In: Proceedings of the 2004 ACM work-
shop on Wireless security, pp. 80–89 (2004)

4. Hu, Y.C., Perrig, A., Johnson, D.: Packet leashes: a defense against wormhole
attacks in wireless networks. In: Proceedings of IEEE Infocom, pp. 1976–1986
(2003)

5. Brands, S., Chaum, D.: Distance-bounding protocols. Theory and Application of
Cryptographic Techniques, 344–359 (1993)

6. Sastry, N., Shankar, U., Wagner, D.: Secure Verification of Location Claims. In:
Proceedings of WiSe (2003)

7. Waters, B., Felten, E.: Proving the Location of Tamper-Resistant Devices. Tech-
nical report, Princeton University

8. Čapkun, S., Buttyǎn, L., Hubaux, J.-P.: SECTOR: Secure Tracking of Node En-
counters in Multi-hop Wireless Networks. In: Proceedings of SASN (2003)

9. Li, Z., Trappe, W., Zhang, Y., Badri Nath.: Robust statistical methods for securing
wireless localization in sensor networks. In: Proceedings of IPSN (2005)

10. Kusy, B., et al.: Node-density independent localization. In: IPSN (2006)
11. Zhou, G., et al.: Impact of Radio Irregularity on Wireless Sensor Networks. In:

Proceedings of 2nd MobiSys (2004)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 333–345, 2007.
© IFIP International Federation for Information Processing 2007

ID-Based Key Agreement with Anonymity for Ad Hoc
Networks

Hung-Yu Chien

Department of Information Management, National Chi Nan University, Taiwan, R.O.C.
redfish6@ms45.hinet.net

Abstract. Security support is a must for ad hoc networks. However, existing
key agreement schemes for ad hoc networks ignore the issue of entity
anonymity. Without anonymity, the adversary can easily identify and track
specific entities in the communications. Not only entities’ movement
information is valuable to the adversary but also the adversary can launch heavy
attacks on those important nodes, based on the information. This paper proposes
an ID-based n-party (2≥n) key agreement scheme that preserves entity
anonymity from outsiders. The scheme is efficient and very suitable for the
structure-free mobile ad hoc networks. The security of the schemes is proved in
a modified Bellare-Rogaway model.

Keywords: ad hoc networks, bilinear pairing, identity-based cryptosystem, key
agreement, anonymity.

1 Introduction

Ad hoc networks that support self-configurable and autonomous communications are
regarded as ideal technologies for creating instant communication networks for
civilian and military applications. Depending on the applications and the
environments, different ad hoc networks may require different degree of support
infrastructure. Asokan and Ginzboorg [13] classified three types of support
infrastructures for ad hoc networks. The first type is the routing infrastructure in the
form of fixed routers and stable links. The second type is the server infrastructure of
on-line servers that provide various services such as name service, directory services,
certificate look-up services, etc. The third type is the organizational and
administrative support such as registration of users, issuing of certificates, and cross-
certification agreements between different user domains. Regarding ad hoc networks,
some other features are worth further discussions. First, ad hoc networks are dynamic.
It means that nodes in an ad hoc network will move dynamically and some nodes
might own poor connectivity with neighbors (or might own rich connectivity for only
a short time). So the algorithms designed for ad hoc networks should take these
features into account. Secondly, the locations and movements of specific nodes could
be valuable information to the adversary. For example, in military applications or
some commercial applications, some nodes might play important (or even vital) roles
in the communications. One example is the commander in military operations or in

334 H.-Y. Chien

crisis management operations, and another example is the server in a business
meeting outside. Therefore, exposure of the identities and the locations of nodes could
endanger the whole system.

Regarding the security requirements of ad hoc networks, secure key agreement
schemes and efficient group key management are two of the most important
mechanisms to build a secure network [15]. However, existing key agreement
schemes or key management schemes like [10, 12-14, 16-18] for ad hoc networks all
ignore the anonymity issue, and many of them assume the on-line certificate servers
to support Public Key Infra-structure (PKI) service. Even though it is feasible to
support on-line PKI services via distributed mechanism [16-17], the cost to pay is
very high which limits their applications, when we consider the dynamic property, the
poor connectivity property and the possible resource limitation on these mobile nodes.

Conventionally, the certificate-based public key infrastructure requires an entity to
access and verify certificates before using the public keys. It is costly. To get rid of
the weaknesses of certificate-based public key infrastructure, Shamir [2] first
proposed the first IDentity-based (ID-based) cryptosystem, where an entity’s
identification is taken as its public key, and, therefore, there is no requirement to
securely maintain and verify the public key before using it. An essential requirement
of ID-based schemes is that entities’ identifications are well known. Fortunately,
many ad hoc applications meet this requirement. For example, in military, campus,
emergency operations and commercial environments, some kind of identification
mechanisms (like social security number, e-mail address, IP address, or codes) have
been widely used to uniquely identify the entities. These features make the ID-based
cryptosystems very suitable for many ad hoc networks.

In this paper, we focus on the issues of key agreement schemes with anonymity for
ad hoc networks; and the issue of secure routing and secure channels for multi-hop
link are beyond the scope of this paper; of course, the mechanism proposed in this
paper can be used as building blocks for secure routing and secure channel over
multi-hop links. We also assume that it is not easy to compromise the entities;
therefore, those compromise-prone devices like sensors and RFIDs are excluded in
this work. We propose ID-based key agreement schemes with anonymity for ad hoc
networks with single Key Generator Center (KGC), and the possible extension for
multiple KGCs [21] or for compromise-prone devices is our future work. The benefits
of the schemes include: (1) there is no requirement of on-line server support; (2) the
schemes preserve anonymity so that an outsider cannot identify or track the
communicating parties; (3) they are efficient and adaptive so that they meet the poor
connectivity property and the resource-limited property. Regarding the security, we
consider the indistinguishability of the session key and the anonymity of the
communicating parties in our modified Bellare-Rogaway model that considers the
anonymity property and the tripartite case. The rest of this paper is organized as
follows. Section 2 discusses the related works. Section 3 introduces some definitions
useful to understand the design of the schemes. Section 4 presents our two-party key
agreement, tripartite key agreement and group key agreement with anonymity.
Finally, our conclusions are drawn in Section 5.

Related Works. Related works includes the key agreement schemes for ad hoc
networks, the key management schemes for ad hoc networks and the pairing-based
key agreement schemes. They are briefly discussed as follows.

 ID-Based Key Agreement with Anonymity for Ad Hoc Networks 335

One interesting key agreement scheme for ad hoc networks is Asokan-Ginzboorg’
location-based key agreement scheme [13], where the people physically present in
some place know and trust one another physically, but they do not have any a priori
means of digitally identifying and authenticating one another, such as shared keys,
public key certificate, or on-line trusted servers. Their scheme is so called “location-
based key agreement”, because only the people locating at the same room (or place)
who can see each other can set up a shared password physically and establish the
secure communication accordingly.

Contrary to the above special type of ad hoc networks, most ad hoc networks are
like those cases where the entities (could be people, devices, and mobile nodes)
knowing the identities of other entities instead of “location” want to set up secure
communications. Kaya et al.’s multicast scheme [14] attaches joining nodes to the
best closest neighbor therefore reducing the cost of request broadcast and reducing the
communication and computation cost incurred by the source. The protocol strongly
requires the support of on-line certificate authorities, which makes it not suitable for
most structure-free ad hoc networks and resource constrained nodes. Rhee et al.’s
group key management architecture [10] for MANETs uses the Implicitly Certified
Public Keys (ICPK) to eliminate the requirement of on-line server. However, the
ICPK exchange for computing a pair-wise key is costly, and the cost of re-keying the
group key is n) O(log2 . Instead of ICPK, Bohio-Miri [12] and Chien-Lin [18], based
on ID-based cryptosystem, had proposed the security frameworks for ad hoc networks
to get rid of the requirement of on-line servers. However, none of the above schemes
considered the anonymity issue.

Our proposed anonymous key agreement schemes are based on ID-based
cryptosystems from pairing. However, none of the previous pairing-based key
agreement schemes like [1, 9, 11, 18, 20-23] considered the anonymity property, and
it seems difficult to achieve the anonymity property by simply extending the previous
works, because all the previous key agreement schemes need to exchange entities’
identities when they try to establish session keys.

The key management schemes like [16-17], instead of the key agreement issues,
focused on the key management issue: how to build the Certificate Authority (CA)
[16] service for conventional PKI or the Key Generator Center (KGC) service [17] for
ID-based cryptosystem in ad hoc networks. The key management scheme [17] is
complementary to our work, and the idea of bootstrapping the KGC can be applied on
our schemes for those environments where the entities do not get the public
parameters and their private keys from the KGC before the ad hoc network is formed.

2 Preliminaries

We propose our ID-based key agreement schemes from bilinear pairings [6, 8]. In this
section, we briefly describe the basic definitions and properties of the bilinear pairing
and the assumptions.

2.1 Bilinear Pairing

Let 1G and 2G denote two groups of prime order q , where 1G is an additive group

that consists of points on an elliptic curve, and 2G is a multiplicative group of a finite

336 H.-Y. Chien

field. A bilinear pairing is a computable bilinear map between two groups. Two
pairings have been studied for cryptographic use. They are the (modified) Weil
pairing 211:ˆ GGGe →× [6] and the (modified) Tate pairing 211:ˆ GGGt →× [8]. For the

purposes of this paper, we let e denote a general bilinear map, i.e., 211: GGGe →× ,

which can be either the modified Weil pairing or the modified Tate pairing, and has
the following three properties:

(1) Bilinear: if 1,, GRQP ∈ and *
qZa ∈ ,),(),(),(RQeRPeRQPe =+ , =+),(RQPe

),(),(RPeQPe , and aQPeaQPeQaPe),(),(),(== .
(2) Non-degenerate: There exists 1, GQP ∈ such that 1),(≠QPe .

(3) Computable: There exist efficient algorithms to compute),(QPe for all

1, GQP ∈ .

Definition 1. The bilinear Diffie-Hellman problem (BDHP) for a bilinear pairing

211: GGGe →× is defined as follows: Given 1,,, GcPbPaPP ∈ , where cba ,, are

random numbers from *
qZ , compute 2),(GPPe abc ∈ .

Definition 2. The computational Diffie-Hellman problem (CDHP) is defined as
follows: Given 1,, GbPaPP ∈ , where a and b are random numbers form *

qZ , compute

1GabP ∈ .

Definition 3. The decision bilinear Diffie-Hellman problem (DBDH) for a bilinear
pairing 211: GGGe →× is defined as follows: Define two probability distributions of

tuples of seven elements, },,:),(,,,,,,{ 210 qR
abc ZcbaPPecPbPaPPGGQ ∈= and

}∈,,,:),(,,,,,,{ 211 qR
d ZdcbaPPecPbPaPPGGQ = . Then, given the tuple

,K,PPPPGG CB,,,, A21 , decide whether the tuple is from 0Q or from 1Q .

Definition 4. The Inverse Computational Diffie-Hellman Problem (Inv-CDHP): given

P , aP , to compute Pa 1− .

In order to prove the security of our schemes, we define a new problem and prove it is
equivalent to other hard problems as follows. To our best knowledge, we do not know
there is any formulation of the BoIDHP before, and we refer it the name BoIDHP to
differentiate it from the conventional BDHP.

Definition 5. The Bilinear one Inverse Diffie-Hellman Problem (BoIDHP): given
bilinear pairing 211: GGGe →× , 1,,, GcPbPaPP ∈ , where cba ,, are random numbers

from *
qZ , compute 2

1

),(GPPe abc ∈
−

.

CDHP, BDHP, DBDH, Inv-CDHP assumptions: It is commonly believed that there
is no polynomial time algorithm to solve BDHP, CDHP, Inv-CDHP or DBDH with
non-negligible probability [1, 6, 7, 19].

 ID-Based Key Agreement with Anonymity for Ad Hoc Networks 337

Theorem 1. BoICDHP and BDHP are polynomial time equivalent.

Proof: we give a simple proof as follows.
(i) we first prove BDHP ⇒ BoIDHP. Given cPbPaPP ,,, , we set the input of BDHP

as follows. QcPQQbcbPQQacaPQcPQ 1
3

1
2

1
1 ,,, −−− ======= , then BDHP

outputs
1111

),(),(
−−−−

= abccbcac PPeQQe .
(ii) BoIDHP ⇒ BDHP. Given cPbPaPP ,,, , we set the input of BoIDHP as follows.

QcPQQbcbPQQacaPQcPQ 1
3

1
2

1
1 ,,, −−− ======= , then BoIDHP outputs

cbcacQQe
11

),(
−−

 = abcPPe),(. □

2.2 Parameters for ID-Based Cryptosystems from Pairing

Let 1G and 2G denote two groups of prime order q , where 1G is a group on the

elliptic curves. q is a prime which is large enough to make solving discrete logarithm
problem in 1G and 2G infeasible. Let P is a generator of 1G , and the MapToPoint

function [6] encodes the identity of a user to a point in the group 1G . Let us denote

such a function as 1H which takes an input ID of any length and outputs a point in the

group 1G . The output point is taken as the entity’s public key. That is,

)(1 AA IDHQ = is the public key of entity A with identity AID . Let e be a bilinear

paring as defined above.
Initially, the key generation center (KGC), which is also a Trusted authority (TA),

selects the system parameters { }121 ,,,,, HPqeGG , chooses a random secret *
qR Zs ∈ as

its secret key, computes his public key PsPKGC ⋅= and finally publishes

{ }KGCPHPqeGG ,,,,,, 121 . For each registered user A with his identity IDA, his public

key is given by)(1 AA IDHQ = and the private key is AA QsS ⋅= which is sent by the

KGC to the user via a secure channel.

3 Anonymous Key Agreement Schemes

Now we describe our key agreement schemes that consists of two-party key
agreement, tripartite key agreement, and group key agreement. In the following, we
assume that all entities are properly set up before the ad hoc network is formed. If this
assumption does not stand for some applications, the idea of bootstrap the KGC [17]
can be applied. In an ID-based scheme, all entities being properly set up mean that a
unique identification mechanism is well known among the entities, and these entities
get the public parameters and their private keys from the KGC before the ad hoc
network is formed. That is, an entity A has got the public parameters and his private
key AA QsS ⋅= from the KGC. In addition, in our schemes, all the registered entities

get one additional secret from the KGC, the group secret P
s

SG
1= . In the rest of this

paper, both the term node and the term entity denote one mobile node. We also

338 H.-Y. Chien

differentiate the entities in ad hoc networks into two kinds: group members denote
those entities that have shared a well known identification mechanism and are
authorized to join the ad hoc networks, and group outsiders denote those entities that
may be eavesdroppers or adversaries and are not allowed to join the ad hoc networks.
Our proposed schemes satisfy the anonymity against any active group outsider and
against passive group members (who are not the partners of the sessions).

Now we summarize notations used in this paper as follows:

iU / iID : iU is the ith node with identity iID .

s / KGCP : s is the secret key of the KGC, and KGCP =sP is KGC’s public key.

P
s

SG
1= : the group secret that is shared among all the registered entities.

iIDQ / iS : The public key of node i is)(1 iID IDHQ
i

= , and the private key is

iIDi sQS = .

)(mSig A : node A’s signature on message m. Here, we suggest the use of Hess’s ID-

based signature [7], because it is efficient (it requires only one pairing operation) and
has been proven secure in the random oracle model.

)(mEk : the symmetric key encryption using key k . The scheme should satisfy the

indistinguishability under chosen plain text attack (IND-CPA) property.

ABD : The pair-wise secret of node A and node B.

()1H / ()2H / ()3H : 1
*

1 }1,0{: GH → is the MaptoPoint function [6]; a one-way hash

function { }tGH 1,0: 22 → , where t is the bit length of the key for symmetric

encryption; a hash function { } { }qH 1,0*1,0:3 → . The hash functions are modeled as

random oracles in the security proofs.

3.1 Static Pair-Wise Key Agreement

Initially, each registered node A receives its private key)(1 AAA IDsHsQS == , where

)(1 AA IDHQ = is the public key. Now A computes the shared secret
s

BABAAB QQeQSeD),(),(== with B. B computes the shared secret
s

BABABA QQeSQeD),(),(== . Finally, the shared symmetric secret key is

)()(22 BAAB DHDHK == which will be used to encrypt the communications between A

and B. Note that any two nodes can generate this static key without any interaction.

3.2 Dynamic Pair-Wise Key Agreement

To further provide dynamic pair-wise session key, we propose a new two-party key
agreement with anonymity as follows. Assume A and B are close to one another, and
they can detect the existence of each other (for example, by broadcasting a special
format beacon like that in Aloha network) and want to establish an authenticated
session key without disclosing their identities to outsiders. In the following, sid

 ID-Based Key Agreement with Anonymity for Ad Hoc Networks 339

denotes the session identifier that can uniquely identify one session from others, and
A ⇒ all denotes A broadcasts its messages to its neighbors.

1. A ⇒ all: sid, KGCA xPP =

A first chooses a random integer *
qZx ∈ , computes and sends KGCA xPP = to B.

2. B ⇒ all: sid, KGCB yPP = ,)))||||||((||(31 BABBBk PPIDsidHSigIDE

B chooses a random integer *
qZy ∈ , computes == y

GAAB SPeD),(

xyy
KGC PPesPxPe),()/1,(= ,)(21 ABDHk = and))((3 mHSigB , where

AB PIDsidm ||||= BP|| . Then B use 1k as the encrypting key to encrypt the data

)((|| 3 mHSigID BB).

3. A ⇒ all: sid,)))||||||||((||||(31 BABAABAk PPIDIDsidHSigIDIDE

Upon receiving the data in Step 2, A first computes xyx
GBAB PPeSPeD),(),(==

and)(21 ABDHk = , and then uses 1k to decrypt the second part of the data to

derive (...)|| BB SigID . Now A learns the identity BID of its communicating party,

and verifies whether the signature (...)BSig is valid. If the verification succeeds,

then it generates its signature on the data m= BABA PPIDIDsid |||||||| as

))((3 mHSig A , and sends)))((||||(31
mHSigIDIDE ABAk to B. The final session key

sessK is computed as)||||||(12 BAsess IDIDsidkHK = .

Upon receiving the response)))((||||(31
mHSigIDIDE ABAK from A, B first uses

1k to decrypt the data and gets (...)|||| ABA SigIDID . Now B learns the identity,

AID , and can verify whether the signature is valid. If the verification succeeds,

then B accepts the message, and computes the final session key
)||||||(12 BAsess IDIDsidkHK = .

3.3 Tripartite Key Agreement with Anonymity

We now describe our tripartite key agreement which can be used to set up secure
communication among three entities and can be used as a primitive for set up the
group key for group broadcasting.

Assume A, B, and C are three nodes that detect the existence of each other, and
want to establish session keys among them. They can perform the following tripartite
key agreement protocol to establish the session key without disclosing their identities
to outsiders. Our protocol consists of two rounds where the entities broadcast their
ephemeral public keys in the first run and the entities broadcast their encryption on
signatures and the identity in the second round. The protocol is described as follows.

Round 1:

1.1. A ⇒ all: sid, AP = KGCaP

1.2. B ⇒ all: sid, BP KGCbP=

1.3. C ⇒ all: sid, CP KGCcP=

340 H.-Y. Chien

A computes KGCA aPP = , where a is a random number chosen by A . A broadcasts

(sid, AP). Likewise, B/C respectively chooses a random integer b/c, computes and

broadcasts the ephemeral public keys CB PP / respectively.

Round 2:

2.1. A ⇒ all: sid,)))((||(31 AAAk mHSigIDE

2.2. B⇒ all: sid,)))((||(31 BBBk mHSigIDE

2.3. C ⇒ all: sid,))((||(31 CCCk mHSigIDE

Upon receiving the broadcast data in Step 1, A first computes ||(21 sidHk =

⋅),(GB SPe)),(),(),(a
CB

a
GC PPePPeSPe ⋅⋅ =)),(||(

2

2
abcscbaPPesidH +++ and generates

its signature))((3 AA mHSig , where CBAAA PPPIDsidm ||||||||= . Likewise, B/C

respectively computes ⋅⋅=),(),(||(21 GAGC SPeSPesidHk =⋅)),(),(b
AC

b PPePPe

)),((
2

2
abcscbaPPeH +++ / ⋅⋅=),(),(||(21 GBGA SPeSPesidHk =⋅)),(),(c

AB
c PPePPe

)),((
2

2
abcscbaPPeH +++ and generates the signature))((3 BB mHSig /))((3 CC mHSig ,

where CBABB PPPIDsidm ||||||||= and CBACC PPPIDsidm ||||||||= . The final session

key
2

),(||(2
abcscba

sess PPesidHK +++=)|||||| CBA IDIDID .

The proposed tripartite scheme is secure in terms of in-distinguishability and
resistance to both the key-compromise impersonation attack and the insider attack
against an actively attacker (except the TA) in a modified Bellare-Rogaway model.

3.4 Group Key Management

To derive the group key, we propose to build up the group key by dividing the group
into a ternary tree with all the entities at the leaves, and iteratively run the tripartite
key agreement protocol or the two-party key agreement, depending on the down-
degree of the current parent node, from bottom to top to get the group key. For each
derived secret k after applying the key agreement protocol at level i, the value KGCkP

will be used as the ephemeral public value for the key agreement protocol at the (i-
1)th level. Also the node with the smallest identity in each subgroup will represent the
subgroup to participate the (i-1)th level key agreement. The final derived key for the
root node is the final group key for the whole group.

Take Figure 1 as an example. Entities 1~8 are arranged in the leaves, and the
intermediate nodes represent the sub-groups covering the entities under the nodes.
The root node represents the final group key. Initially, all leaves at level 3
respectively involve the protocol instances of their subgroups. Nodes 1, 2, 3 launch
the tripartite key agreement to derive the subgroup key, say 3,2,1k . Nodes 4, 5, 6

involve in another instance to derive the subgroup key, say 6,5,4k . Node 7 and 8

initiate an instance of two-party key agreement protocol to derive the subgroup key,
say 8,7k . At level 2, Node 1, 4, 7 respectively represents their subgroups to initiate the

tripartite key agreement protocol for level 2. In this protocol instance, Node 1 uses

 ID-Based Key Agreement with Anonymity for Ad Hoc Networks 341

KGCPk 3,2,1 as its ephemeral public value, Node 4 uses KGCPk 6,5,4 as its ephemeral

public value, and Node 7 uses KGCPk 8,7 as its ephemeral public value. After this

protocol instance, the group key corresponding to Node 12 is =8~1K

)||||||),(||(111092

2
8,76,5,43,2,18,76,5,43,2,1 IDIDIDPPesidH

skkkkkk ⋅⋅⋅+++ . Since each leaf in

the tree knows exactly one secret of (k1,2,3, 6,5,4k , 8,7k), all the leaves can derive the

group key 8~1K .

To dynamically adapt to the membership change in ad hoc networks, the ternary
tree is updated accordingly and the keys on the path from the lowest updated node to
the root are refreshed, using the key agreement protocols. The computational
complexity of this approach is O(log3 n), which is more efficient than its counterparts
[10] whose complexity is O(n2log). The security of the group key management is

directly based on that of the two-party key agreement and that of the tripartite key
agreement. Since both the two-party key agreement and the tripartite key agreement
are secure, the group key agreement is secure.

level 1

Level 2

group key

1 2 3 4 5 6 7 8

level 3

9 11

12

10

Fig. 1. Bottom-up, divide-and-conquer to derive the group key

Table 1 summarizes the comparisons of our proposed schemes with its
counterparts. Asokan-Ginzboorg’s key agreement scheme, and the key management
schemes [16, 17] and Kaya et al.’s multicast scheme [14] are not listed in the
comparisons, because Asokan-Ginzboorg’s location-based key agreement schemes
are for special ad hoc networks, and Kaya et al. scheme focused only on group
management that attaches joining node to the closest neighbor. The proposed
schemes, Chien-Lin’s scheme [18] and Rhee et al.’s scheme require no on-line server
support, which makes them more suitable for ad hoc networks. Also the three
schemes provide formal proofs of the protocols, but Bohio-Miri’s scheme has security
flaws. Our scheme and Chien-Lin’s scheme [18] provide efficient static pair-wise key
agreement, efficient dynamic two-party key agreement and efficient tripartite key
agreement, while Rhee et al.’s scheme only supports their costly two-party key
agreement protocol. While Rhee et al.’s two-party key agreement protocol requires 5
message runs, our scheme requires only two message runs. Finally, only the proposed
scheme here provides entity anonymity.

342 H.-Y. Chien

Table 1. Comparisons among secure schemes for ad hoc networks

 Rhee [10]
Bohio-Miri

[12]
Chien-Lin [18]

The proposed
scheme

Types of
cryptosystems

ICPK*
ID-based,

certificate-based
ID-based ID-based

On-line server
support

No Yes No No

Security
property

Formal proof
Security flaws

(forgery problem)
Formal proof Formal proof

Static pair-
wise key

No Yes Yes Yes

Cost of
dynamic two-
party key
agreement

5 message
runs, 5 TE for

one entity

No dynamic
key agreement

provided

2 runs,
2TP+1TM+1TScalar

for one entity

** 3 runs,
2TP+1TM+1TScalar+

2TENC for one
entity

Efficient
tripartite key
agreement

No No Yes Yes

Complexity
of group key
management

Group key
agreement in

n) O(2log

The group key
is chosen by the
group leader.

Group key
agreement in

 n)O(3log

Group key
agreement in

 n)O(3log

Entity
anonymity

No No No
Yes

* ICPK: Implicitly Certified Public keys.
** TE denotes the cost of one modular exponentiation, TENC denote the cost of one symmetric
encryption, TP denotes that of one pairing operation, TM denotes that of one modular
multiplication, Tscalar denotes that of one scalar multiplication in G1. Here assume that Hess’s
signature scheme is used to generate the signature.

4 Conclusions and Future Work

This paper has discussed the infra-structure support property, the poor connectivity
property, the anonymity property and the possible resource-limited property of mobile
ad hoc networks. Based on ID-based cryptosystem from pairings, we have proposed
our key agreement protocols with anonymity, and have proved the security in our
model. The benefits of our proposed schemes include: (1) there is no requirement of
on-line server support, (2) the protocols are efficient, and (3) the protocols preserve
the entities’ anonymity. These features make them very attractive to mobile ad hoc
networks. As low-cost mobile devices become more and more popular, it is
interesting to extend the results to those compromise-prone devices and to those
resource-limited devices where public key cryptography is not feasible.

Acknowledgements. We sincerely appreciate the anonymous reviewers for providing
us the valuable comments. This research is partially supported by the National
Science Council, Taiwan, R.O.C., under contract no NSC 95-2221-E-260 -050 -MY2.

 ID-Based Key Agreement with Anonymity for Ad Hoc Networks 343

References

1. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.)
Algorithmic Number Theory. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

2. Shamir, A.: Identity Based on Cryptosystems and Signature Schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

3. Bellare, M., Rogaway, P.: Provably Secure Session Key Distribution: The Three Party
Case. In: 27th ACM Symposium on the Theory of Computing, pp. 57–66. ACM Press,
New York (1995)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure against
Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–
155. Springer, Heidelberg (2000)

5. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for
Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 451–472. Springer, Heidelberg (2001)

6. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

7. Hess, F.: Efficient Identity Based Signature Schemes Based on Pairings. In: Nyberg, K.,
Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)

8. Frey, G., Muller, M., Ruck, H.: The Tate Pairing and the Discrete Logarithm Applied to
Elliptic Curve Cryptosystem. IEEE Trans. on I.T. 45(5), 1717–1719 (1999)

9. Chien, H.Y.: ID-Based Tripartite Multiple Key Agreement Protocol Facilitating Computer
Auditing and Transaction Refereeing. Journal of Information Management 13(4), 185–204
(2006)

10. Rhee, K.H., Park, Y.H., Tsudik, G.: A Group Key Management Architecture for Mobile Ad-
hoc Wireless Networks. Journal of Information Science and Engineering 21, 415–428 (2005)

11. Chen, L., Kudla, C.: Identity Based Authenticated Key Agreement Protocols from
Pairings. Cryptology ePrint Archive, Report 2002/184 (2002)

12. Bohio, M., Miri, A.: Efficient Identity-Based Security Schemes for Ad Hoc Network
Routing Protocols. Ad Hoc Networks 3, 309–317 (2004)

13. Asokan, N., Ginzboorg, P.: Key Agreement in Ad Hoc Networks. Computer
Communications 23, 1627–1637 (2000)

14. Kaya, T., Lin, G., Noubir, G., Yilmaz, A.: Secure Multicast Groups on Ad Hoc Networks. In:
Proc. of the 1st ACM Workshop Security of Ad Hoc and Sensor Networks, pp. 94–102 (2003)

15. Varadharajan, V., Shankaran, R., Hitchens, M.: Security for Cluster Based Ad Hoc
Networks. Computer Communications 27, 488–501 (2004)

16. Zhu, B., Bao, F., Deng, R.H., Kankanhalli, M.S., Wang, G.: Efficient and Robust Key
Management for Large Mobile Ad Hoc Networks. Computer Networks 48, 657–682 (2005)

17. Khalili, A., Katz, J., Arbaugh, W.A.: Toward Secure Key Distribution in Truly Ad-hoc
Networks. In: Proc. of the 2003 Symp. on Applications and the Internet Workshop (2003)

18. Chien, H.Y., Lin, R.Y.: Improved ID-Based Security Framework for Ad-hoc Networks.
Ad Hoc Networks 6(1), 47–60 (2008)

19. Sadeghi, A.R., Steiner, M.: Assumptions Related to Discrete Logarithms: Why Subtleties
make a Difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
243–260. Springer, Heidelberg (2001)

20. Smart, N.P.: An Identity Based Authenticated Key Agreement Protocol Based on the Weil
Pairing. Electronics Letters 38, 630–632 (2002)

21. Chen, L., Harrison, K., Soldera, D., Smart, N.: Applications of Multiple Trust Authorities
in Pairing Based Cryptosystems. HP Journal (Feburary 2003)

344 H.-Y. Chien

22. McCullagh, N., Barreto, P.: A New Two-Party Identity-Based Authenticated Key
Agreement. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274.
Springer, Heidelberg (2005)

23. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems Based on Pairing. In: the 2000 Symp.
On Cryptography and Security (SCIS 2000), Japan, 26-28 (2000)

Appendix. Security Notations and Proofs

The security of the proposed schemes concerns both the privacy of the authenticated
session key and the privacy of the identities of the communicating parties. To capture
the security of the tripartite key agreement scheme, we consider the in-
distinguishability property [3-5], and the resistance to key-compromise
impersonation, known-key attack, forward secrecy and the insider attack. We,
therefore, prove the in-distinguishability in a modified model. Regarding the in-
distinguishability, we adopt the BPR2000 model with some modifications- (1)
extension to the tripartite case, (2) extension for the Corrupt query, and (3)
adaptations to the identity anonymity.

The in-distinguishability of the proposed tripartite key agreement
Since the protocols hide the identities in the communications, in the model, the
adversary AD cannot fully control the communications (fully controls the partnership
relation) and, instead, partially controls the communications that take place between

parties by interacting with a set of i
U ,*,*1

Π oracles (i
U ,*,*1

Π denotes that 1U does not

know its partners so far). In our protocol with anonymity, the adversary does not
know the identities and the possible matching among oracles. We, therefore, try to
model this situation by the following adaptations: (1) the adversary is allowed to send
queries to specific oracle instances, but it does not know the partners of the oracle; (2)
the challenger (or the simulator) randomly determines the matching among the
instantiated oracles, and keeps the matching consistent through all the sessions but
keeps the information secret from the adversary. The pre-defined oracle queries
include - Hash query, Send(1U , *, *, i, m), Reveal(1U , *, *, i) , Corrupt(1U),

Test(1U , *, *, i), Sign (1U , i, m). Note that, after an oracle has accepted, it knows the

identities of its partners.
Security in the model is defined using the game G, played between the adversary

and a collections of i
U x ,*,*Π oracles for players xU },...,,{ 21 PNUUU∈ and instances

},...,1{ li ∈ . The adversary AD runs the game simulation G with setting as follows (we
let the simulation G randomly determines the matching relationship among oracles,
keeps it consistent through the simulation and keeps it secret from AD).

Stage 1: AD is able to send Hash, Sign, Send, Reveal, and Corrupt queries in the
simulation.

Stage 2: At some point during G, AD will choose a fresh session and send a Test
query to the fresh oracle associated with the test session. Depending on the randomly
chosen bit b, AD is given either the actual session key or a session key drawn from
the session key distribution.

 ID-Based Key Agreement with Anonymity for Ad Hoc Networks 345

Stage 3: AD continues making any Hash, Sign, Send, Reveal and Corrupt oracle
queries to its choice.

Stage 4: Eventually, AD terminates the game simulation and output its guess bit b’.

Success of AD in G is measured in terms of AD ’s advantage in distinguishing
whether AD receives the real key or a random value. Let the advantage function of

AD be denoted by)(kAdv AD , where k is the security parameter and

)(kAdv AD =2Pr[b=b’]-1.

Definition 6 (Secure tripartite key agreement protocol). A tripartite key agreement
protocol is secure in our model if the following thee requirements are satisfied:

Validity: When the protocol is run among three oracles in the absence of an active
adversary, the three oracles accept the same key.

Indistinguishability: For all probabilistic, polynomial-time adversaries AD ,

)(kAdv AD is negligible.
Security against insider impersonation and key-compromise impersonation:

Even an insider (and a key-compromise impersonator) cannot impersonate another
entity to the third entity and complete the session run with the third one.

Theorem 2. The proposed tripartite key agreement protocol is secure in the sense of
Definition 6 if the underlying digital signature scheme is secure against the adaptively
chosen message attack and the DBDH is hard.

Definition 7. We say that a tripartite key agreement scheme satisfies the entities
anonymity if no probability polynomial time (PPT) distinguisher has a non-negligible
advantage in the following game.

1. The challenger sets the system parameters (which might includes the group
secret), and determines the private key/ public key pair,

ii IDID QS / , for each

},...,{ 1 PNi UUU ∈ . It hands the public parameters to the distinguisher D.

2. D adaptively queries the oracles defined in Appendix.
3. Once stage 2 is over, the challenger randomly chooses },...,1{,, 321 PNbbb ∈ such

that 1b , 2b , and 3b are all different. The challenger lets
1bU ,

2bU , and
3bU be the

three entities running a matching session, faithfully follows the protocol specification
to generate the communication transcripts *trans among the three oracles such that
they follows the order (

1bU ,
2bU ,

3bU) in generating their first round messages. It

finally hands *trans to D.
4. D adaptively queries the oracles as in stage 2 with the restriction that, this time,

it is disallowed to send Reveal queries to the three target oracles in stage 3.
5. At the end of the game, D outputs },...,1{,, 321 PNbbb ∈ and wins if 11 bb = or

22 bb = or 33 bb = . Its advantage is defined to be

 P
anonymity
tripartite NbbbbbbDAdv /3]or or Pr[:)(332211 −====

Likewise, similar definitions can be defined and similar theorems can de derived for
the two-party case. Due to page limitation, the detailed definitions and the proofs are
omitted in this version.

Buffer Cache Level Encryption for Embedded

Secure Operating System�

Jaeheung Lee1, Junyoung Heo1, Jaemin Park1, Yookun Cho1, Jiman Hong2,
and Minkyu Park3,��

1 Seoul National University
{jhlee,jyheo,jmpark,cho}@ssrnet.snu.ac.kr

2 Soongsil University
jiman@ssu.ac.kr

3 Konkuk University
minkyup@kku.ac.kr

Abstract. A cryptographic file system is the representative way of as-
suring confidentiality of files in operating systems. For secure embedded
operating systems, the cryptographic file system could be a practical
technique. In general, cryptographic file systems are implemented us-
ing a stackable file system or a device driver. These two mechanisms can
provide user transparent encryption/decryption of cryptographic file sys-
tems. But these mechanisms sometimes encrypt or decrypt data redun-
dantly or unnecessarily. Embedded systems with a low speed CPU and
flash storage are more affected by the problems than general systems.
We addressed the above mentioned problems by applying an encryption
algorithm on buffer caches and enabling one buffer cache to have both
encrypted and decrypted data together. Experimental results show that
the proposed mechanisms reduce the redundant or unnecessary opera-
tions and it can improve the performance of cryptographic file systems.

Keywords: Security, Cryptographic File System, Embedded Operating
System, Buffer Cache, Linux.

1 Introduction

Secure data technique is more attractive as the value of information increases
and threats to the information increase[1]. Cryptographic file systems are the
most practical technique for secure operating systems. Even though the files
are stolen by physical or network attacks, it can protect files that contain the
valuable information by encrypting the information. Attackers cannot get secure
information of files unless they get the key of the cryptographic algorithm.

� This research was supported in part by the Brain Korea 21 project and MIC & IITA
through IT Leading R&D Support Project. The ICT at Seoul National University
provides research facilities for this study.

�� Corresponding author.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 346–355, 2007.
c© IFIP International Federation for Information Processing 2007

Buffer Cache Level Encryption for Embedded Secure Operating System 347

Considering the growing interest in mobile embedded systems, the use of cryp-
tographic file systems in embedded systems will be more important. The securing
data in mobile embedded systems is more important than existing general sys-
tems because the mobility causes a new threat, that is the lost of the system
itself[2].

The performance of a file system is sure to decrease after applying a cryp-
tographic file system. Because cryptographic algorithms require a lot of CPU
instruction for encryption and decryption. From the user’s point of view, the
degradation of the performance must be tolerable. So the reasonable perfor-
mance is required for cryptographic file systems. Especially, embedded systems
are more affected by the degradation of the performance than other systems
because they are composed of a low speed CPU, a small memory and batteries.

So far, many cryptographic file systems have been introduced. In this study,
we consider cryptographic file systems only in kernel-level [3,4,5,6,7,8,9]. These
are categorized by the implementation method: using a stackable file system and
using a device driver.

A stackable file system is an easy and efficient way to add new features into
existing file systems of a kernel[10,7]. With a stackable file system, you can easily
add encryption or compression algorithms into a file system. Kernel modification
is a very hard job due to the complexity of a kernel and the difficulty in debug-
ging it. The stackable file system allows a new feature to be integrated into a
kernel without influencing another part of a kernel. In addition, it is faster than
user-level library because the stackable layer is in a kernel. Therefore, many
cryptographic file systems using a stackable file system have been developed.

However, the stackable file system cannot exploit the advantage of buffer
caches[11]. If a user process accesses some part of a file twice, encryption or
decryption should be repeated twice in a stackable layer. Therefore, redundant
encryption or decryption may occur in a cryptographic file system using a stack-
able file system.

Another popular method to implement cryptographic file systems is a device
driver[3,4,5,6]. Strictly speaking, there is no relation between using a device
driver and the file systems. Because it locates a cryptographic algorithm in
a device driver, a file system does not know the existence of a cryptographic
algorithm. As a result, all data read from a disk is always decrypted before
being stored in buffer caches. Inversely, all data stored in buffer caches is always
encrypted before being stored in a disk. Therefore, unnecessary encryption or
decryption may occur in a device driver.

To improve the performance by reducing those redundant and unnecessary
encryption/decryption, we propose the mechanism, support in a buffer cache
level. Basically, our mechanism locates a cryptographic algorithm in buffer caches
and enables a buffer cache to have mixed plaintext and ciphertext.

In the request of a read operation from the VFS(or user application), en-
crypted data is decrypted before copying the data from a buffer cache to the
VFS. The amount of decryption is strictly limited to the size of requested data.
If data in a buffer cache is decrypted once, the decrypted data is replaced with

348 J. Lee et al.

an encrypted one. If the request of a read operation at the same position in a
file occurs again, no more decryption is required. This is helpful to remove re-
dundant encryption/decryption of a cryptographic file system using a stackable
file system.

By limiting the amount of decryption to the size of requested data, the prob-
lem of unnecessary decryption is resolved. To this end, we designed a new buffer
cache with a bitmap to indicate whether data is encrypted or decrypted. There-
fore, a buffer cache of our mechanism is able to have plaintext and ciphertext
together.

The rest of this paper is organized as follows. Section 2 surveys related works.
Section 3 describes our mechanism. Section 4 presents our experimentation and
results. Section 5 presents our concluding remarks.

2 Related Work

We survey some related work in this section. There are many techniques related
to securing files: encryption of a storage device, encryption using a user-level
library, encryption in a device driver and encryption using a stackable file system.

Encryption of a storage device can be operated without operating systems. It
is integrated with a storage hardware. Therefore, its performance is better than
that of other software techniques. DataTravler Elite [12] and SecureIDE [13]
fall under this category. Encryption using a user-level library such as crypt(3)
and GNU PG[14] are also available. CFS[15] and TCFS[16] are examples of user-
level mechanisms. They use a NFS server for applying cryptographic algorithms.
These user-level mechanisms can be easily implemented, but it has many prob-
lems with respect to key management, consistency, performance and so on. We
will not mention these techniques any more because our study focuses on the
kernel mechanism.

We focus on two kernel mechanism: encryption in a device driver and a stack-
able file system. Strictly speaking, encryption in a device driver is not a crypto-
graphic file system because a cryptographic file system is a file system to manage
files on a disk securely. However, to simplify the terms, we will refer to both of
them as a kind of cryptographic file systems.

In a cryptographic file system using a device driver, encryption is carried out
while an I/O operation is being performed. It can be used for the applications
that accesses to a storage directly such as a swap device and a database. It can
also be used for the general applications that require file systems. It can provide
user transparency and good performance, but it cannot encrypt or decrypt a
unit of a file. Cryptoloop [3], CryptoGraphic Disk Driver (CGD) [4], SFS [6] and
BestCrypt [5] fall into this category.

A cryptographic file system using a device driver outperforms the stackable
mechanism. However, the stackable mechanism can provide file encryption. It
also provides user transparency like the device driver mechanism.

Cryptfs [7] and Ncryptfs [8] use FiST [17] as a stackable file system. Ncryptfs is
an improved version of Cryptfs. Ncryptfs can authenticate several users

Buffer Cache Level Encryption for Embedded Secure Operating System 349

simultaneously and apply cryptographic algorithms dynamically. It also pro-
vides challenge-response authentication. It uses block cipher and applies CFB
(Cipher FeedBack) mode for inode blocks, ECB (Electronic CodeBook) for data
blocks.

EFS (Encryption File System) is a cryptographic file system based on MS
Windows NT[9]. It exists in a kernel, but it requires user DLL for encryption
and user authentication.

3 Buffer Cache Level Support

The main objective of our mechanism is to exploit the advantage of buffer caches.
In addition, our mechanism enables a buffer cache to be encrypted or decrypted
partially. In this study, we use a block cipher as a cryptographic algorithm and
an ECB(Electronic CodeBook) mode as a block cipher mode. With this com-
bination, random access and equal length of plaintext and ciphertext can be
achieved.

Fig. 1 shows how decryption is performed in a read operation. When a user
requests an operation that reads data in the block 2 of a file, the block is loaded
to a buffer cache and copied to a user area. In the system using a stackable
file system, Fig. 1(a), decryption is performed right before copying data from a
buffer cache to a user area. If another read operation that requests data which is
already requested in a previous read operation is performed, decryption will be
repeated. Such redundant operation can occur because a stackable file system
does not care whether a buffer cache exists or not.

In case of using a device driver, Fig. 1(b), decryption is performed right before
loading data from a file to a buffer cache. Buffer caches always have decrypted
data. Therefore, redundant decryption does not occur. However, decryption in
a device driver level may cause unnecessary decryption. As a device driver does

3 3 3

(a) Stackable FS (b) Device driver (c) Our mechanism

Stackable layer

Device driver copy

decryption

User area

File

Buffer caches

copy

copy

2 2 2

21 3

4 5 6

7 8

21 3

4 5 6

7 8

21 3

4 5 6

7 8

decryption

partial decryption

Fig. 1. Decryption in Read Operation

350 J. Lee et al.

not have any information about the read operation, the entire block 2 is read
and decrypted even though the part of the block 2 is required.

Another case of unnecessary decryption in a device driver level may occur
because of a read-ahead technique. Operating systems sometimes read the next
data of current read in advance. A read-ahead assumes that disk accesses are
sequential[18]. However, a read-ahead algorithm does not always succeed as pre-
dicted.

In our mechanism, Fig. 1(c), the block 2 of a file is copied to buffer caches
but not decrypted. Only the requested area of the block 2 is decrypted and
stored back in buffer caches. After this partial decryption, the requested data is
copied to a user area. Because unused area of the block 2 is not decrypted, this
partial decryption can remove the unnecessary decryption. We can also expect
that the redundant decryption will be removed by the buffer caches because the
decrypted result is stored in buffer caches.

In a write operation, redundant encryption can occur as in a read operation.
We consider only overwrite operations that write data in the existing part of a
file. In case of a append operation, three mechanisms are similar. Fig. 2 shows the
case of a write operation. In a repeated write operation, the stackable layer en-
crypts the data redundantly. In case of using a device driver and our mechanism,
this redundancy does not occur.

3 3 3

(a) Stackable FS (b) Device driver (c) Our mechanism

Stackable layer

Device driver copy

encryption

User area

File

Buffer caches

copy

2 2 2

21 3

4 5 6

7 8

21 3

4 5 6

7 8

21 3

4 5 6

7 8

encryption

copy

partial encryption

Fig. 2. Encryption in Write Operation

We add new information in a buffer cache to support partial encryption/
decryption of a buffer cache. This information enables a buffer cache to distin-
guish which part of a buffer cache is encrypted or decrypted. The information,
BITMAP is shown in Fig. 3. The DATA in a buffer cache is divided into cipher
blocks. If the bit is 1, the corresponding cipher block is encrypted. Otherwise,
the cipher block is decrypted. Block cipher algorithms use a cipher block as a
basic encryption or decryption unit. In case of AES, the size of a cipher block is
16 bytes. If the size of a buffer cache(DATA) is 4096 bytes, the size of BITMAP
is 32 bytes. That is, additional 32 bytes per each buffer cache is necessary when
AES is used as a cryptographic algorithm.

Buffer Cache Level Encryption for Embedded Secure Operating System 351

Buffer Cache

DATA

1 0 1 0 1 0 11 10 0BITMAP

Encrypted Decrypted

Fig. 3. Information for Partial Encryption/Decryption in Buffer Cache

4 Performance Evaluation

We implemented our buffer cache level support on Linux kernel version 2.6.11. In
addition, we made other mechanisms because we want to exclude other factors
which affect the performance except buffer caches.

Table 1 shows the experimental setup. We selected the embedded system that
has a lower CPU than a desktop and a NAND flash for a storage. The reason is
that the performance improvement is more important to the mobile embedded
system than other general systems. In that respect, our mechanism is more
suitable for the mobile embedded systems.

Table 1. Experimental setup

CPU Intel Xscale PXA270 520MHz

Main memory SDRAM 64Mbytes

Storage NAND Flash
- page size 512+16 bytes
- erase block size 16K+512 bytes

Operating system Linux kernel version 2.6.11

File system YAFFS[19]

Size of buffer cache 4Kbytes

Cryptographic algorithm AES(ECB mode) with 128bits key

In our experiment, AES was used for encryption. The key length was 128
bits and ECB(Electronic CodeBook) mode was used for block encryption. The
throughput of AES was about 240 Kbytes/s.

General file system benchmarks are not suitable to measure the effect of a
cache. We made two type of synthesized workload to compare our mechanism
with other cryptographic file systems in terms of buffer cache hit ratio.

– Workloads with requests of a read operation with cache hit ratio 0, 0.25,
0.50, 0.75 and 1.0

352 J. Lee et al.

– Workloads with requests of a write operation with cache hit ratio 0, 0.25,
0.50, 0.75 and 1.0

We applied these workloads for various sizes of data: 64bytes, 128bytes, 256bytes,
512bytes, 1Kbytes, 2Kbytes and 4Kbytes. We got the average throughput by
repeating the experiments 1000 times.

Fig. 4 shows the results of read operations with the workloads. As the read
size increases, the throughput also increases. Before copying data to a user area,
the systems read 4Kbytes data from a file regardless of the actual read size.
4Kbytes is the size of a buffer cache. A read operation of 64bytes data results
in reading unnecessary 4Kbytes - 64bytes. Therefore, the larger read size makes
the larger throughput.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t
(
K
b
y
t
e
s
/
s
)

Read size(Bytes)

Stackable FS
Device driver
Our mechansim

(a) Hit ratio=0

 0

 100

 200

 300

 400

 500

 600

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t
(
K
b
y
t
e
s
/
s
)

Read size(Bytes)

Stackable FS
Device driver
Our mechanism

(b) Hit ratio=0.25

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t
(
K
b
y
t
e
s
/
s
)

Read size(Bytes)

Stackable FS
Device driver
Our mechanism

(c) Hit ratio=0.50

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t
(
K
b
y
t
e
s
/
s
)

Read size(Bytes)

Stackable FS
Device driver
Our mechanism

(d) Hit ratio=0.75

 0

 10000

 20000

 30000

 40000

 50000

 60000

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t
(
K
b
y
t
e
s
/
s
)

Read size(Bytes)

Stackable FS
Device driver
Our mechanism

(e) Hit ratio=1.0

Fig. 4. Read with cache hit ratio=0, 0.25, 0.50, 0.75 and 1.0

Buffer Cache Level Encryption for Embedded Secure Operating System 353

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t

(
K
b
y
t
e
s
/
s
)

Write size (Bytes)

Stackable FS
Device driver
Our mechanism

(a) Hit ratio=0

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t

(
K
b
y
t
e
s
/
s
)

Write size (Bytes)

Stackable FS
Device driver
Our mechanism

(b) Hit ratio=0.25

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t

(
K
b
y
t
e
s
/
s
)

Write size (Bytes)

Stackable FS
Device driver
Our mechanism

(c) Hit ratio=0.50

 0

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t

(
K
b
y
t
e
s
/
s
)

Write size (Bytes)

Stackable FS
Device driver
Our mechanism

(d) Hit ratio=0.75

 50

 100

 150

 200

 250

 300

 350

 400

4K2K1K51225612864

T
h
r
o
u
g
h
p
u
t

(
K
b
y
t
e
s
/
s
)

Write size (Bytes)

Stackable FS
Device driver
Our mechanism

(e) Hit ratio=1.0

Fig. 5. Write with cache hit ratio=0, 0.25, 0.50, 0.75 and 1.0

Except Fig. 4(e), hit ratio=1.0, our mechanism performs better than others.
In case of hit ratio=1.0, the read operations request the data already loaded in
a buffer cache. Therefore, unnecessary decryption is never occurred in case of
using a device driver. In other graphs of Fig. 4, the performance of the system
using a device driver is less than that of our mechanism due to the unnecessary
decryption.

In Fig. 4(a), hit ratio=0, the throughput of the system using a stackable
file system is similar to that of our mechanism. Our mechanism cannot exploit
the buffer cache when hit ratio is 0. In case of using a device driver, it always
decrypts entire buffer cache, even though less data is requested. This results in
the degradation of the performance in case of using a device driver.

354 J. Lee et al.

As the hit ratio increases, the relative performance of the system using a
stackable file system decreases and the relative performance of the system using
a device driver increases. However, the relative performance of our mechanism
is not affected largely by the hit ratio because our mechanism can fully exploit
the buffer caches. The decrease of the relative performance of the system using
a stackable file system results from the redundant decryption.

Fig. 5 shows the results of write operations with the workloads. Like the
read operations, the throughput is increases as the write size increases. Except
Fig. 5(e), hit ratio=1.0, our mechanism outperforms the case of using a device
driver. The system using a device driver performs unnecessary encryption while
committing a buffer cache into a disk. This results in the performance degra-
dation. The throughput of the system using a stackable file system is equal to
ours because the repeated write is not considered in this experiment. In case
of 4Kbytes, other mechanisms must encrypt entire buffer cache like the system
using a device driver. Therefore, when the write size is 4Kbytes, the throughput
of the system using a device driver is equal to that of others.

From the Fig. 4 and Fig. 5, we can know that the redundant and unnecessary
encryption/decryption can be reduced by our mechanism. The system using
a device driver outperforms others sometimes. However, this is occurred in a
special case, hit ratio=1.0 and this special case does not almost happen in real
computer systems.

5 Conclusions and Future Work

Many cryptographic file systems have been developed and used in real systems.
In general, kernel-level techniques are preferred because they are more cost-
effective than hardware techniques and outperform user-level techniques. How-
ever, existing kernel-level cryptographic file systems have some drawbacks. The
system using a stackable file system overlooks the effect of buffer caches and the
system using a device driver causes unnecessary decryption of data. We modified
buffer caches of a kernel to encrypt or decrypt data on a buffer cache partially.
This modification is helpful to eliminate unnecessary or redundant operations of
encryption/decryption and improve the performance.

References

1. Hasan, R., Myagmar, S., Lee, A., Yurcik, W.: Toward a threat model for stor-
age systems. In: Proceedings of International Workshop on Storage Security and
Survivability(StorageSS) (2005)

2. Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in embedded sys-
tems: Design challenges. ACM Transactions on Embedded Computing Systems 3,
461–491 (2004)

3. GNU: The GNU/Linux CryptoAPI (2003)
4. Dowdeswell, R., Ioannidis, J.: The cryptographic disk driver. In: Proceedings of

the Annual USENIX Technical Conference, FREENIX Track (2003)

Buffer Cache Level Encryption for Embedded Secure Operating System 355

5. Jetico Inc.: Bestcrypt corporate edn. (2001)
6. Gutmann, P.C.: Secure file system(SFS) for DOS/Windows (1994)
7. Zadok, E., Badulescu, I., Shender, A.: Cryptfs: A stackable vnode level encryp-

tion file system.Technical Report CUCS-021-98, Computer Science Department,
Columbia University (1998)

8. Wright, C., Martino, M., Zadok, E.: Ncryptfs: A secure and convenient crypto-
graphic file system. In: Proceedings of the Annual USENIX Technical Conference,
pp. 197–210 (2003)

9. Microsoft Corporation.: Encrypting file system for Windows 2000 (1999)
10. Zadok, E., Badulescu, I.: A stackable file system interface for Linux. In: Proceedings

of the 5th Annual Linux Expo, pp. 141–151 (1999)
11. Wright, C., Dave, J., Zadok, E.: Cryptographic file systems performance: What

you don’t know can hurt you. In: Proceedings of the Second IEEE International
Security In Storage Workshop, pp. 47–62 (2003)

12. Kingston Technology company.: DataTraveler Elite (2006)
13. ABIT Computer corporation.: Secure IDE (2003)
14. GNU.: GNU Privacy Guard (1999)
15. Blaze, M.: A cryptographic file system for UNIX. In: CCS 1993. Proceedings of the

1st ACM conference on Computer and communications security, pp. 9–16 (1993)
16. Cattaneo, G., Catuogno, L., Sorbo, A.D., Persiano, P.: The design and implemen-

tation of a transparent cryptographic file system for UNIX. In: Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical Conference, pp. 199–212 (2001)

17. Zadok, E., Nieh, J.: FiST: A language for stackable file systems. In: Proceedings
of the Annual USENIX Technical Conference, pp. 55–70 (2000)

18. Bovet, D.P., Cesati, M.: Understanding the Linux Kernel. O’Reilly (2006)
19. Aleph One.: YAFFS: the NAND-specific flash file system (2002)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 356–366, 2007.
© IFIP International Federation for Information Processing 2007

SOM-Based Anomaly Intrusion Detection System

Chun-dong Wang, He-feng Yu, Huai-bin Wang, and Kai Liu

School of Computer Science and Technology, Tianjin University of Technology,
Tianjin 300191, China

michael3769@163.com, emaif@163.com, hbwang@tjut.edu.cn,
liukai@163.com

Abstract. In this paper, a SOM-based anomaly intrusion detection system is
proposed, which can contract high-dimension data to lower, meanwhile keeping
the primary relationship between clustering and topology. During the
experiment, the theory of SOM is used to train three SOMs on the layers of
system, process and network. Although our experiment environment is simpler
than the real one, the result shows that it has its reference value for us to build
intelligent IDSs. Through the analysis of the monitoring results on the three
layers from the hacking tools (NMAP, HYDRA), it is suggested that the
approach of detecting and the parameters chosen be correct and effective.

Keywords: SOM, neural network, anomaly-based intrusion detection,
U-matrix, cluster.

1 Introduction

Along with increasing popularization of the Internet day by day, continuous updating
and variety of attack behaviors make the traditional rule-based IDS gradually lose its
ideal effect. SOM-based IDS, as the representative of the new generation of
intelligent IDS, compared with the traditional IDS, has the following special
advantages:

(1) The analysis technique of the traditional IDS is mainly based on the model of
statistics [1], and depends on several assumptions. SOM-based IDS can be trained
through a great deal of instances, can learn knowledge by itself and acquire the ability
of prognostication. The whole process is completely abstract calculation, with no
emphasis on the assumption of the distribution of the data.

(2) The traditional IDS depicts attack characteristics to be limited by a fixed
sequence, and the threshold value is mostly based on the experience. False positive
and false negative usually happen and it can not easily identify new attack methods.
In the terms of the ability of self-applicable and fault tolerant [2], SOM-based IDS
need not understand the detail of knowledge, and can master the inherent relationship
of each generous character of the system by itself. After mastering the normal
working mode [3] of the system, SOM-based IDS can react to all affairs which
deviate from the normal working mode, and then discover new attacks.

 SOM-Based Anomaly Intrusion Detection System 357

2 Self-organizing Maps (SOMs)

SOM was proposed by professor Kohonen, the neural network expert in 1981. Early
researches on neural network-based IDS mostly adopted BP (Back-Propagation) neural
network [4-5] for modeling, as well as multi-layer perceptron and Hamming, but they all
have restrictions and weaknesses [6]. By contrast with the above mentioned neural
networks, the best advantage of SOM is the ability of unsupervised learning, which can
transplant the system to new surroundings, and the training data has no marks.

2.1 About SOM Algorithm

The algorithm of SOM is recursive. First, every neuron corresponds to a N-
dimensions vector Wi=[wi1,wi2,…,wiN]. At every stage of training, sampling vector
Xk=[x1,x2, …,xN] is selected from the training set randomly, then calculate the
distance between Xk and all the weight vectors. c is the BMU(best-matching unit),
and the minimum distance between c and Xk is:

||||min||||
1

ik

M

i
ck WXWX −=−

=
(1)

Next, update the weight vector of the neuron which is in neighbourhood zone of
the winner cell’s topology. The rule is as follow:

⎩
⎨
⎧ −+

=+
),(

)],()[()(
)1(

kW

kWXkkW
kW

i

iki
i

α
)(

)(

kNi

kNi

c

c

∉
∈

(2)

In Formula 2, Nc refers to neighbourhood zone of the centre neuron wc. In the
process of learning, the initialization of Nc(k) can be big, then contracts gradually, as
follow:

LkLkNINTN cc ,...2,1,0)),/1)(0((=−=
 (3)

In Formula 3, Nc(0) means the initial neighbourhood radius, L, the times of the
iteration, INT（ ）. , the integral function. Nc(k1), Nc(k2), Nc(k3) stand for the topology
neighbourhood zone of the winner cell whose iterative times are k1, k2, k3（ k1
<k2<k3） .

Fig. 1. topology adjacent domains on two- dimension network

Nc(k2)

Nc(k1)

Nc(k3)

358 C.-d. Wang et al.

Usually, the learning rate)(kα (0<)(kα <1) is a constant, which is close to 1.0 in

the beginning, then lessens gradually. For example,)(kα can be 0.8(1-k/L). With the

increase of the times of the iteration,)(kα tends to zero, which ensures the learning

process to refrain from rash action.

2.2 The Steps of the Learning Algorithm of SOM

The concrete steps of the learning algorithm of SOM are as follows:

Step 1. Setting variables and parameters: Let X(k) = [x1(n), x2(n),…, xN(n)]T be the
input vector, or training sample, Wi(k)=[wi1(n), wi2(n), …, wiN(n)]T be the weight
vector, i=1,2, …, M, and the total times of iteration be L.

Step 2. Initialization: Initialize the weight vector Wi with a small random number
in a certain interval. Let the neighbourhood radius be Nc(0); the learning rate be

)(kα ; and then normalize weight vector Wi(0) and all the input vector X.

||||
'

X

X
X =

(4)

||||

)0(
)0('

i

i
i W

W
W =

(5)

In the above formulas, ∑
=

=
N

j
iji wW

1

2)]0([||)0(|| and ∑
=

=
N

j
ixX

1

2)(|||| are Euclidean

norm of the weight vector and input vector.

Step 3. Data sampling. Select training samples X’ from the input space.
Step 4. Approximate matching: According to the standard of the minimum Eucli-

dean distance:

MiWXWX i
i

c ,...,2,1||||min|||| '''' =−=− (6)

select winner cell c, implement the competitive process of neurons.
Step 5. Updating: Update the weight vectors of the cordial neuron, who are in the

topology neighbourhood zone of the winner cell Nc(n) under the following rules:

+=+)()1('' kWkW ii)]()[(' kWXk i−α

(7)

Step 6. Updating the learning rate)(kα and the topology neighbourhood zone, and

then normalize the weights after learning.

)1)(0()(
L

k
k −= αα

(8)

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

L

k
NINTnN cc 1)0()(

(9)

||)1(||
)1(

)1('
+
+=+

kW

kW
kW

i

i
i

(10)

 SOM-Based Anomaly Intrusion Detection System 359

Step 7. Judging whether the times of the iteration k exceeds L or not, if k<= L then
turn to step 3, otherwise end the process of iteration.

During the training, output neurons are sorted through adjusting their weight
vector, in order to be close to the probability density. Though produced randomly at
the beginning, the weight vector of the output neurons get closer and closer to the
distribution of the input data after long time running, through updating the weight
vector continuously.

3 Data Sampling, Preprocess, Standardization and Training

3.1 Data Sampling and Preprocess

In this paper, three hosts are used to constitute an LAN. One of the hosts, running Red
hat 7.2, works as the testing platform. We mainly sample and preprocess the data
from three layers (System layer, Process layer and network layer). The procedure is
carried out by the shell program. First of all, the sampling data consist of 1000 sets of
relevant data, which imitate the normal operation, and the sample interval is 10
seconds. The normal operations include the usage of familiar basic orders and
applications, compilation of programs, application of ftp and telnet, and Web browse
etc. Although time and amount of sampling are not enough, we imitated a great deal
of actual operation during samplings, which is to a degree representative. As is the
choice of parameters, we mainly consider those parameters affecting the system most
and likely to be abnormal, while attack happening or after.

On the system layer, we choose 9 Characteristic Parameters:
-S1: usage of virtual memory (kb)
-S2: spare memory (kb)
-S3: exchange speed from disk to memory (kb/s)
-S4: exchange speed from memory to disk (kb/s)
-S5: read-in speed of block device (kb/s)
-S6: write-out speed of block device (kb/s)
-S7: times of interruption per second (including timer interruption)
-S8: CPU processing time of user process (%)
-S9: CPU processing time of system process (%)

On the process layer, we choose 6 Characteristic Parameters:
-P1: total number of process
-P2: number of process at the state of running
-P3: CPU time occupancy of every process at the state of running (%)
-P4: memory occupancy of every process at the state of running (%)
-P5: virtual memory occupancy of every process at the state of running (%)
-P6: initial time of every process at the state of running

On the network layer, we choose 6 Characteristic Parameters:
-N1: number of TCP connection
-N2: port number of the connection
-N3: IP address of the connection
-N4: connection state
-N5: number of error packet accepted
-N6: number of error packet sent

360 C.-d. Wang et al.

Besides numeral quantity, there is also non-numerical quantity in the characteristic
data. For numeral quantity, it keeps the initialized value. For IP address, it intercepts
the last part. For the non- numerical quantity, it is inverted to the numeral quantity.
For example, for the state of TCP, we respectively use: 1,2,3,4,5,6,7,8,9,10,11,12 to
represent: Established, SYN-Sent, SYN-Recy, Closed, Listen etc; for the starting time
of the process, we change the notation of “:” into “.”.

The corresponding parameter is mainly obtained from the filtration of the results,
which come from different UNIX system commands, including: Vmstat, ps, Netstat,
top and so on. The programme is completed with script language. The interception,
conversion and coordination of the data are finished under these commands,
including: sed, awk, cat, cut, grep etc. The data of sampling is stored in three files
(systemlayer.dat, processlayer.dat, networklayer.dat) according to a certain format.

3.2 Standardization

Among the characteristic values selected, the differences are very obvious. So, in
order to balance the effects of the training result, we can standardize every
characteristic value into the area of 0~1, which is the demand of the application of
SOM. The formula of standardization is as follows:

∑
=

K

kv

iv
inv

2][

][
][

(11)

In Formula 11, nv[i] is the standardized value of i, v[i], the value size of i, and K,
the number of the characteristic vector.

3.3 Data Training

Map training is carried out according to the above-mentioned algorithm, mainly using
SOM_PAK [7-8]. Three Maps should be trained on three different layers in our
experiment. The number of neurons in each output layer of each Map is 12x8=96. The
process of training is divided into two stages. At the first stage, the weigh vector of
each neuron is sorted. At the beginning, the neighbourhood radius is chosen relatively
bigger, generally equaling to the diameter of the Map, finally changing into 1, and the
bigger learning rate should also be chosen, gradually changing into 0 with the
increase of the training times. In order to make the weigh vector of each neuron more
accurate, the second stage should be adjusted. At this stage, the smaller learning rate
and the neighbourhood radius should be chosen correspondingly.

U-matrix (unified distance matrix) is a visual method of SOM cluster structure.
The U-matrix chart shows the distance between the weight vector of a certain neuron
and that of its adjacent neuron. Usually, different gray levels are used to express the
size of the distance. Fig2, 3, 4 are three U-Matrix figures, respectively expressing the
results of SOM training on three layers (system layer, process layer and network
layer). Each small black mark in the figure means a neuron unit.

 SOM-Based Anomaly Intrusion Detection System 361

Table 1. Training parameters of SOMs on layers of system, process and network

System layer Process layer Network layer

Dimensions of input vector 9 6 6

Topology Rhombus Rhombus Rhombus

Adjacent domain function Bubble Bubble Bubble

Dimension of Map’s X direction 12 12 12

Dimension of Map’s Y direction 8 8 8

Function of learning rate Linear Linear Linear

Times of training at phase one 10000 10000 10000

Initial value of learning rate at phase one 0.1 0.3 0.3

Initial radius at phase one 10 10 10

Times of training at phase two 100000 100000 100000

Initial value of learning rate at phase two 0.02 0.01 0.02

Initial radius at phase two 3 3 3

Fig. 2. U-Matrix map of system layer

Fig. 3. U-Matrix map of process layer

362 C.-d. Wang et al.

Fig. 4. U-Matrix map of network layer

In the learning algorithm of SOM, different choices of training parameters have
different influence on training results. In this paper, different Maps are mainly
obtained through changing the training stages, learning rate and initialized radius at
the two stages. Finally, make sure the parameter value relatively small, and then, train
the sampling data according to the above-mentioned parameter. The results can be
viewed in Table 2. The main content of the result is the training time and
corresponding quantization error.

Table 2. Training time and quantization error at two phases

System layer Process layer Network layer
Index of performance

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

Training time <1s 12s <2s 10s <2s 11s

Quantization error 235.6 78.3 137.3 23.8 30.8 0.3

Table 3. Alarm threshold values on the system layer

 Y
 X

0 1 2 3 4 5 6 7

0 802 120 59 558 92 23 883 214
1 49 135 70 91 35 68 26 55
2 88 145 101 140 0 89 75 215
3 95 103 112 157 0 91 206 68
4 682 150 142 0 0 111 83 83
5 417 168 166 413 95 70 87 72
6 0 220 0 98 99 145 86 86
7 396 0 0 0 60 167 90 89
8 1034 0 204 0 0 55 96 290
9 347 1117 0 551 2881 263 0 166
10 0 657 0 0 0 0 32 143
11 6868 0 120 538 0 0 481 34

 SOM-Based Anomaly Intrusion Detection System 363

Table 4. Alarm threshold values on the process layer

 Y
 X

0 1 2 3 4 5 6 7

0 6.2 3.7 90.6 0 13.7 38.8 41.4 332.2
1 0 12.1 77.0 50.1 0 6.0 75.9 100.1
2 27.1 0 60.6 20.9 6.8 19.4 140.1 7.1
3 123.6 0 18.6 120.5 33.3 10.4 25.5 20.1
4 0 0 44.7 0 36.2 14.7 103.3 17.2
5 45.8 0 0 11.2 136.4 0 0 82.9
6 0 227.2 0 0 16.1 4.3 162.3 0
7 40.7 125.9 95.0 39.5 0 15.7 0 56.7
8 15.5 0 56.9 12.4 58.7 12.5 0 58.7
9 8.1 2.0 17.7 0 0 36.1 44.5 75.1
10 0 21.8 0 13.6 0 94.5 72.2 38.3
11 60.7 28.6 111.0 7.6 17.9 56.8 126.6 559.0

Table 5. Alarm threshold values on the network layer

 Y
 X

0 1 2 3 4 5 6 7

0 0.99 0 0 0.87 0.083 0 0.39 0.24
1 0 0.33 0 0 0 0.13 0 5.07
2 4.88 0 0 0 0.64 0 0.21 0
3 4.41 0.29 0.01 0 0 0 0 0.04
4 5.69 0 0 0.18 0.81 0 1.94 0
5 5.34 0 0.21 2.47 0 0.00 0 0.00
6 0.21 0 0 0 0 0 0 0
7 0 0 0.00 0 0.36 0 0 0
8 1.50 0 0 0 0 0 0 5.88
9 0 0 0.00 0 0 1.50 0 0
10 0.58 0 0 0 0 0 0 0
11 1.58 0 2.90 0 4.59 0 0 4.23

Table 2 shows the average value of the quantization error. In order to determine the
alarm threshold values, we must follow the formula 1 to work out the distance
between the data of normal training instances and the corresponding BMU, here it is
called BMU Distance. After working out every BMU Distance of every input vector,
several distance values can be got from one BMU, and the biggest one is used as the
alarm threshold. But not every neuron has such a distance value, and the alarm
threshold value is specified as 0 when this happens.

Table 3 shows the alarm threshold values of every neuron of the corresponding
system layer MAPs. The most left column of the table shows the X-coordinate value
of the MAP, respectively getting the integer between 0 and 11; the most above row
shows the Y-coordinate value of the MAP, respectively getting the integer between 0
and 8.

364 C.-d. Wang et al.

The alarm threshold values of process layer and network layer can be obtained
using the same method, and respectively show in Table 4 and Table 5.

4 Experiment Result and Its Analysis

Using the learning algorithm of SOM mentioned above, three Self-Organizing Maps
were trained from the training data on the layers of system, process and network. And
the alarm thresholds were determined. If considering every BMU as a cluster, then the
cluster can be used to determine the normal or abnormal of new instances. This paper
uses Distance Function),(Ksfd to measure the distance between new instance s

and cluster K, and uses it to decide whether the new instance abnormal or not. The
concrete function is as follows:

}|),(min{),(CKKsfNormalsf iidd ∈= (12)

⎩
⎨
⎧

=
0

1
)(sxabnormal

otherwise

tNormalsfif id ≥),(
 (13)

In the above formulas, C is the set of normal subspace. it is used to distinguish the

threshold value between the normal class and the abnormal. df uses Euclidean

distance:

||||),(
iKid wsKsf −= (14)

In the above formulas,
iKw is the weight vector matrix of the cluster Ki .

In order to achieve the purpose of intruding the important system, the main purpose
of the inner intruder was not to intrude the Client, but running suspicious procedures
via the Client. On the account of detecting the abnormal of Client in this experiment,
we mainly detect the abnormal situation of system while it is running suspicious
operation or suspicious procedures. So, anomaly intrusion on the Client is a vital
aspect of internal network intrusion detection.

This paper uses NMAP and Hydra to produce the abnormal data of the system,
in the meantime, the monitor procedure Monitor was run at the backstage. Through
the detection during running these two tools, the abnormal circumstances of different
layers are different, which mainly shows that the ratio of the abnormal data in the
whole detected data is different. The size of ratio also reflects that the influences on
different layers are different, also shows that, in the meantime, the invader is not
continuous to make a system working abnormal during intrusion. Therefore, in order
to enhance the detection rate, the sampling data should be sampled several times in
the process of anomaly-based intrusion detection. Detection rate on different layers
during intrusion with the same set of data can be seen from the Table 6.

 SOM-Based Anomaly Intrusion Detection System 365

Table 6. Detection rate of different layers during intrusion

Tools
Detection rate of

system layer
Detection rate of

process layer
Detection rate of

network layer

NMAP 0% 36% 100%

HYDRA 66% 50% 86%

Supposing the time of intrusion is Ta, and the probability of discovering abnormity

effectively with sampling one set of data at ti is p, so, after continuous sampling n sets
of data in Ta, the final anomaly-based intrusion detection rate is:

npAP)1(1)(−−=
(15)

Under the situation of not changing the threshold value of warning, if you want to
make the rate of anomaly-based intrusion detection achieve more than 99%, just

ensure np)1(1 −− >0.99, the same as np)1(− <0.01. Fig 5 shows the relation

diagram of n and p, when P(A) is more than 99% in the Formula 15. The numerical
label in the form is the corresponding coordinate of Y axis. As long as values are
taken above the curve, the total detection rate can achieve more than 99%.

44

21

13
10

7 6
4 3 2

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Detection rate

S
a
m
p
l
i
n
g

t
i
m
e
s

Fig. 5. Relation diagram of n and p

The detection result above shows that the way of sampling many times makes the
detection rate raise to a satisfactory extent, while not needing to change the size of the
threshold value of warning, either raise the false positive rate. From Table 6 and Fig
5, we discover that, in order to make the rate of anomaly-based intrusion detection
produced by Hydra on the system layer achieve more than 99%, we should sample 6
times during the running of Hydra; in order to make the rate of the anomaly-based
intrusion detection produced by NMAP and Hydra on the process layer achieve more
than 99%, we should sample 7 times and 13 times respectively during their running;
in order to make the rate of the anomaly-based intrusion detection produced by
NMAP and Hydra on the network layer achieve more than 99%, we should sample 1
time and 3 times respectively during their running. Result shows that the method of

366 C.-d. Wang et al.

anomaly-based intrusion detection and the choice of the monitor parameter are viable
and meaningful.

5 Conclusions

In this paper, a novel way of anomaly-based intrusion detection using SOMs is
proposed. During the experiment, we use the theory of SOM to train three SOMs on
the layers of system, process and network. Although our experiment environment is
simpler than the real one, the result shows that it has its reference value for us to build
intelligent IDSs. In larger and more complicated real experiment environment, the
characteristic value should be selected more extensively, the bound of the time for
training the normal sets of data should be a little bit larger, the data should also be a
little bit more, and the dimension of the Maps should also be chosen a little bit larger.
Thus, training time will consumedly increase, but as long as the training time is
restricted in a certain bound, it is acceptable.

Acknowledgements. “Computer Software and Theory” of Tianjin Pivot Subject
Establishment, and “The Higher Education Institution Science and Technology
Development Fund” (No. 2006BA19) of Tianjin Municipal Education Commission,
and Wireless Network Research Institute of Tianjin University of Technology
supported this work.

References

1. Ord, K.: Outliers in statistical data: V.barnett and t.lewis. International Journal of
Forecasting 12(1), 175–176 (1996)

2. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30.
Springer, Heidelberg (1995) (second extended edition 1997)

3. Zanero, S., Savaresi, S.M.: Unsupervised Learning Techniques for an Intrusion Detection
System [C]. In: Proceedings of 2004 ACM Symposium on Applied Computing, Nicosia,
Cyprus (2004)

4. Dangfeng, Z., Chunhui, H.: Research on Intrusion Detection Technique Based on Rapidly
BP Learning Algorithm. Network Security Technology and Application (8), 36–37, 33
(2006)

5. Shengjun, W., Changzhen, H., Fei, J.: An Intrusion Detection Method Based on Improved
BP Neural Network Algorithm. Computer Engineering 31(13), 154–155, 158 (2005)

6. Hagan, M.T., Dcmuch, H.B., Beale, M.: Neural Network Design. China Machine Press,
Beijing (2002)

7. Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J.: SOM_PAK, The Self-Organizing
Map Program Package, Version 3.1 (1995)

8. The Self-Organizing Map Program Package, http://www.cis.hut.fi/research/som_pak/

TCP-Taichung: A RTT-Based Predictive

Bandwidth Based with Optimal Shrink Factor
for TCP Congestion Control in Heterogeneous

Wired and Wireless Networks

Ben-Jye Chang1, Shu-Yu Lin1, and Ying-Hsin Liang2

1 Department of Computer Science and Information Engineering
Chaoyang University of Technology, Taiwan, ROC

{changb,s9227623}@mail.cyut.edu.tw
2 Department of Computer Science and Information Engineering

Nan-Kai Institute of Technology, Taiwan, ROC
t136@nkc.edu.tw

Abstract. TCP congestion control works well in wired Internet network
but it is difficult to determine a good congestion window in a heteroge-
neous wireless network that consists of the wired Internet and various
types of wireless networks. Therefore, we propose herein a novel adaptive
window congestion control, namely TCP-Taichung, for TCP connections
in heterogeneous wireless networks. The proposed RTT-based conges-
tion control is designed for the Slow Start, Congestion Avoidance, Fast
Retransmit and Fast Recovery phases to increase throughput while sup-
porting high fairness. In addition, an optimal shrink factor is proposed to
determine the optimal cwnd and ssthresh for the cases of network con-
gestion or wireless-link error. Numerical results demonstrate that TCP-
Taichung outperforms other approaches in goodput and fairness under
various wireless network topologies. Especially, in the case of 10% packet
loss rate in wireless link, the proposed approach increases goodput up to
200% as compared with NewReno.

Keywords: TCP, RTT, congestion control, error wireless link, hetero-
geneous wireless networks.

1 Introduction

ALL IP based access for Internet rich resources anytime anywhere makes differ-
ent wireless network standards and technologies have been developed progres-
sively. Several successful IP-based wireless standards include IEEE 802.11 family
[1] and 802.16 [2] for wireless networks, and 3G [3]/4G [4] for mobile commu-
nications. The important protocols of all IP based wireless networks are IP [5]
and TCP [6] that provides reliable end-to-end connections in transport layer
and connectionless-oriented hop-by-hop routing in network layer, respectively.
Although TCP works well in the wired Internet, it is hard to determine a good

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 367–378, 2007.
c© IFIP International Federation for Information Processing 2007

368 B.-J. Chang, S.-Y. Lin, and Y.-H. Liang

congestion window (cwnd) in wireless networks. In addition, TCP congestion
control [7] can be divided into four phases, including the slow start, Congestion
Avoidance, Fast Retransmit and fast recovery phases. In [8], Hoe proposed a
bandwidth delay product based computation for determining initial ssthresh,
in which the first three ACKs are required for sender to determine it. The main
ideas of these mechanisms are based on sliding window and additive increase
multiplicative decrease (AIMD) [9] algorithms. We can classify these TCP con-
gestion control mechanisms into two types: the AIMD-based mechanism and the
estimated available bandwidth mechanism.

First, several AIMD-based algorithms [10,11,12,13] have been proposed. TCP-
Tahoe [12] TCP-Reno [13] and TCP-NewReno [10] are typical AIMD-based
algorithms. [14,15] proposed an additive increase adaptive decrease (AIADD)
mechanism to improve such a problem by estimating available bandwidth. Sec-
ond, several approaches of estimated available bandwidth have been proposed
[14,15,16,17,18,19]. TCP-Westwood [14,15] is proposed to estimate available net-
work bandwidth by using the ACK reception rate at sender. Although TCP-
Westwood improves throughput, it suffers from inaccurate estimation of avail-
able bandwidth. Then, [17,18] proposed TCP-Westwood+ for estimating net-
work available bandwidth more accurate and then increases throughput. Based
on TCP-Westwood, TCP-Jersey [16] was proposed to provide the Explicit Con-
gestion Notification (ECN) in a router’s Active Queue Management (QAM). [20]
proposed TCP-Vegas to determine whether a network occurs congestion or not
by using the difference of the Expected (i.e., cwnd/RTTmin) and Actual (i.e.,
cwnd/RTT) rates. Unfortunately, the optimal lower and upper bounds of α and
β are difficult to determine in TCP-Vegas.

Although many approaches have been proposed to support or improve con-
gestion control in TCP, it is difficult to provide high throughput while providing
good fairness and friendliness in heterogeneous wireless networks. Therefore,
in this paper, we propose an adaptive RTT-based cwnd control with a pre-
cise shrink factor approach to achieve high throughput while providing good
fairness.

The remainder of the paper is organized as follows. Section II describes the
network model of TCP connections and performance metrics for evaluation.
Section III then describes the TCP-Taichung approach for controlling congestion
window in TCP under heterogeneous wireless networks. Section IV evaluates
the performance of the proposed RTT-based approach. Section V draws several
important conclusions.

2 Network Model

We model a TCP/IP network as a logical graph, G = (V, E), which consists
of a set of nodes, V , and a set of logical end-to-end connections, E. Two end
types are considered in a TCP/IP connection, including the TCP connection
server (Vs) and client (Vc). Fig. 1 demonstrates an example of four TCP connec-
tions, including E1

V 2
s ,V 7

c
, E2

V 1
s ,V 5

c
, E3

V 4
s ,V 3

c
, and E4

V 8
s ,V 6

c
in heterogeneous wireless

TCP-Taichung 369

Fig. 1. An example of TCP connections in heterogeneous wireless networks

networks, in which connections E2
V 1

s ,V 5
c

and E4
V 8

s ,V 6
c

have a single wireless link
and connection E3

V 4
s ,V 3

c
has two wireless links.

Various performance metrics, including goodput and fairness, are adopted to
evaluate the TCP-Taichung approach and other approaches under various net-
work topologies with different error rate of wireless links. First, since packets
transmission from sender may be lost or discarded due to network congestion
and error wireless links, not all transmitted packets will arrive at receiver. There-
fore, we adopt average goodput to evaluate the congestion control mechanisms.
Average goodput is defined by

Average Goodput =

N∑

n=1

MaxACKSeqNon × MSSn

TotalT ransmissionT ime

N
, (1)

where MaxACKSeqNon denotes the maximum ACK number of connection n,
MSSn is the maximum segment size of connection n, and N is the total num-
ber of connections. Second, fairness is another important metric for evaluating
whether all connections fairly utilize the bandwidth of the network or not. A
good TCP congestion control approach should achieve a fair usage of bandwidth
among all connections. The fairness metric is defined by

Fairness =

(
N∑

n=1

Sn

)2

N ×
N∑

n=1

(Sn)2
, (2)

where Sn is the throughput of connection n. The range of Fairness is between
one and 1/N , where Fairness = 1 is the most fair result.

370 B.-J. Chang, S.-Y. Lin, and Y.-H. Liang

3 Adaptive Network Bandwidth Approach

This section first briefly describes the problems of congestion control in TCP
connections under heterogeneous wireless networks. Then, we detail the moti-
vations of the proposed TCP-Taichung approach. Finally, the optimal conges-
tion control is described in two aspects of the network bandwidth is sufficient
or not. First aspect proposes two adaptive control mechanisms to determine
the optimal cwnd, cwndopt, and the ideal slow start threshold, ssthreshideal,
in the increasing cwnd phase while the expected bandwidth is enough. Sec-
ond aspect provides the determinations of the optimal cwnd, cwndopt, and the
network ssthresh, ssthreshnet, in the decreasing cwnd phase while the expected
network bandwidth is insufficient.

3.1 In the Increasing cwnd Phase While the Expected Network
Bandwidth Is Enough

The algorithmof determining the optimal congestionwindow (cwndopt)
Assume that MSS is S bits and the data rate of is R bit per second and the
minimum round-trip time of TCP connections is RTTmin when the network
traffic is not saturation. The total time of transmitting a packet in such a light-
traffic network is thus (S/R) + RTTmin(sec). In addition, in such a light-traffic
network, the increment of congestion window (cwnd) of sender will not affect
the round trip time and the total time of transmitting cwnd packets should be
less than (S/R) + RTTmin, as shown below

cwnd · (S/R) < (S/R) + RTTmin, (3)

that is,

cwnd <
RTTmin

S/R
+ 1. (4)

Based on the analysis, we obtain the round trip time (RTT) of a connection,
which is close to RTTmin, if cwnd is less than RTTmin

S/R +1. On the other hand, if
cwnd ≥ RTTmin

S/R + 1 = k, the network traffic becomes saturation and RTT will
be increased based on (cwnd − k) · S/R till congestion. As a result, the value
of RTTmin

S/R + 1 is the optimal window size of the connection, which is denoted
as cwndopt. In other words, when cwnd is larger than cwndopt, the network will
enter into the saturation state.

The algorithm of determining the ideal ssthresh (ssthreshideal). In
TCP, the Slow Start threshold, ssthresh, is an important parameter for a sender
to determine when to enter into the Congestion Avoidance phase. If ssthresh is
set too small, the sender will enter into the Congestion Avoidance phase early
that brings two disadvantages: low goodput and unfairness. On the other hand,
if ssthresh is set too large, the sender will send too many packets in a congested
network, which will cause the congested network more serious. Since the con-
gested intermediate router may discard the over-sent packets, this causes too

TCP-Taichung 371

many duplicate ACKs or timeout. In the worst case, sender will enter into the
Slow Start phase. Cwnd will be set to one and result in low goodput. Therefore,
the determination of an ideal ssthresh, i.e., ssthreshideal, is proposed in this
paper for achieving high goodput and high fairness.

Since ssthresh is affected by traffic load, an ACK-based mechanism is pro-
posed to determine the ssthreshideal adaptively. We first define the received
inter-ACK period of two continuous ACKs at sender as InterACK that is
a parameter represented current traffic load. Then, the new expected smooth
InterACK is denoted as InterACKnew, which is computed on line based on
the Exponential Weight Moving Average (EWMA) model,

InterACKnew = α · InterACKavg + (1 − α) · InterACKold, (5)

where InterACKavg denotes the average inter-ACK time of the connection,
InterACKold is the inter-ACK time between current and previous ACKs, and
α is a constant value ranging of (0, 1).

Based on receiving each new ACK packet, sender can adaptively determines
the expected smooth InterACK. Consequently, the ideal ssthresh of the Slow
Start phase can be formulated by

ssthreshideal =
RTTmin

InterACK
+ 1, (6)

which is also the optimal ssthresh of the first ssthresh in the Slow Start phase.

Thedeterminationofadaptivenetworkbandwidthandnetworkssthresh
After obtaining the ideal ssthresh, the adaptive network bandwidth can be
estimated by

Adaptive network bandwidth =
ssthreshideal

RTT
, (7)

where RTT is the round-trip time of the last received ACK. Under the es-
timated bandwidth, cwnd will increase exponentially until cwnd exceeds the
network ssthresh, ssthreshnet, in the Slow Start phase and then enters into
the Congestion Avoidance phase. As the ideal ssthresh analysis in previous
subsection, the network ssthresh of the expected available bandwidth is an
important threshold that should be addressed for achieving high goodput and
fairness. Therefore, we first determine the network ssthresh by

ssthreshnet = (Adaptive network bandwidth) · (RTTmin). (8)

That means the idela ssthresh of the expected adaptive network bandwidth will
occur at the situation of RTTmin. In consequence, after applying (7) to (8), we
thus have

ssthreshnet = (Adaptive network bandwidth) · (RTTmin)

=
ssthreshideal

RTT
· RTTmin,

(9)

372 B.-J. Chang, S.-Y. Lin, and Y.-H. Liang

or

ssthreshnet =
(

RTTmin

InterACK
+ 1

)

· RTTmin

RTT
, (10)

where the term RTTmin

RTT is called a shrink factor of the ideal ssthresh. Since net-
work bandwidth is shared among all connections, RTT of an adaptive network
bandwidth should be less than RTTmin. The network ssthresh can be formu-
lated by shrinking the ideal ssthresh based on the shrink factor. Consequently,
when cwnd ≥ ssthreshnet, sender will enter into the Congestion Avoidance
phase. In addition, we consider the value of ssthresh in the Congestion Avoid-
ance phase, which is also determined based on the shrink factor of ssthresh
when three duplicate ACKs received or timeout occurs.

Based on the analysis of cwndopt, ssthreshideal and ssthreshnet, the algo-
rithm of controlling congestion window while receiving ACKs at sender is demon-
strated in Fig. 2. There are two significant contributions. First, the expected
smooth InterACK is computed based on the EWMA model for achieving ac-
curate estimation of InterACK. Second, the condition of switching from the
Slow Start phase to the Congestion Avoidance phase is based on two thresholds
of ssthreshnet and ssthreshideal for accurately predicting when will occur net-
work saturation. The variation of congestion window of receiving ACK in Slow
Start of TCP-Taichung is compared with NewReno. In Fig. 3, we can observe
that TCP-Taichung avoids occurring timeout in the first Slow Start phase and
results in higher goodput than that of NewReno, in which the goodput of the
proposed approach is 8779980 bps but that of NewReno is 8177664 bps. The
accurate analysis of ideal ssthresh and the optimal congestion window in Slow
Start results in high goodput.

ReceiveACK()
{

if

(
InterACK

InterACKmin
< cwnd ‖ InterACKorg > InterACK

)

{

// Filter InterACKdiff
InterACK = (α) ∗ InterACKorg + (1 − α)InterACK

}

ssthreshnet =

(
RTTmin

InterACK
+ 1

)

+

(
RTTmin

RTT

)

if(cwnd < ssthreshnet && cwnd < ssthreshideal) {
cwnd + + //expontial increasing phase

}
else {

cwnd+ =
1

cwnd
//linear increasing phase

}
}

Fig. 2. The algorithm of controlling congestion window while receiving ACKs at sender

TCP-Taichung 373

Fig. 3. The variation of congestion window in Slow Start

3.2 In the Decreasing cwnd Phase While the Expected Network
Bandwidth Is Insufficient

When cwnd exceeds ssthreshnet and ssthreshideal, sender enters into the Con-
gestion Avoidance phase and cwnd increases linearly while receiving each ACK.
In this phase, the available network bandwidth becomes worse and buffers of
intermediate routers will stuff with unsent packets and increase the RTT. If
these delayed packets exceed the receiving timeout, receiver will send a duplicate
ACK request back to sender. When sender receives three duplicate ACKs that
means network congestion becomes worse, cwnd should be reduced for routers to
process these queued packets, i.e., the flight packets. In Congestion Avoidance,
most of TCP congestion control approaches significantly reduce cwnd, if sender
receives three duplicate ACKs. For instance, cwnd is reduced to one in Taho and
becomes half of original cwnd in Reno and NewReno. Since these cwnd reduc-
ing mechanisms are unsystematic and are independent on the available network
bandwidth, which results in large variation of cwnd and low throughput.

Therefore, an expected network bandwidth based algorithm is proposed herein
for reducing cwnd adaptively. In the case of receiving three duplicate ACKs in
Congestion Avoidance, the network will become saturation and cause congestion
seriously. For changing the network state from saturation to non-saturation,
cwnd is set to the optimal cwnd that is the window size of the non-saturation
state while with the same expected actual rate. In other words, the optimal
cwnd is at the threshold between the saturation and non-saturation states. The
optimal cwnd is computed by

Expected actural rate =
cwnd

RTT
=

cwndopt

RTTmin
, (11)

that is,

Optimal cwnd(or cwndopt) = cwnd · RTTmin

RTT
. (12)

Finally, the algorithm of reducing congestion window by the shrink factor while
receiving three duplicate ACKs at sender is shown in Fig. 4.

374 B.-J. Chang, S.-Y. Lin, and Y.-H. Liang

if(three DUPACKs are received) {

ssthreshnet = cwnd ·
(

RTTmin

RTT

)

cwndopt = ssthreshnet

}
if(timeoput expired) {

ssthreshnet = cwnd ·
(

RTTmin

RTT

)

cwnd = 1
}

Fig. 4. The variation of congestion window in Slow Start

4 Numerical Results

This section evaluates the proposed TCP-Taichung approach for TCP congestion
control in heterogeneous wireless networks by comparing various performance
metrics, including goodput and fairness. Several compared approaches includes
NewReno [10] and Westwood+ [17,18]. The Network Simulator (NS-2) [21] is
adopted for all simulations with the following network parameters. The packet
size is 512 bits. Router buffer is determined by Bandwidth-Delay Product (BDP)
rule-of-thumb [22]. Impatient variant is adopted for responding partial ACKs
for all TCP connections. In wireless networks, the uniform packet loss model is
adopted at the sender and receiver nodes.

4.1 Scenario 1: N TCP Connections in a Wired Network

In scenario 1, total n (i.e., n = 1, 2 and 10) TCP connections are operated in
a wired network with a bottleneck link, which bandwidth is 10 Mbps and delay
is 25 ms. The other links except the bottleneck link are with the bandwidth of
100 Mbps and delay of 10ms as shown in Fig. 5. Two-type of simulations are
evaluated including the cases without CBR and with CBR background traffic.

Fig. 5. Wired network with a single bottleneck link

TCP-Taichung 375

Table 1. Goodput of compared approaches without CBR traffic (Wired network)

Goodput (bps)

Number of connections TCP-Taichung NewReno Westwood+

1 9043681 8885084 8575426
2 4527145 4454523 4371722
10 901849 896581 893390

Table 2. Fairness of compared approaches without CBR traffic (Wired network)

Fairness

Number of connections TCP-Taichung NewReno Westwood+

2 0.999965 0.99993674 0.99992643
10 0.999403 0.99953054 0.99726527

Table 3. Goodput of compared approaches with CBR traffic (Wired network)

Goodput (bps)

Number of connections TCP-Taichung NewReno Westwood+

1 4286341 3978199 4164608
2 2174054 2120765 2171043
10 451027 450265 447422

Without CBR background traffic, the average goodput and fairness of TCP-
Taichung, NewReno, and Westwood+ are demonstrated in Tables 1-2. In Table
1, TCP-Taichung yields the highest goodput under the number of connections
is 1, 2, or 10. Meanwhile, Westwood+ yields the worst goodput among all com-
pared approaches under different number of connections. In Table 2, all ap-
proaches yield very competitive fairness, in which the results are very close to
one. Fairness = 1 means the fairest result. In Table 3, TCP-Taichung out-
performs NewReno and Westwood+ in average goodput, in which Westwood+
yields the worst goodput. In addition, the goodput of all approaches decreases
as the number of connections increases.

4.2 Scenario 2: N TCP Connections in a Wired Network with a
Single Wireless Link

For evaluating goodput and fairness affected by network congestion and wireless
error link, scenario 2 is simulated for all compared approaches. In Fig. 6, total 20
TCP connections are operated in a wired network with a single wireless network,
in which bandwidth and delay of the wired bottleneck link is 10 Mbps and 25
ms, respectively. The packet loss rate of wireless links is between 0 and 0.1.

In Fig. 7, goodput of all approaches decreases as the wireless packet loss rate
increases. The proposed approach yields the best goodput under all different
wireless packet loss rate, but NewReno yields the worst goodput; especially, the

376 B.-J. Chang, S.-Y. Lin, and Y.-H. Liang

Fig. 6. 20 TCP connections in a wired network with a single wireless link

Fig. 7. Goodput of compared approaches (with a single wireless network)

Table 4. Fairness of compared approaches (with a single wireless network)

Fairness

Packet loss rate TCP-Taichung NewReno Westwood+

0 0.988328 0.999261 0.923017
0.001 0.993481 0.996917 0.973306
0.005 0.992687 0.996184 0.991795
0.01 0.996392 0.99666 0.995311
0.05 0.994997 0.99684 0.996087
0.1 0.988709 0.984752 0.996548

goodput of the proposed approach is 210% higher than that of NewReno and
175% higher than that of Westwood+. Furthermore, fairness of all approaches
under different wireless packet loss rate are evaluated as shown in Table 4. The
proposed approach yields very competitive fairness to that of NewReno. Fair-
nesses of the proposed approach of different wireless packet loss rates are all
above 0.9883.

TCP-Taichung 377

In summary, the proposed approach results in the highest goodput not only
in the wired network but also in the heterogeneous wired and wireless network.
However, goodput of NewReno is better than that of Westwood+ under a wired
network with CBR background traffic, but Westwood+ outperforms NewReno
in goodput. Furthermore, all approaches yield very competitive fairness. In the
wireless network, the cwnd variation of the proposed approach is more stable
than that of NewReno.

5 Conclusions

In this paper, we proposed a RTT-based predictive bandwidth approach, namely
TCP-Taichung, to determine the optimal congestion window, network ssthresh,
and ideal ssthresh for TCP congestion control in heterogeneous wireless net-
works. Numerical results show that TCP-Taichung outperforms NewReno and
Westwood+ in goodput and fairness in both of wired network and heterogeneous
wireless networks.

Acknowledgments

This work was funded in part by National Science Council, Taiwan, ROC, under
Grant NSC 95-2221-E-324-002 for B.-J. Chang.

References

1. IEEE 802.11 WG, Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, IEEE std. 802.11 (1999)

2. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface
for Fixed Broadband Wireless Access Systems, IEEE Std. 802.16 (October 2004)

3. http://www.3gpp.org
4. Santhi, K.R., Srivastava, V.K., SenthilKumaran, G., Butare, A.: Goals of true

broad band’s wireless next wave (4G-5G). IEEE VTC 2003-Fall 4, 2317–2321 (2003)
5. Internet Protocol, IETF RFC 791 (1981)
6. Transmission Control Protocol, IETF RFC 793 (1981)

7. Transmission Control Protocol, IETF RFC 2581 (1999)
8. Hoe, J.C.: Improving the start-up behavior of a congestion control scheme for TCP.

In: ACM SIGCOMM 1996, pp. 270–280 (August 1996)
9. Chiu, D., Jain, R.: Analysis of the increase/decrease algorithms for congestion

avoidance in computer networks. Journal of Computer Networks and ISDN sys-
tems 17(1), 1–14 (1989)

10. The Newreno Modification to TCP’s Fast Recovery Algorithm, IETF RFC 2582
(1999)

11. The Newreno Modification to TCP’s Fast Recovery Algorithm, IETF RFC 3782
(2004)

12. Jacobson, V.: Congestion avoidance and control. In: ACM SIGCOMM 1988, pp.
314–329 (August 1988)

http://www.3gpp.org

378 B.-J. Chang, S.-Y. Lin, and Y.-H. Liang

13. Stevens, W.: TCP slow start, congestion avoidance, fast retransmit and fast recov-
ery algorithms, IETF RFC 2001 (1997)

14. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, R.: TCP Westwood:
Bandwidth estimation for enhanced transport over wireless links. In: ACM Mobi-
com 2001, pp. 287–297 (July 2001)

15. Wang, R., Valla, M., Sanadidi, M.Y., Ng, B.K.F., Gerla, M.: Efficiency/friendliness
tradeoffs in TCP Westwood. IEEE ISCC 2002, 304–311 (July 2002)

16. Kai, X., Ye, T., Ansari, N.: TCP-Jersey for wireless IP communications. IEEE
JSAIC 22(4), 747–756 (2004)

17. Grieco, L.A., Mascolo, S.: Performance evaluation of Westwood+ TCP over
WLANs with local error control. In: IEEE LCN2003, pp. 440–448 (October 2003)

18. http://www-ictserv.poliba.it/mascolo/tcp%20westwood/modules.htm
19. Brakmo, L.S., O’Malley, S.W., Peterson, L.L.: TCP Vegas: new techniques for

congestion detection and avoidance. In: ACM SIGCOMM, pp. 24–35 (1994)
20. Mo, J., La, R.J., Anantharam, V., Walrand, J.: Analysis and comparison of TCP

Reno and Vegas. In: IEEE INFOCOM 1999, vol. 3, pp. 1556–1563 (1999)
21. ns-2 Network Simulator, http://www.isi.edu/nsnam/ns/
22. Villamizar, C., Song, C.: High Performance TCP in the ANSNET. ACM SIG-

COMM Computer Communication Review 24(5), 45–60 (1994)

http://www-ictserv.poliba.it/mascolo/tcp%20westwood/modules.htm
http://www.isi.edu/nsnam/ns/

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 379–388, 2007.
© IFIP International Federation for Information Processing 2007

Dynamic Rate Adjustment (DRA) Algorithm for WiMAX
Systems Supporting Multicast Video Services

Ray-Guang Cheng, Wei-Jun Wang, and Chang-Lueng Chu

Department of Electronic Engineering,
National Taiwan University of Science and Technology,

Taipei, Taiwan, R.O.C.
crg@mail.ntust.edu.tw

Abstract. This paper presents a dynamic rate adjustment (DRA) algorithm for
WiMAX systems supporting multicast services. A scalable video coder with
layered coding capability is assumed to be used to encode the multicast video
information as a single base layer and multiple enhancement layers. The DRA
algorithm first determines the portion of the base layer according to the QoS
requirement of the multicast video service. It then dynamically adjusts the
remaining portions of the enhancement layers to maximize the average
throughput of the cell. In this paper, an analytical solution is presented to
determine the best portions of the enhancement layers based on the estimated
users’ signal-to-noise-ratio (SNR). The accuracy of the analysis is verified via
simulations. Simulation results indicate that DRA always achieves a higher
average throughput than that of either uniform allocation algorithm or location-
based allocation algorithm.

Keywords: multicast video services, scalable video coding, WiMAX.

1 Introduction

In recent years, broadband and wireless are two of the key technologies that lead to
the remarkable growth of the telecommunications industry. Many industry observers
believe that to combine the convenience of wireless with the rich performance of
broadband will be the next frontier for growth in the industry. IEEE 802.16, which is
also known as WiMAX, is one of the air interface standards designed for offering
broadband wireless access services in a metropolitan area network (MAN) [1]. With
WiMAX, end users are expected to be able to enjoy multimedia applications, such as
real-time audio and video streaming, multimedia conferencing, and interactive
gaming, in a more flexible manner (i.e., anytime and anywhere).

Currently, most of the network operators use their network resource to provide
point-to-point services. However, there is a strong interest for them to offer multicast
and broadcast services (MBS) over their broadband wireless access networks. The
MBS allow unidirectional point-to-multipoint transmission of multimedia data (e.g.
text, audio, picture, video) from a single source point to a multicast group in a
multicast area. Normally, users are expected to be charged for subscribing these
multimedia services and thus, they may demand for a certain level of quality of

380 R.-G. Cheng, W.-J. Wang, and C.-L. Chu

service (QoS). In MBS, there may be only two or hundreds of users that simult-
aneously subscribe the same service from the same base station (BS). Hence, from the
profit point of view, the network operator may try to accommodate more users at the
same time since a single copy of the MBS packets need to be transmitted. However,
users at different locations may experience wireless channel errors at the same time.
The network operator has to reserve extra radio resource in order to guarantee the
QoS for users with bad channel condition. Therefore, from the spectral-efficiency
point of view, the network operator may reject some service requests from users with
bad channel conditions. Hence, one of the challenges for MBS is to achieve both high
transmission efficiency and good scalability (with respect to number of users) [2].

The wireless channel error is characterized as bursty and location-dependent.
Hence, users at different locations may observe different channel states at the same
time [2]. In IEEE 802.16, techniques of automatic repeat request (ARQ) and adaptive
modulation and coding (AMC) are supported to combat these wireless channel errors.
ARQ is a packet re-transmission technique to achieve reliable data transmissions at
the link layer. ARQ-enabled connections require each transmitted packet to be
acknowledged by the receiver; unacknowledged packets are assumed to be lost and
are retransmitted. In [2], the authors proposed an ARQ-based method to combat with
wireless channel errors for video multicast service over WLAN. However, these
methods are not applicable in WiMAX since IEEE 802.16 [1] does not support ARQ
for their multicast connections. The ARQ-based approaches have the following
disadvantages. First, either BS should reserve dedicated resource or the users may
contend with each other to send negative acknowledgments (NACKs) in uplink. The
reservation may waste network resource and the contention may cause unnecessary
latency. Second, the sender may have to re-transmit the same packet multiple times if
it receives multiple NACKs from different receivers. The implosion of NACK may
reduce the transmission efficiency.

AMC is another effective mechanism to maximize throughput at the physical layer
under a time-varying channel. IEEE 802.16 supports a number of modulations and
forward error correction (FEC) coding schemes. IEEE 802.16 allows the AMC
scheme to be changed on a per-user and per-frame basis based on the reported
channel qualities [3]. The adaptation algorithm typically uses the highest modulation
and coding scheme that can be supported by the signal-to-noise ratio (SNR) at the
receiver such that each user is provided with the highest possible data rate in its
respective link. AMC relies on instantaneous channel measurement of MS’s uplink
signal strength and thus, is not suitable for unidirectional multicast connections. With
AMC, the BS shall reserve extra dedicate uplink resource for users to report their
channel qualities. Even though, it is not easy for the BS to decide the best modulation
and coding scheme for the multicast packets based on multiple channel feedbacks sent
by users at different locations (i.e., a decision that favors users with good SNRs may
not be proper for users with poor SNRs and vice versa).

Recently, many advanced video encoding techniques have been developed. Among
them, the scalable video coding offers the users with capability of reconstructing
lower resolution or lower quality signals from partial bit streams. This allows network
providers with simple solutions in adaptation to network and terminal capabilities [3].
For example, MPEG-2 has implemented the layered coding, where video information
is encoded as a single base layer (BL) and multiple enhancement layers (ELs). The

 Dynamic Rate Adjustment (DRA) Algorithm 381

standalone availability of enhancement information (without the BL) is useless,
because differential encoding is performed with reference to the BL [4]. With scalable
video coding, the network operators may utilize different AMC modes to protect the
BL and ELs of the multicast video. Therefore, we may guarantee a minimum level of
video quality for users with poor SNRs while offering better video quality for users
with good SNRs.

This paper focuses on the radio resource allocation issue of wireless video
multicast services adapting scalable video coding. A dynamic rate adjustment (DRA)
algorithm is proposed to determine the best modulation and coding scheme for
transmitting the BL and EL(s) portions of the multicast video. The rest of the paper is
organized as follows. The system model adopted by this paper is described in Section
2. Section 3 presents the details of the proposed DRA algorithm. Section 4 presents
the simulation results. Conclusions and future work are finally drawn in Section 5.

2 System Model

IEEE 802.16 standard families support several physical layers. For operational
frequencies between 10-66 GHz, the physical layer of single-carrier modulation (SC)
is supported. For frequencies below 11GHz, where propagation without a direct line-
of-sight (LOS) must be accommodated, three alternatives physical layers are
provided: single-carrier modulation (SCa), frequency-division multiplexing (OFDM),
orthogonal frequency-division multiple access (OFDMA). In this paper, OFDM
physical layer is utilized as an example and the results can be easily extended to other
physical layers. Table 1 summarizes the SNR requirements and the data rates for
various combinations of modulation and coding scheme in the IEEE 802.16 OFDM
physical layer [1].

Table 1. The SNR requirements and the data rates supported by IEEE 802.16 OFDM

The system model adopted in this paper is shown in Fig. 1, in which a single cell
comprising one BS and multiple subscriber stations (SSs) is considered. In this paper,
n modes of modulation and coding schemes of the OFDM physical layer, which are
referred as AMC modes herein, are used to transmit the layered coding of multicast
video packets as an example. In this paper, n = 4 is assumed and the chosen AMC

382 R.-G. Cheng, W.-J. Wang, and C.-L. Chu

modes include BPSK with coding rate 1/2; QPSK with coding rate 1/2; 16QAM with
coding rate 1/2, and 64QAM with coding rate 2/3. Conceptually, the cell can be
divided into n non-overlapping areas based on the SNR requirements of the four
AMC modes. Let the number of SSs that use AMC modes of 64QAM, 16QAM,
QPSK, and BPSK be N1, N2, N3, and N4, respectively. Note that, N1, N2, N3, and N4
can be estimated based on the signal qualities of SSs measured during periodic
ranging.

Let θ be the percentage of BL in the encoded multicast video. Note that, θ can be
determined, for example, based on the basic QoS requirement of the perceived
multicast video. It is assumed that BS uses the most robust AMC mode (i.e., BPSK)
to transmit the BL portion of the multicast video such that the BL can be correctly
received by all SSs in the cell. This assumption ensures that basic QoS of all SSs in
the cell can be guaranteed. It is further assumed that the EL generated by the scalable
video coder contains (n-1) portions and the percentage of each portion can be adjusted
by BS during runtime [5]. Let α, β, and γ be the percentage of the three portions of
EL, respectively, as illustrated in Fig. 2. Note that, α + β + γ = 1-θ and the standalone
availability of higher part of the EL (e.g., α portion) is useless because differential
encoding is performed with reference to the lower parts of the ELs (i.e., β, and
γ portions) [4]. In this paper, BS shall transmit the α, β, and γ portions of EL using
AMC modes of 64QAM, 16QAM, and QPSK, respectively.

Fig. 1. Multicast system architecture

In this paper, the average throughput and the net profit of the cell are chosen to be
the two key performance indexes for a multicast video service. The definition of the
two parameters is given as below:

,
0

()

Average throughput ,

SN

B T E i T
iR

S S

P D P D
D

T N T N
=

⎛ ⎞
+⎜ ⎟

⎝ ⎠= =
× ×

∑

(1)

 Dynamic Rate Adjustment (DRA) Algorithm 383

and

,
0

Net profit Total revenue - Total cost () ,
SN

B T E i T d a
i

P D P D C TC
=

⎛ ⎞
= = + × −⎜ ⎟

⎝ ⎠
∑ (2)

where DR is total amount of data received by all SSs; T is total transmission time
required to transmit the BL and EL of the multicast video; NS is the total number of
SSs (i.e., NS=N1+N2+N3+N4); PBDT is the percentage of the data coded by BL, which
is common for all SSs; PE,i is the EL percentage received by the i-th SS; DT is total
transmission data amount; Cd is the profit received for a unit data volume of the
multicast video, and Ca is the cost required for a unit air time.

The main focus of the paper is to maximize the average throughput and the total
profit of the cell by adjusting α, β, and γ.

Fig. 2. Multicast system architecture

3 DRA

In this section, the proposed DRA algorithm is introduced.
The average throughput of the cell defined in Eq. (1) can be written as a function

of α, β, and γ, which is given by

1 2 3 4 1 2 3 1 2 1

1 2 3 4

(N N N N) (N N N) (N N) N
Average throughput .

() (N N N N)
2.5 5 10 20

θ γ β α
θ γ β α

+ + + + + + + + +=
+ + + × + + +

(3)

The maximization of Eq. (3) is a linear fractional programming problem [6] for given
constants N1,N2, N3, N4, and θ. By theory of linear programming, if optimal solution
of linear programming exists, optimal solution might be on the boundary of feasible
region (especially on the apex of feasible region) [7], as shown in Fig. 3. The
boundary of feasible region is given by the equations of 1-α β θ+ = , 1-α γ θ+ = ,

and 1-β γ θ+ = . It can be shown that extreme value of Eq. (3) is given by

1 2 3

3 4

1 2 31 2

2 3 4 3 4

1 2

2 3 4

N +N -N
0, 0, 1 , if > ,

2N -N

N +N -NN -N
0, 1 , 0, if < < ,

6N -N -N 2N -N

N -N
1 , 0, 0, if > .

6N -N -N

α β γ θ θ

α β θ γ θ

α θ β γ θ

⎧
= = = −⎪

⎪
⎪⎪ = = − =⎨
⎪
⎪

= − = =⎪
⎪⎩

 (4)

384 R.-G. Cheng, W.-J. Wang, and C.-L. Chu

Normally, the net profit defined in Eq. (2) will be maximized when the average
throughput of the cell reaches its maximum. However, the net profit could become
negative if the air time cost factor Ca is relatively higher than that of the subscription
fee factor Cd (e.g., the cell is almost fully loaded). In this case, the best strategy is to
send BL only. Figure 4 shows that case that the net profit may become negative when
the air time cost is relatively high or the total number of SSs subscribing the multicast
video service is relatively small.

Fig. 3. Feasible region

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0 10 20 30 40 50 60 70 80 90 100
Number of SS

T
o
ta
l
P
r
o
f
it
 (
$
)

Cd=1,Ca=50 BL+EL

Cd=1,Ca=300 BL+EL

Cd=1,Ca=50 All BL

Cd=1,Ca=300 All BL

Fig. 4. Net profit with various number of SSs

The proposed DRA algorithm is executed as follows. Initially, the BS has to

determine the BL percentage of the multicast video, θ, based on basic QoS
requirement of the given video multicast service. The BS then estimates the number
of SSs in each non-overlapping area, N1, N2, N3, and N4, according to the SNR
estimated during network entry. With N1, N2, N3, and N4, the BS will determine three
portions of EL, α, β, and γ, according to Eq.(4) and transmit these portions using
AMC modes of 64QAM, 16QAM, and QPSK, respectively. Note that, the BS may
decide not to transmit the EL part if the air time cost is relatively high. In other words,
Eq.(2) must be kept non-negative.

 Dynamic Rate Adjustment (DRA) Algorithm 385

4 Simulation Results

In this section, the numerical analysis is first verified by the simulation and the
effectiveness of the proposed algorithm is illustrated. In the simulation, a single cell
with radius r = 3.4 km was assumed. A transmission bandwidth of 6 MHz operating in
3.5 GHz band was investigated. The channel model of ECC-33 was used, in which the
BS transmission power of 43 dBm; BS antenna height of 17 m, and SS antenna height
of 10 m, were assumed [8]. With these setting, the path loss from the BS to a given SS
can be calculated and the SNR experienced by the SS can be easily obtained. The
population of N1, N2, N3, and N4 can then determined according to the SNR
requirement of the four AMC modes. In the following examples, the simulation
results of the proposed DRA algorithm are all coincided with the numerical analysis.

In the first simulation, SSs were uniformly distributed within the cell. Figure 5
shows the average throughput of the cell using different rate assignment algorithms
for θ =0.2. Two rate assignment algorithms were chosen as the benchmarks. The first
algorithm, which is referred as the uniform allocation algorithm herein, assigns the
portions of EL uniformly. That is, α β γ= = = (1) / 3θ− . The second algorithm,

which is referred as the location-based allocation algorithm, assigns the portions of
EL based on the number of SSs in the non-overlapping areas, which gives

1

1 2 3

(1)N

N N N

θα −
=

+ +
, 2

1 2 3

(1)N

N N N

θβ −
=

+ +
, and 3

1 2 3

(1)N

N N N

θγ −
=

+ +
. From Eq. (4), it can

be found that the average throughput of the cell reaches its maximum when
0, 0, 1α β γ θ= = = − . That it, BS shall transmit the BL and EL with BPSK and

2

2.2

2.4

2.6

2.8

3

3.2

3.4

20 30 40 50 60

Nunber of SSs

A
v
er
ag
e
th
ro
u
g
h
p
u
t(
M
b
p
s)

DRA

Uniform Allocation

Location-based Allocation

Fig. 5. The average throughput of the cell for uniformly distributed SSs

386 R.-G. Cheng, W.-J. Wang, and C.-L. Chu

QPSK, respectively. It is shown in Fig. 5 that DRA achieves the maximum average
throughput for different Ns, which verifies the numerical analysis.

Figure 6 shows the case that the distance between each SS and BS is uniformly
distributed for θ =0.3. It can also be found that DRA achieves the highest average
throughput of the cell compared with uniform allocation and location-based allocation
algorithms.

3.2

3.3

3.4

3.5

3.6

3.7

20 30 40 50 60
Number of SSs

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

M
bp

s)

DRA

Uniform Allocation

Location-based Allocation

Fig. 6. The average throughput of the cell for uniformly distributed distance

BPSK+QPSK
BPSK+16QAM
BPSK+64QAM
Location-based Allocation
DRA

Fig. 7. Average throughput of the cell for mobile SSs

 Dynamic Rate Adjustment (DRA) Algorithm 387

Although the DRA algorithm is designed for fixed SSs, the results can be extended
to accommodate mobile SSs assuming the location of SS can be monitored by BS
through, for example, periodic ranging. The BS will utilize DRA to dynamically
adjust the AMC mode based on the estimated N1, N2, N3, and N4 obtained in each
reporting interval. The simulation result is illustrated in Fig. 7. In the simulation, each
SS was assumed to move toward BS in first 50 minutes and then moves away from
BS in next 50 minutes. The total simulation time was 100 minutes. Initially, Ns was
set to 50 and is uniformly distributed in the cell; the velocity of each SS was
uniformly distributed from 0 to 1 m/s. θ= 0.2 and the periodic ranging interval of 1
minute were assumed. In Fig. 7, the dotted line represents the AMC mode decided by
DRA. It can be found that the proposed DRA algorithm can always achieve the
maximum throughput regardless of the location distribution of SS. In the figure,
DRA chooses BPSK+QPSK as the best AMC mode at the beginning since the number
of SS is uniformly distributed within the cell. As time went by, the SS moved toward
BS, which resulted in increased N1 and reduced N4. Hence, the best AMC mode
changes to BPSK+64QAM. After 50 minutes, all SSs moved away from BS, which
changed the AMC mode to be BPSK+16QAM and then BPSK+QPSK, consequently.

5 Conclusion

This work presented the DRA for WiMAX systems supporting video multicast
services. A layered coding scheme is chosen to encode the multicast video
information into one BL and three ELs. The portion of the BL is suggested to be
determined based on the QoS requirement of the multicast services. A DRA algorithm
is then proposed to allocate the three portions of EL in order to maximize the average
throughout of the cell. An analytical method is presented to calculate the three
portions of ELs and the accuracy of the analysis is verified via simulations.
Simulation results indicate that DRA achieves a higher average throughput than that
of either location-based allocation algorithm or uniform allocation algorithm.

Acknowledgments. This work was supported in part by National Science Council,
Taiwan, under Contract No. NSC 96-2219-E-011-005, 96-2219-E-011-007, and 95-
2218-E-011-008, and by BenQ Inc. under Contract No. 0247.

References

1. IEEE 802.16 Std.: IEEE standard for local and metropolitan networks Part 16: Air Interface
for Fixed Broadband Wireless Access Systems (2004)

2. Xu, D., Li, B., Nahrstedt, K.: QoS-directed error control of video multicast in wireless
networks. In: IEEE International Conference on Computer Communications and Networks,
pp. 257–262 (1999)

3. Andrews, J.G., Ghosh, A., Muhamed, R.: Fundamental of WiMAX, understanding
broadband wireless networking. Prentice Hall, Englewood Cliffs (2007)

4. Ohm, J.R.: Advances in scalable video coding. Proceedings of the IEEE 93(1), 42–58
(2005)

388 R.-G. Cheng, W.-J. Wang, and C.-L. Chu

5. Zhuo, L., Lam, K.M., Shen, L.: Adaptive forward error correction for streaming stored
MPEG-4 FGS video over wireless channel. In: IEEE Workshop on Signal Processing
Advances in Wireless Communications, pp. 26–30 (2004)

6. Hiller, F.S., Lieberman, G.J.: Introduction to operation research, 7th edn. McGraw-Hill,
New York (2001)

7. Ignizio, J.P., Cavalier, T.M.: Linear programming, 1st edn. Prentice Hall, Englewood Cliffs
(1993)

8. Abhayawardhana, V.S., Wassell, I.J., Crosby, D., Sellars, M.P., Brown, M.G.: Comparison
of empirical propagation path loss models for fixed wireless access systems. In: IEEE
Vehicular Technology Conference (VTC), pp. 73–377 (2005)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 389–399, 2007.
© IFIP International Federation for Information Processing 2007

Efficient and Load-Balance Overlay Multicast Scheme
with Path Diversity for Video Streaming

Chao-Lieh Chen1, Jeng-Wei Lee2, Jia-Ming Yang2, and Yau-Hwang Kuo2

1 Department of Electronic Engineering,
Kun-Shan University, Yung-Kang, Tainan County, Taiwan

frederic@ieee.org
2 Department of Computer Science and Information Engineering

National Cheng Kung University, Tainan City, Taiwan
{lijw,abby,kuoyh}@cad.csie.ncku.edu.tw

Abstract. An overlay multicast is proposed to solve the scalability and
deployment problems in IP Multicast. We propose a scheme, Topology-aware
Load-balance Hierarchical Independent Tree (TLHIT), with topology-aware,
load-balance and path diversity properties to improve the performance of
overlay multicast. Compared to traditional methods, the proposed TLHIT
constructs not only node-disjoint but also path-disjoint multicast trees where
each node serves as an interior node in only one tree and different trees do not
contain the same path. Moreover, TLHIT ensures load-balance property by
building the multicast trees based on n-ary full tree. It ensures that each node
serves almost the same amount of child nodes. Simulation results show that the
reliability, efficiency, and load-balance properties of the proposed TLHIT are
assured.

Keywords: overlay multicast, topology-aware, load-balance, hierarchical
independent tree, node-disjoint, path-disjoint.

1 Introduction

With the rapid growth of internet technology, more and more one-to-many transmission
services are developed including video streaming, distributed simulations, video-
conferencing, multi-party games, content distribution, and so on. Thus, IP multicast at the
network layer has been proposed for realization of these services. However, it has not
been widely deployed yet because of high cost to upgrade the network infrastructure.
Recently, overlay multicast is proposed as an alternative to provide the multicast
services. In this way, the participating nodes organize themselves into an overlay
structure and the efficiency of the overlay can be optimized by adapting to network
dynamics and considering application level performance.

In overlay network, each participating node has potentially multiple paths to
communicate with another node. Therefore, multi-tree multicast [1][2][3] is proposed
to improve the fault-tolerance if compared to single-tree multicast [4][5]. However,
how to use these trees more efficiently is still an open problem. Hence, multi-tree
multicast with path diversity in overlay network attracts lots of interest in recent

390 C.-L. Chen et al.

years. The topology-aware hierarchical arrangement graph (THAG) [1] constructs
multi-tree multicast applications with diverse paths. In THAG, all participating nodes
are divided into a number of arrangement graphs and several node-disjoint multicast
trees are embedded in each arrangement graph. Node-disjoint trees mean that any
node serves as interior node in only one tree. Though THAG constructs node-disjoint
trees, it leads to unbalance load problem because each node is responsible for
handling traffics to different number of child nodes, especially the source node. The
situation gets worse as the growth of multicast group members.

In this paper, we propose a load-balance scheme called Topology-aware Load-
balance Hierarchical Independent Tree (TLHIT) scheme which construct a virtual
graph (VG) at first, and the multicast trees are embedded in VG based on n-ary full
tree. Therefore, each node in TLHIT serves almost the same number of child nodes.
Moreover, the multicast trees in TLHIT are independent, where independent means
that each tree is both node-disjoint and path-disjoint. Hence, the load-balance and
fault-tolerant ability are further improved in TLHIT. Moreover, when the number of
multicast group members is larger than the capacity of the constructed VG, TLHIT
extends the original VG into a larger one by duplicating several child VGs and
assembling these VGs into hierarchical structural. As a node joining the multicast
service, TLHIT selects a suitable position in the VG not only in accordance with the
network conditions but also keeps all the nodes in TLHIT with balance load.

The rest of the paper is organized as follows. In Section 2, background and relative
work is introduced. In Section 3, we explain how to design the TLHIT. The
simulation results are shown in Section 4 and the reliability, efficiency, and load-
balance of THAG and TLHIT are compared in several simulations. The conclusions
are drawn in Section 5.

2 Background and Related Work

In this section, we present some background knowledge about multi-tree and appli-
cation-layer multicast streaming. They are multi-path streaming, multiple descryiption
coding (MDC) and topology-aware multicast streaming. Each mechanism is implem-
ented in application layer.

2.1 Multi-path Streaming

Unlike traditional methods which embed redundant bits into each packet to provide
error-correction ability, the concept of multi-path is to transmit data through different
paths and provide path diversity to avoid data sharing the same congested or
troublesome interior nodes or links. It prevents multimedia data from burst error and
degraded quality significantly. There are two major multi-path mechanisms -- relay
server [6][7] and overlay network [8][9].

• Relay server: For path-diversity, a relay server is responsible for relaying data
to a destination. As shown in Figure 1, when node A wants to transmit data to
node B, node A transmits partial data to the destination via a relay server
indirectly and the other data to destination directly. However, this mechanism
has some disadvantages. First, the performance of a relay server is limited and
there is a tradeoff between cost and performance. Second, good deployment of
relay servers is necessary and it affects overall system performance.

 Efficient and Load-Balance Overlay Multicast Scheme with Path Diversity 391

node A node B

Relay Server

path1

path2

Fig. 1. Achieving path diversity using relay server

• Overlay network: Overlay network is built on top of another network. Each

node in overlay network communicates with another node by virtual or
logical links which correspond to a direct link or many physical links in the
underlying network. It means that the source node has potentially multiple
paths to communicate with all the other participating nodes through directly
link or other relay nodes. Path diversity can be obtained by a good choice of
relay nodes. However, communication between pair-wise nodes bypassing
others potentially increases latency. The proposed TLHIT is based on
overlay network and focus on how to achieve path diversity with acceptable
latency.

2.2 Multiple Description Coding (MDC)

Multiple Description Coding (MDC) [10] is utilized when a media stream needs to be
separated into several parts and transmitted in each multicast tree. In MDC, a media
stream is encoded into several parts referred to as descriptions. Any combination of
received descriptions can be used to decode the original media stream with acceptable
quality. Media quality is improved as the number of received descriptions increases
and the best media quality is obtained when all the descriptions are received.

2.3 Topology-Aware Hierarchical Arrangement Graph (THAG)

There are some related works on application-layer multicast for media streaming
such as THAG [1], which embeds multicast trees in arrangement graphs and
provides node-disjoint characteristics in each tree. In THAG, each node serves as
interior node which is responsible for forwarding data to other nodes in exactly
one multicast tree. Thus, the influence of any node failure is minimized and the
fault-tolerance is improved. Figure 2 shows an example of arrangement graphs.

However, THAG does not consider the unbalance load problem of each node.
As shown in Figure 2, the load of the source node is much heavier than all the
other nodes. And the situation gets worse as the growth of the arrangement graph.
Moreover, THAG only guarantees the interior nodes in each multicast tree are
different, but it may share the same congested or troublesome path and deteriorate
the system performance. Hence, in this paper, we propose a mechanism to build
multicast trees with node-disjoint, path-disjoint and load-balance properties.

392 C.-L. Chen et al.

Source node

Interior node

Leaf node

Fig. 2. One multicast tree in THAG

3 Topology-Aware Load-Balance Hierarchical Independent Tree
(TLHIT)

In TLHIT, a virtual graph (VG) with n independent multicast trees is built.
Independent trees mean that each participating node only acts as the interior node (i.e.
non-leaf node) in one of n multicast trees and paths in each tree are distinct. Based on
the structure of the VG, as one member joining the multicast group, it selects an
appropriate vacant position in VG according to its network conditions. Further,
TLHIT extends original VG into hierarchical structure by duplicating several VGs to
support more multicast members.

3.1 Independent Multicast Trees in Virtual Graph

To enhance the performance of multi-tree multicast applications, TLHIT considers the
following three requirements as constructing a VG:

• Node-disjoint: To mitigate the influence of node failure or leaving, we must
make sure each participating node only acts as the interior node one time. It
means that if one node is selected to be an interior node in one tree, it must be
a leaf node in all the other trees.

• Path-disjoint: Transmission in the same path may result in path congestion or
high relation of loss behavior [11], which increases end-to-end delay and
reduces the performance of the MDC streaming. Hence, the path-disjoint is
considered in our VG.

• Load-balance: In practice, the resources of a node are limited (e.g.
computation capability and network bandwidth) and unbalanced load may
affect scalability of the multi-tree multicast applications. Hence, the algorithm
should achieve load-balance.

For satisfying the three conditions, TLHIT constructs a VG which contains n
multicast trees. The parameter n is user-defined and can be decided by the number of
descriptions in the MDC method. At first, the nodes in VG are separated into n root
sets. All nodes in a root set are organized into an n-ary full tree and leaf nodes are
responsible for connecting the other root sets. Each root set forms a multicast tree.

 Efficient and Load-Balance Overlay Multicast Scheme with Path Diversity 393

1,0

1,1

1,2

1,3

1,4

1,5

1,6

2,3

2,4

2,5

2,6

2,1

2,2

2,0

Fig. 3. VG with two multicast trees

Figure 3 illustrates a construction of the VG with two root sets. The solid and dotted
lines represent different multicast trees. If the media stream is fragmented into n
descriptions, i-th description is transmitted by i-th root set. Hence, via this simple
concept, TLHIT guarantees that each node transmits only one description and
receives the other descriptions from the other root sets and therefore the first
requirement, node-disjoint, is achieved. The topology generate algorithm is described
below. To meet the path-disjoint requirement, TLHIT must guarantee that each
description is transmitted in different link. Denote Ns,i as the node with a pseudo-
address i in the s-th root set. Line 6 to line 17 show that when the number of child of
leaf node Ns,i in root set s is less than n, Ns,i chooses an unselected node Nm,j as its
child node. Line 8 ensures Nm,j not to choose Ns,i as his child node when m-th set
becomes root set. Therefore, path-disjoin is achieved. Moreover, the multicast trees
are based on n-ary full tree such that the interior nodes in each tree are responsible for
the same number of child nodes. Line 7 and line 14 ensure that each node have at
most n child nodes. Therefore, TLHIT satisfies the requirement of load-balance. Line
4 ensures each participating nodes to be selected in each multicast tree. The double-
slashes are remarks.

0 Algorithm Topology-generate
1 Input: n root sets 1, ..., n; //Each of which contains k nodes
(k=1+n+n2). The nodes in each root set are organized into a n-
ary full tree.

2 Input: Node addresses N
s,j
; // Each node is given a pseudo-

address where s is the root set the node belongs to and j is
the node ID. The pseudo-address of root node is N

s,0
. The

pseudo-addresses of child nodes of the parent node N
s,j
 are

N
s,n*j+1

, N
s,n*j+2

, …, and N
s,n*j+n

.
3 For each root set s= 1, 2, …, n do {
4 Mark all the nodes as unselected except the nodes in root

set s;
5 While there is any node marked as unselect do {
6 For each leaf node N

s,i
, i=n+1, n+2, …,n2+n, in root set

s, do {
7 While number of child of N

s,i
 ≤ n, do {

8 j = (i+1)%k; //modulus %
9 For m=1, 2, …, n, m≠s, do {
10 If N

m,j
 is marked as unselect, then {

394 C.-L. Chen et al.

11 s = s ∩ N
m,j
; // N

m,j
 chooses Node N

s,i

as parent
12 Marked N

m,j
 as selected;

13 }
14 If number of child of N

s,i
 ≥ n, then

15 Break;
16 }
17 } // number of child of N

s,i
 ≥ n

18 } // end for each leaf node
19 } // each node is selected
20 } // end for each s

3.2 Extending Virtual Graph to Hierarchical Structure

This section describes how to extend the VG into a hierarchical structure for
accommodating more multicast group members. As presented above, the capacity of
VG is very limited. Typically, there are at most 14 nodes in the VG with two
multicast trees. Hence, TLHIT extends the original VG into a large one when the
number of multicast group members is larger than the capacity of the VG. In addition
to the tree requirements discussed above, the extended VG must also remain the
structure of serving nodes unchanged. This ensures multimedia services are not
affected by the extending process.

1,0

1,1

1,2

1,3

1,4

1,5

1,6

2,3

2,4

2,5

2,6

2,1

2,2

2,0

1,0

1,1

1,2

1,3

1,4

1,5

1,6

2,3

2,4

2,5

2,6

2,1

2,2

2,0

1,0

1,1

1,2

1,3

1,4

1,5

1,6

2,3

2,4

2,5

2,6

2,1

2,2

2,0

PG

CG 1

CG2

Fig. 4. Hierarchical structure with two root sets

When an “over-capacity” event is triggered, TLHIT duplicates several child VGs
(short for CGs) and connects the CGs to the original parent VG (short for PG). The
path-disjoint requirement is still retained as the CGs inherits the characteristics of the
PG and each leaf node does not have direct connection to each other. Hence, the
remaining problem is how to retain the node-disjoint and load-balance properties. The
problem can be reduced to determinations of the number of CGs to duplicate and the
optimal source nodes positions in CGs. In the PG, let (min)

nonrootn be the total number of

nodes satisfying the two conditions that first having connections to any CGs and
second having minimum hop count to their root. Then, the number of CGs to

 Efficient and Load-Balance Overlay Multicast Scheme with Path Diversity 395

duplicate is
(min)
nonroot

CGs

n
n

n
= . Figure 4 shows an example of hierarchical structure with

two root sets. The nodes N1,1, N1,2, N2,1 and N2,2 in PG satisfy the two conditions to
become the source node of CGs. Hence, when the original VG is full-filled, two CGs
are duplicated. If another “over-capacity” event is triggered again, 8 CGs will be
created since there are 16 nodes satisfying the two conditions (i.e. N1,3, N1,4, N1,5, N1,6,
N2,3, N2,4, N2,5 and N2,6 in PG, N1,1, N1,2, N2,1 and N2,2 in CG1, N1,1, N1,2, N2,1 and N2,2 in
CG 2). Node-disjoint is assured since each source node of a CG belongs to a different
root set in PG.

3.3 Member Joining to Virtual Graph

When a new member joins a multicast group, TLHIT assigns it to an appropriate
vacant position in the VG according to end-to-end delays between the joining node
and source nodes and ensures neighbor nodes are either in the same VG or in the CGs
produced by the VG. But the ancestor of the vacant position is responsible for all its
data transmission jobs. Hence, inappropriate member join will cause unbalanced load.
Considering the tradeoff between the end-to-end delay and load balance, we divide
the member joining into two states called the locating and the replacing states.
During the locating state, a member is assigned to a vacant position according to
loading situation while during the replacing state each node periodically detects the
network condition and adjusts its position in the VG to enhance overall system
performance.

The member join algorithm, MemberJoin(vi, G), is described below. Suppose the
node vi is joining the multicast group. Let G denotes the original VG or one of the
CGs closest to vi, and s is the closest source node in G.

0 Algorithm MemberJoin(v
i
, G)

1 Input: v
i
; //the new join node.

2 Input: G; //one of the VGs which is closest to v
i

3 If there is any vacant position in G, then {//Locating state
4 v

i
 joins G by replacing a specific vacant position;

5 return;
6 } //end Locating state
7 Else {//Replacing state
8 Calculates end-to-end delay D(v

i
, s);

9 For each v
j
 in G do {

10 If D(v
j
, s) < D(v

i
, s) then {

11 v
i
 = v

j
; // v

j
 replaces v

i
 and joins G;

12 } //end delay comparison
13 } //end for each V

j

14 find G’ which is a CG of G closest to v
i
;

15 MemberJoin(v
j
, G’); //recursive

16 } //end Replacing state

As shown in the member join algorithm above, line 4 to line 6 refers to the joining
procedure when vi is in the locating state that it does not belong to any VG. This
situation may happen either when the first time this node joins the multicast group or
when another member node has shorter end-to-end latency to the source node than it.
During locating state, the vi searches for a root set in G with maximum number of
vacant positions. Then, a member is assigned to the vacant position closest to the

396 C.-L. Chen et al.

source of the root set. As shown starting from line 7, when VG contains no vacant
position, vi enters into replacing state. During replacing state, vi calculates the end-to-
end delay D(vi, s) and compares to D(vj, s) of each node j in the root set of s. As
shown in line 9 to line 13, if a node vj having D(vj, s) larger than D(vi, s), vj is replaced
with vi. Finally, vj enters locating state and searches for another vacant position.
Otherwise, as shown in lines 14 to 15, the node vi joins G’ which is a CG of G closest
to it. Because the multicast group members may change as time goes by. Each node in
TLHIT runs member join algorithm periodically to see whether there exist a better
position or not. Thus, we can ensure each node is always in proper position in TLHIT.

4 Simulation Results

In this section, the metrics of evaluating the performance of THAG and TLHIT are
described as follows:

• Average received descriptions (ARD): ARD represents the average number of
descriptions received by the nodes. Video quality improves as the number of
received descriptions increases. Hence, ARD represents not only fault-tolerant
but also QoS of a system.

• Stretch: stretch presents the average number of interior nodes from the source
to each participating node in overlay multicast trees. The stretch shows
propagation delay in TLHIT comparing to the unicast case.

• Stress: stress represents the number of descriptions a node needs to forward.
This metric shows whether this system is load-balance or not.

• Delay Distribution: this metric shows the difference of propagation delay of
each node.

In the simulations, both THAG and TLHIT construct two virtual graphs with 1750
nodes, respectively. A virtual graph is constructed according to G6 and s trees are
embedded where s varies from 2 to 6. The value of propagation delay between any
pair of nodes is randomly generated ranging from 20ms to 120ms. We use the same
topology in THAG and TLHIT.

4.1 Average Received Descriptions and Stretch

Figure 5 presents ARD v.s. the number of trees with different node failure proba-
bilities 2%, 5%, and 10%. The simulation results represents that the nodes using
TLHIT receives more descriptions than those using THAG and it means the fault-
tolerant of TLHIT is better than THAG. Hence, the multicast group member in
TLHIT gets a better video quality. Furthermore, only the first source node needs to
execute the topology-generation algorithm in TLHIT. The member join algorithm of
TLHIT is based on the same algorithm of THAG. Hence, the complexity of TLHIT
and THAG system is the same, but the performance of TLHIT is better than THAG.
Straight lines also indicate that the TLHIT are not affected by the number of trees.
Because of the node-disjoint property, the TLHIT will not generate enormous number
of losses when node failure occurs. And then we compare the stretch in TLHIT and
THAG in cases of different number of nodes in the system. As shown in Figure 6, the
stretch of TLHIT is smaller than that of THAG. The result means that the data
delivery in TLHIT has shorter latency than that in THAG.

 Efficient and Load-Balance Overlay Multicast Scheme with Path Diversity 397

Fig. 5. Comparison of average received
descriptions in THAG and TLHIT when
group size = 1750

Fig. 6. Stretch versus group size, s = 6

4.2 Stress and Delay Distribution

As shown in Figure 7, 23% of the group members in THAG forward less than five
descriptions which are nearly idle and 12% of the group members need to forward
more than ten descriptions. It means that the duty of data forwarding for each group
member is unfair in THAG. In TLHIT, 94% of the group members forward the same
number of descriptions. The result indicates that the load-balance of TLHIT is
assured.

In THAG and TLHIT systems, one description is transmitted to each group
member through different number of interior nodes. So, each group member will
experience different latency transmitting this description. The delay distribution
represents the difference of propagation delays among all group members. As shown
in Figure 8, the variance of propagation delay in THAG is much larger than in
TLHIT. In TLHIT, the propagation delay is centralized from 200ms to 300ms. Only a
few members’ delay value is greater than 450ms. On the contrary, the maximum
propagation delay is up to 550ms and the variance of the delay distribution is large in
THAG. Figure 8 also shows the advantage of load-balance.

Fig. 7. Stress distributions of THAT and
TLHIT when s = 6 and group size = 1750

Fig. 8. Delay distribution in THAG and
TLHIT, s = 6, group size = 1750

The simulation result of ARD, stretch, stress, and delay distribution show that the

proposed TLHIT provides more reliable and efficient multicast in overlay networks.

398 C.-L. Chen et al.

5 Conclusions and Future Work

In this paper, path diversity using independent trees in overlay multicast is proposed
to improve the performance of media streaming service. Two schemes to construct
diverse paths for participating node are compared. One is THAG and the other is
TLHIT. THAG makes all the multicast trees node-disjoint. In addition to the node-
disjoint property, TLHIT builds multicast trees which are path-disjoint and load-
balance to minimize the influence of failures. The reliability and efficiency of THAG
and TLHIT are compared through several simulations. The average received
descriptions (ARD) shows that each node has higher probability to receive more
descriptions in TLHIT. The stretch and delay distribution show that each node
experiences a shorter latency in TLHIT and the delay variance of each node is small.
Moreover, the stress shows that the duty of each node is much more balanced in
TLHIT. Hence, the simulation results indicate that TLHIT is a more reliable, efficient
and load-balance scheme for multimedia streaming service.

In future, we intend to further improve the TLHIT scheme with the ability of
detecting limits of participating nodes. A powerful node with higher bandwidth in the
multicast group should undertake more data transmissions. Thus, we can avoid the
bottleneck caused by weak nodes and this context-aware TLHIT provide optimal
performance for video streaming.

Acknowledgement

The authors would like to thank the National Science Council in Taiwan R.O.C for
supporting this research, which is part of the three projects numbered NSC 95-2221-
E-168-029, NSC 94-2213-E-006-081 and NSC 95-2219-E-006-007.

References

[1] Tian, R., Zhang, Q., Xiang, Z., Xiong, Y., Li, X., Zhu, W.: Robust and Efficient Path
Diversity in Application-Layer Multicast for Video Streaming. IEEE Transactions on
Circuits and Systems for Video Technology 15(8), 961–972 (2005)

[2] Padmanabhan, V.N., Wang, H.J., Chou, P.A., Sripanidkulchai, K.: Distributing streaming
media content using cooperative networking. In: Proc. ACM NOSSDAV, Miami Beach,
FL, pp. 177–186 (May 2002)

[3] Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: High-bandwidth content distribution in a cooperative environment. In:
Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, Springer, Heidelberg
(2003)

[4] Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application-layer multicast.
In: Proc. ACM SIGCOMM, pp. 205–217 (August 2002)

[5] Chu, Y., Rao, S., Seshan, S., Zhang, H.: Enabling conferencing applications on the
internet using an overlay multicast architecture. In: Proc. ACM SIGCOMM, pp. 55–67
(August 2001)

 Efficient and Load-Balance Overlay Multicast Scheme with Path Diversity 399

[6] Liang, Y.J., Steinbach, E.G., Girod, B.: Real-time voice communication over the Internet
using packet path diversity. In: Proc. ACM Multimedia 2001, (September/October 2001)
pp. 431–440 (2001)

[7] Aopstolopoulos, J.: Reliable Video Communication over Lossy Packet Networks using
Multiple State Encoding and Path Diversity. Visual Communications and Image
Processing, 392–409 (January 2001)

[8] Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient Overlay Networks.
In: Proc. 18th ACM Symposium on Operating Systems Principles, Banff Canada, pp.
131–145 (October 2001)

[9] Chu, Y., Rao, S., Seshan, S., Zhang, H.: A case for end system multicast. In: Proceedings
of ACM SIGMETRICS, pp. 1–12 (June 2000)

[10] Goyal, V.K.: Multiple description coding: Compression meets the network. Signal
Processing Magazine 18(5), 74–93 (2001)

[11] Bolot, J.: End-to-End Packet Delay and Loss Behavior in the Internet. In: Proceedings of
ACM SIGCOMM, pp. 289–298 (September 1993)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 400–409, 2007.
© IFIP International Federation for Information Processing 2007

A Cross Layer Time Slot Reservation Protocol
for Wireless Networks

Bih-Hwang Lee, Chi-Ming Wong, and Hung-Chi Chien

Abstract. The function of medium access control (MAC) protocol and the
capacity of physical layer sufficiently affect the system performance in the
wireless networks. In this research, we propose a MAC protocol based on direct
sequence code division multiple access (DS-CDMA) for the wireless networks
to guarantee quality-of-service (QoS) which depend on physical layer
information, named the cross layer time slot reservation (CLTSR) protocol. A
channel is divided into control and data channels to transmit control and data
packets in the corresponding control and data frames, respectively. The data
frame is further subdivided into several time slots; each time slot can transmit
different traffic types such as constant bit rate (CBR), variable bit rate (VBR),
and available bit rate (ABR). Each station maintains the available spreading
code (ASC) table to understand which time slots and spreading codes have been
reserved. CLTSR will allocate time slots and the spreading code for the data
frame by using the fixed time slot allocation (FTSA) or the mixed time slot
allocation (MTSA). The QoS can be guaranteed by providing the reservation of
time slots and the spreading code. A Markov model is applied to analyze the
CLTSR DS-CDMA system; the analytical and simulation results show that the
proposed CLTSR performs has been improved.

Keywords: medium access control (MAC), direct sequence code division
multiple access (DS-CDMA), cross layer, quality-of-service (QoS).

1 Introduction

Wireless local area network (WLAN) has been widely used recently, which uses
IEEE 802.11x protocol to coordinate all stations. Each station contends with each
other by using the carrier sense multiple access with collision avoidance (CSMA/CA)
to access the channel [1],[2]. CSMA/CA uses backoff algorithm to avoid collision and
reduce the collision probability in the wireless environment. Several backoff
algorithms have been proposed to improve system performance [3],[4], however, the
performance is still limited by the physical capacity due to the use of single shared
channel. Therefore, it is necessary to improve the cross layer functions between the
physical layer and MAC layer.

For many years, some researches regarding the random access networking based
on direct sequence code division multiple access (DS-CDMA) are studied [5]-[7],
because multiple access interference (MAI) may be possibly suppressed in MAC
layer. Generally in the controlled access CDMA (CA-CDMA) system, there exist
control and data channels separately [8]. In the control channel, each station uses the
signals of request-to-send (RTS) and clear-to-send (CTS) to contend the channel; and

 A Cross Layer Time Slot Reservation Protocol for Wireless Networks 401

it also detects the degree of MAI to suitably adjust the transmitting power. However,
this method needs more computational times and can not guarantee quality of service
(QoS) in wireless network. Some MAC layer designs, such as the modified multi-
carrier CDMA based on IEEE 802.11a [9], CDMA based ad hoc network [10] and
adaptive acquisition collision avoidance multiple access (AACAMA) [11], just give
the way to get spreading codes and cannot limit the number of the used spreading
codes to suppress MAI. They also can not guarantee QoS in wireless network. In the
distributed channel allocation protocol (DCAP) [12], each frame is divided into
several time slots; each node contends to get a pair of time slot-spreading code (TC)
to transmit data. Similarly, it cannot limit the number of the used spreading codes and
the allocation of time-slots, hence system performance will be degraded especially
while the allocating algorithm doesn’t provide the different maximum numbers of
spreading codes for the different traffic types such as constant bit rate (CBR), variable
bit rate (VBR) and available bit rate (ABR). Furthermore, both RTS and CTS in
DCAP contain all TC pairs such that their packet sizes become longer, hence system
performance will be degraded in heavy traffic.

In this paper, we use the DS-CDMA technology in physical layer and propose a
cross layer time slot reservation (CLTSR) protocol in MAC layer for wireless system.
CLTSR also divides the channel into control channel and data channel; each station
uses the modified RTS (MRTS) and modified CTS (MCTS), data slot request (DSR)
and short ACK (SACK) to reserve time slots and spreading code in the data frame by
four way hand shaking (MRTS-MCTS-DSR-SACK). CLTSR supports the maximum
numbers of the spreading codes for different traffic types to suppress MAI. All
reserved time slots and spreading codes are put in DSR such that both MRTS and
MCTS can keep shorter sizes. We provide two kinds of time slot allocation algorithm
in MAC layer: fixed time slot allocation (FTSA) and mixed time slot allocation
(MTSA) to allocate time slots and spreading codes depending on the required
bandwidth for each traffic type, therefore the guaranteed QoS and the improved
system performance can be achieved.

Next section will describe the proposed CLTSR based on DS-CDMA technology
in wireless ad hoc network. Section III will do the theoretical analysis using the finite
state Markov chain, and section IV will simulate the system operation and then show
that the result. Finally, the conclusion is drawn in section V.

2 Description of the Proposed CLTSR

To design CLTSR, two frame structures for control channel and data channel are used
and shown in Fig. 1. Data can be transmitted in the kth data frame according to the
competitive result in the (k-1)th control frame. A data frame is subdivided into n time
slots as shown in Fig. 2, which can support different traffic types such as CBR, VBR
and ABR. In the DS-CDMA system, the maximum number of channels can be
simultaneously used to transmit data for CBR, VBR and ABR depending on the
different tolerable bit error rate (BER, Pe) [13], which is assumed that BPSK
modulation scheme is used in the additive white Gaussian noise (AWGN) channel as
shown in Eq. (1) [14],

Pe =)(1
3

−K
NQ (1)

402 B.-H. Lee, C.-M. Wong, and H.-C. Chien

where N is the spreading factor, and K is the maximum number of channels used to
transmit simultaneously, and Q(x) is the complementary error function. We assume
the maximum sets of spreading codes to transmit data for CBR, VBR and ABR are
41, 17, 11 corresponding to the bit error rate of 10-3, 10-6, 10-9, respectively, if the
spreading factor is 128.

Fig. 1. The structure of control frame and data frame

Fig. 2. The format of data frame

A control frame is divided into contention interval and beacon interval. The beacon

interval is used to maintain system synchronization, while the contention interval is
used to get the permission to send data in the next data frame. The contention is done
by CSMA/CA with four-way hand shaking (MRTS-MCTS-DSR-SACK) procedure,
where the formats of the corresponding control packets are shown in Fig. 3.

(a) The format of MRTS

(b) The format of MCTS

(c) The format of DSR

(d) The format of SACK

Fig. 3. The format of control packets

 A Cross Layer Time Slot Reservation Protocol for Wireless Networks 403

The field of traffic type may consist of two bits to represent three traffic types. The
spreading code index (SCI) is indicated in the field of “SCI”, which may has six bits
to indicate at most 41 sets of spreading codes. The fields of “RA” and “TA” represent
the MAC addresses for receiver and transmitter respectively. The field of the slot
number reservation (SNR) is used to reserve the number of time slots to be
transmitted in the data frame, whose content depends on the transmission bandwidth
requirement. Let Ns be the number of time slots to be reserved in the data frame and to
be obtained by Eq. (2).

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

sf

b
s br

r
N

*
 (2)

where rb is the required transmission bandwidth in bit per second (bps); rf is the
number of data frames per second; and bs is the transmitted bits in each time slot. The
field of “Slot Number” represents the reserved time slots in the data frame, and the
amount of “Slot Number” is the same as SNR. Thus, the size of DSR packet depends
on how many time slots are needed. The functions of “Frame Control” and “FCS” are
the same as the IEEE 802.11 standard [15].

Next, we introduce the procedure of CLTSR to access channel through the control
packets.

Step 1: Use allocation algorithm to reserve time slots and spreading codes for
transmission in the next data frame.

Step 2: Use the four-way handshaking procedure to contend and get the permission
of time slots and spreading codes.

Step 3: Monitor the DSR packets from other stations to check the confliction. It
must run time slot allocation algorithm again when the content of its DSR
packet conflicts with other stations, and go to step 2.

Step 4: Use those time slots and spreading codes to transmit frames until the
transmission finished, then releases the time slots and spreading codes.

Table 1. Initialization of ASC Table

 Slot 1 Slot 2 … Slot n-1 Slot n

Traffic types 0 0 … 0 0

1 TCI(1,1) TCI(1,2) … TCI(1,n-1) TCI(1,n)

2 TCI(2,1) TCI(2,2) … TCI(2,n-1) TCI(2,n)

 : : … : :

11 TCI(11,1) TCI(11,2) … TCI(11,n-1) TCI(11,n)

 : : … : :

17 TCI(17,1) TCI(17,2) … TCI(17,n-1) TCI(17,n)

 : : … : :

SCI

41 TCI(41,1) TCI(41,2) … TCI(41,n-1) TCI(41,n)

404 B.-H. Lee, C.-M. Wong, and H.-C. Chien

Each station in the system must cooperate each other well by some distributed
resource allocation algorithms because there has no base station. FTSA and MTSA
allocate time slots and spreading codes according to the available spreading code
(ASC) table in each station, where the initialization of ASC table is shown in table 1.
A time slot spreading code index (TCI) pair is a pair of time slot and spreading code
in the ASC table, while the marked TCI pair in ASC table means that this TCI pair
has been reserved already. The traffic type in each time slot is decided by the first
station of using it, which is set to 0, 1, or 2 for CBR, VBR, and ABR, respectively.
The FTSA algorithm is described as follows.

Step 1: Search from ASC table to find all time slots having the same traffic type
and available TCI pairs relative to those time slots.

Step 2: Allocate number of TCI pairs which obtained by Eq. (2) from those
available TCI pairs with a spreading code in best fit.

Step 3: Try to find enough free time slots and set them to this traffic type if the TCI
pairs is not enough.

Step 4: Go to step 1 if there are still no enough free time slots, then the station
enters blocking state.

The MTSA algorithm is obtained by modifying the FTSA algorithm and described as
follows.

Step 1: The same as step 1 in FTSA.
Step 2: The same as step 2 in FTSA.
Step 3: The same as step 3 in FTSA.
Step 4: Try to find TCI pairs of VBR traffic to be used for CBR traffic.
Step 5: The same as step 4 in FTSA.

3 Theoretical Analysis

This section analyzes the proposed CLTSR with FTSA because MTSA is similar to
FTSA. We assume that the arrival traffics are the Poisson process with the mean
arrival rates λC, λV, and λA, for the traffic types CBR, VBR and ABR, respectively.
The service processes are also assumed to be exponentially distributed with the mean
service rates μC, μV, and μA, for the traffic types CBR, VBR and ABR, respectively.
Throughput can be obtained depending on how many TCI pairs are occupied by each
traffic type. The TCI pair occupied by any traffic can be modeled by Markov chain.
We assume that there are n time slots in each data frame, and the maximum number
of TCI pairs can be occupied by CBR, VBR, and ABR are nC, nV, and nA,
respectively, but Eq.(3) must be satisfied.

n
nnn AVC ≤⎥⎥

⎤
⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡

111741
 (3)

 A Cross Layer Time Slot Reservation Protocol for Wireless Networks 405

0 1 2 1−Cn Cn

Cλ Cλ Cλ Cλ Cλ

Cμ CCn μCCn μ)1(−Cμ3Cμ2

Fig. 5. State transition diagram of the CBR traffic

The number of TCI pair occupied by CBR traffic can be modeled by Markov
chain with nC states and its state transition diagram is shown as Fig. 5. We assume
that only one TCI pair can be occupied whenever the CBR type traffic arrives. The
state transition of the Markov chain can be characterized by a generator matrix. Let
 us denote QC be the generator matrix for CBR traffic shown as Eq. (4), while PC
represents the steady state probability vector for CBR traffic, where

[]
CCnCCC pppp L210C =P . The element of PC represents the steady state

probability of each state in Fig. 5, which can be obtained by solving the balance
equation shown as Eq. (5).

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−−

−−
−−

−

=

CCCC

CCCCCC

C

C

CCCC

CCCC

CC

nn

nn

μμ
λμλμ

λ

μ
λμλμ

λμλμ
λλ

00000

)1()1(0000

000000

0000000

0000300

000220

0000

00000

C L
Q

 (4)

Then, we have PC QC = 0 (5)
Similarly, the generator matrices for VBR and ABR traffics can also be obtained.
The TCI pairs occupied by VBR or ABR traffics are random variables, because the

required bandwidths for VBR and ABR traffics are also random variables; therefore,
we should transform the distribution of bandwidth requirement to the distribution of
TCI pairs’ requirement for VBR and ABR traffics. Let us denote)(rfVR

 be the

probability density function of the bandwidth requirement for VBR traffic with
boundary between Rmin and Rmax (bps). Let ml and mu represent the minimum and
maximum number of TCI pairs occupied by VBR traffic and have the relationship
with mu > ml > 1, where

s
l B

R
m min= and

s
u B

R
m max= if Bs is the transmission rate of a TCI

pair in data frames per second. The probability distribution of the number of TCI
pairs’ requirement for VBR traffic can be represented by a vector

[]VmVVVV bbbb L210=b , where m = mu − ml. The element
Vkb (k = 0, 1, …, m) in

vector
Vb represents the probability that there are (ml + k) TCI pairs required by VBR

traffic and can be calculated by Eq. (5).

406 B.-H. Lee, C.-M. Wong, and H.-C. Chien

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

−=

=

=

∫

∫
∫

∞

−

+

−+

su

sl

sl

Bm VR

Bkm

Bkm VR

R

VR

Vk

mkdrrf

mkdrrf

kdrrf

b

)1(

)(

)1(

0

for ,)(

1 ..., ,2 ,1for ,)(

0for ,)(
min

 (6)

Note that 1
0

=∑
=

m

k
Vkb . Actually, CBR traffic can be regarded as a special case of VBR

traffic, as 1== ul mm and 0=m . Therefore, the arrival and departure rates for VBR

traffic from a state can be obtained by the vectors λVbV and μVbV, respectively.

Fig. 6. Example state transition diagram of VBR traffic

For example, if ml and mu equal 3 and 6, respectively, then m equals 3. If nV equals
10, the state transition diagram is shown as Fig. 6 and the reduced generator matrix
QV has the dimension of 9×9 shown as Eq. (7). In Fig. 6, it is obvious that the states 1
and 2 will never be reached so that their probabilities are zero. The transition
probabilities

)1(00201 ,...,, −lmppp and
0)1(2010 ,...,, −lmppp will be zero, because the

minimum requirement of TCI pairs is 1>lm . Some states may have more than one

possible transitions for lmm ≥ . For example, the 6th state may be transited from the

initial state with probability
3vV bλ or from the 3rd state with probability

0vV bλ , while the

transition rate from the 9th state to the 6th state can be obtained to be
30

2
0 23 vvVvV bbb μμ + .

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

88

77

66

055

10443

210332

3210221

3210110

321000

0000

0000

00000

00000

0000

0000

000

000

0000

033120132232

302
2

03122232

021222

0212

02

v

v

v

VVv

VVVVvVV

VVVVVVvVV

VVVVVVVVvVV

VVVVVVVVvVV

VVVVVVVVv

V

q

q

q

bq

bbqb

bbbqb

bbbbqb

bbbbqb

bbbbq

VbVVbVbVVbVbVVbVVbV

VbVbVVbVVbVVbVVbV

VbVVbVVbV

VbVVbV

VbV

μμμμμ

μμμμμ

μμμ

μμ

μ

λ
λλμ
λλλμ
λλλλμ

λλλλμ
λλλλ

Q

 (7)

 A Cross Layer Time Slot Reservation Protocol for Wireless Networks 407

Similarly, the reduced generator matrix for ABR traffic QA can also be obtained by
substituting λA and μA for λV and μV, respectively. The steady state probability vector
for ABR traffic pA can be obtained by solving the balance equation shown as Eq. (8).

0Qp =AA
 (8)

4 Simulation Results

In this section, we simulate the proposed CLTSR system by using Visual C++
program and compare with the theoretical analysis. Let us assume that data channel
has the bandwidth of 10.6 Mbps; each time slot has the length 2 kbits (about
0.1887ms); each data frame has 164 time slots (about 30.94ms); and there yields
about 32 data frames per second. Let us also assume that the arrival traffics of CBR,
VBR and ABR occupy 19%, 4% and 77%, respectively. The average bandwidth
requirement for CBR, VBR and ABR traffics are 64, 512, and 256 kbps, respectively.
Similarly, the mean access duration for CBR, VBR and ABR traffics are 5, 10 and
1.56 minutes, respectively. Throughput is calculated by (Npkt×l)/Tsim, where l, Npkt
and Tsim are the packet length, the total number of the successful transmitted packets
and the simulation time. The blocking probability is obtained by Nb/(Nb + Ns) where
Nb and Ns are the number of blocking and success packets, respectively.

(a) CBR traffic (b) VBR traffic

(c) ABR traffic (d) Combining CBR, VBR, and ABR traffics

Fig. 7. Throughput versus arrival rate for CLTSR, DCAP and analytical solutions

408 B.-H. Lee, C.-M. Wong, and H.-C. Chien

Fig. 7 shows the simulated throughput for FTSA/MTSA in CLTSR, DCAP and
theoretical analysis obtained from the Markov model above. We see that the proposed
Markov model fits the simulation results very well except arrival traffic higher than
220 (Req./min.). Although the CBR traffic occupy 19% of arrival traffic, the
allowable 41 sets of spreading codes in a time slot and 64Kbps constant bandwidth
requirement will make it occupying time slot in the data frame slower than ABR
traffic in almost no available time slots can be used. And it also means that when the
arrival traffic is heavy (over 220 (Req./min.)), the throughput of CBR traffic will
lower than theoretical analysis. But once the MTSA is used, we can see the
throughput of CBR traffic even higher than theoretical analysis, as shown in Fig. 7
(b). One way to make throughput always near the theoretical analysis is expanded
time slot or channel capacity in the data channel. Of course, due to the DCAP hasn’t
good time slot allocation algorithm to allocate time slot, it will have lower
performance than CLTSR system. Similarly, the VBR traffic has same situation as the
CBR traffic, as shown in Fig. 7 (c). And we can see the throughput of VBR using
MTSA is same as using FTSA. So, the MTSA never affect the throughput in VBR
traffic but enhance the throughput in CBR traffic. In the Fig. 7 (d), the FTSA, MTSA
and theoretical analysis are almost same everywhere in the ABR traffic. Fewer sets of
spreading codes, smaller access duration and higher occupation of arrival traffic make
ABR traffic has more stable situation.

5 Conclusions

We have proposed the CLTSR for DS-CDMA based wireless network. The special
reservation protocol which combines the function of DS-CDMA in physical layer and
time slots/spreading code allocation in MAC layer not only improve system
performance but also provide the guarantee of QoS. It is shown that the Markov chain
models are accurate in predicting the behavior of CLTSR under the assumption that
the arrival traffic has Poisson distribution. The MTSA is suggested to use because the
performance of VBR and ABR traffic are almost same in both FTSA and MTSA,
while the MTSA has better performance in CBR traffic. This is a special MAC
protocol design dependent on the capacity of physical layer. Due to the advance
multiple access and channel estimation technology in wireless communication
networking, we need a better MAC protocol to use them. Then, the performance with
respect to the entire system can have the best situation. This is the motive that we
begin to design the CLTSR.

References

1. Bianchi, Y.G.: Performance Analysis of the IEEE 802.11 Distributed Coordination
Function. IEEE Journal on Selected Areas in Communications 18(3), 535–547 (2000)

2. Robinson, J.W., Randhawa, T.S.: Saturation throughput analysis of IEEE 802.11e
enhanced distributed coordination function. IEEE Journal on Selected Areas in
Communications 22(5), 917–928 (2004)

3. Kwon, Y., Fang, Y., Latchman, H.: Design of MAC Protocol With Fast Collsion Resolution
for Wireless Local Area Networks. IEEE Trans. Wireless Commun. 3(3), 793–807 (2004)

 A Cross Layer Time Slot Reservation Protocol for Wireless Networks 409

4. Haas, Z.J., Deng, J.: On Optimizing the Backoff Interval for Random Access Schemes.
IEEE Trans. Commun. 51(12), 2081–2090 (2003)

5. Raychaudhuri, D.: Performance analysis of random access packet-switched code division
multiple access systems. IEEE Trans. Commun. COM-29(6), 895–901 (1981)

6. Morrow, R., Lehnert, J.: Packet throughput in slotted ALOHA DS/SSMA radio systems
with random signature sequences. IEEE Trans. Commun. 40(7), 1223–1230 (1992)

7. Sato, T., Okada, H., Yamazato, T.: Throughput Analysis of DS/SSMA Unslotted ALOHA
System with Fixed Packed Length. IEEE Journal on Selected Areas in
Communications 14(4), 750–756 (1996)

8. Muqattash, A., Krunz, M.: CDMA-Based MAC Protocol for Wireless Ad Hoc Networks.
In: Proceedings of the 4ACM international symposium on Mobile ad hoc networking &
computing (July 2003)

9. Orfanos, G., Habetha, J., Liu, L.: MC-CDMA Based IEEE 802.11 Wireless LAN. In: IEEE
Computer Society’s 12th Annual International Symposium, pp. 400–405 (October 2004)

10. Fantacci, R., Ferri, A., Tarchi, D.: A MAC technique for CDMA based Ad-Hoc networks.
In: IEEE Wireless Communications and Networking Conference, vol. 1, pp. 645–650
(March 2005)

11. Qiang, G., Liu, Z., Ishihara, S., Mizuno, T.: CDMA-based Carrier Sense Multiple Access
Protocol for Wireless LAN. In: IEEE Vehicular Technology Conference 53rd, vol. 2 (May
2001)

12. Yang, H., Kim, K.: Multimedia Ad Hoc Wireless LANs with Distributed Channel
Allocation Based on OFDM-CDMA. IEICE Trans. Commun. E86-B(7) (2003)

13. Akyildiz, I.F., Levine, D.A., Joe, I.: A slotted CDMA protocol with BER scheduling for
wireless multimedia networks. IEEE/ACM Trans. Networking 7(2), 146–158 (1999)

14. Rappaport, T.S.: Wireless Communications PRINCIPLES AND PRACTICE, 2nd edn. pp.
621–650. Prentice Hall, Englewood Cliffs (2002)

15. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications,
ANSI/IEEE std. 802.11

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 410–421, 2007.
© IFIP International Federation for Information Processing 2007

An Efficient Handoff Strategy for Mobile Computing
Checkpoint System

Chaoguang Men1,2, Zhenpeng Xu2, and Dongsheng Wang1,2

1 National Laboratory for Information Science and Technology, Tsinghua University, Beijing
100084, China

2 Research Center of High Dependability Computing Technology, Harbin Engineering
University, Harbin, Heilongjiang, 150001, P.R. China

{mencg,wds}@tsinghua.edu.cn,
{menchaoguang,xuzhenpeng}@hrbeu.edu.cn

Abstract. The Eager, Lazy and Movement-based strategies are used in mobile
computing system when handoff. They result in performance loss while moving
the whole checkpoint on fault-free or slow recovery while not moving any
checkpoint until recovery. In the paper, a compromise strategy is proposed. The
whole recovery information are broken into two parts, which one little part with
high-priority should be transferred to the new cell during handoff and another
large part with low-priority should be transferred only when the mobile host
recovers from a fault. From the view of mobile host, it seems that all recovery
information reside on the local mobile support station. The strategy guarantees
little performance losing when fault-free and quick recovery when fault occurs.
Experiments and analysis show the handoff strategy performance overcomes
others.

Keywords: mobile computing, fault tolerant, checkpoint, handoff, rollback
recovery.

1 Introduction

Checkpointing and rollback-recovery has been an attractive technique for providing
fault-tolerance in mobile computing system [1]. Due to the mobility of the hosts,
limited bandwidth, highly unreliable wireless link, mobile hosts disconnect from
network voluntarily, power restriction and limitation of storage space in mobile
devices, conventional checkpointing recovery schemes used in wired distributed
network cannot be directly applied to mobile environment [2]. When a mobile host
(MH) moves from one cell to another, Eager, Lazy and Movement-based strategies are
used, which move the whole recovery information to new mobile support station
(MSS) or not move any recovery information until a MH recovers [3]. A strategy
which moves the whole recovery information in fault-free will depress the
performance of system due to transfer useless information and others which not move
any recovery information until a fault occurs will delay the system recovers from a
fault due to recovery information can not be gotten in time. No one strategy is

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 411

excellent in every circumstance. A compromise strategy is proposed. Only a few part
of recovery information is moved to the new local cell when a MH moves, which little
useless work is done when fault-free or quick recovery can be done when a fault
occurs.

The paper is organized as follows: Section 2 introduces the system model and
definitions. Section 3 presents a checkpoint and recovery strategy with an efficient
handoff scheme for mobile computing. Section 4 gives its correctness proofs.
Section 5 compares the handoff scheme with others. Section 6 draws a conclusion.

2 Preliminaries

A mobile computing system MCS=〈 N, C〉 is composed of a set of nodes N and a set
of channels C. The set of nodes N=M∪S can be divided into two types, M={MH1,
MH2,..., MHn} is the set of MHs, which are able to move while retaining their network
connections and S={MSS1, MSS2,..., MSSm} is the set of static nodes acting as the
MSSs. The set of channels C=W∪W' can be divided into two disjoint sets, the set of
high-speed wired channels W, where W=S×S is the type through that static nodes are
connected, and the set of low bandwidth wireless channels W', where W'=S×M is the
type through that MHs are connected to a MSS. A cell is a geographical area covered
by a MSS. A MH residing in the cell of MSSp can directly communicate with MSSp
through a wireless channel. In a cell of MSSi, let CLi={MHj | MHj∈MSSi,0<j<n+1}
denotes the active nodes or sleeping nodes identified by Active_MH_Listi or
Disconnected_MH_Listi respectively, then there exists a channel 〈 MSSi, MHj〉 ∈W'
only if MHj∈CLi ⇒ MHj∉CLk, ∀k≠i, assuming that the geographical cells around
each of the MSS do not overlap. The MHs have limited battery power and hence
cannot keep communication with the MSSs for long, hence they often disconnect from
the network. Such disconnections can be voluntary without any fault or involuntary
due to abruptly running out of battery. The mobile computing system model is
described in Fig. 1.

Fig. 1. Mobile computing system model

412 C. Men, Z. Xu, and D. Wang

Distributed computations running concurrently on different MHs consist of a set of
N processes denoted by P1, P2, ..., Pn. Processes do not share a global memory or a
global physical clock, and they communicate with each other only through message
passing. For simplicity, we assume that only one process runs on each MH. So we can
use the terms ‘MH’ and process interchangeably. We assume that each of the channels
is bidirectional with reliable FIFO delivery of messages and the message transfer
delays are finite but arbitrary. Processes follow the piece-wise deterministic execution
model, and the underlying computation is asynchronous. The fault model is assumed
to be fail-stop and all faults can be detected immediately, which results in halting
failed process, initiating recovery action are considered to be transient and the same
fault would not repeat when the process restarts.

Let Rcv(i,α) denotes the αth message receiving event of a process Pi; the state
interval I(i,α) denotes the sequence of states generated between Rcv(i,α-1) and
Rcv(i,α), where α>0 and Rcv(i,0) denotes the initial event. Then, the dependency
relation of processes caused by the message communication can be defined as
follows:

Definition 1. Dependency Relation: A state interval I(i,α) is said to be dependent on
another state interval I(j,β) if one of the following conditions is satisfied and the
dependency relation is denoted by I(j,β)→I(i,α):

(i). i=j and α=β+1
(ii). For an event Rcv(i,α), the corresponding message-sending event happens in I(j,β)
(iii). For any I(k,γ), I(j,β)→I(k,γ) and I(k,γ)→I(i,α) [2].

With the pessimistic message logging scheme, an interval I(i,α+1) can be fully
recovered after a fault if the event, Rcv(i,α), has been stably logged; Otherwise, the
interval becomes lost. During the rollback-recovery of a process, the dependency
relation may cause an inconsistency problem.

Definition 2. Orphan interval: An interval on which depends any lost interval is called
an orphan state interval.

Definition 3. Consistent Recovery: The recovery from a fault F(i,f) is said to be
consistent, if and only if there is not any orphan state interval, that is, for any
I(i,α)∈L(i,f) there exists no I(j,β), such that I(i,α)→I(j,β). Where F(i,f) denotes the fth
fault of Pi and L(i,f) denotes the set of lost state intervals caused by F(i,f) [3].

The handoff and location scheme are supplied to support the mobility of MH. When a
MH leaves a cell and enters another cell, it must end its current connection by sending
a leave(r) message to its local MSS, where r is the sequence number of the last
message received from the MSS. Then the MH establishes a new connection by
sending a join(MH-id, previous MSS-id) message to the new MSS. Usually, leaving a
cell and entering another cell happens simultaneously when an MH crosses the
boundary between two cells and it is called a handoff. Each MSS maintains a list of
identifiers of MHs that are currently supported by the MSS. A MH can also disconnect
itself from the local MSS without leaving the cell by sending disconnect(r) message
when the MH goes into the sleep mode for power conservation. Later, the MH can
reconnect to any MSS by sending a reconnect(MH-id, previous MSS-id) message to

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 413

the MSS. If the MH is reconnected to a new MSS, the new MSS informs the previous
MSS of the reconnection of the MH so that the previous MSS can perform the proper
handoff procedures [4].

Handoff time is an important parameter which affects mobile system performance
besides checkpoint state-saving cost and recovery cost [5]. There three categories
handoff strategy named Eager, Lazy and Movement-based. Eager mobility handoff
strategy, which also named Pessimistic, always keeps the logging and checkpoint
information in the local MSS in which the MH currently resides [5]. Thus, when the
MH moves from one MSS to another during the execution of a mobile application, all
the checkpoint and logging information must be moved to the current MSS as well.
The advantage of this approach is fast failure recovery. But the MSSs visited by the
MH have to experience high fault-free cost to transfer the recovery information and
access the stable storage. Under the Lazy strategy, on the other hand, the checkpoint
and logging information do not be moved as the MH moves [5]. Rather, a forwarding
pointer is established from the local MSS to the last MSS so that when a failure occurs,
the checkpoint and logging information of the mobile application can be recovered
from all the MSSs on the forwarding chain by following the links. The advantage of
this approach is little fault-free cost, but the recovery cost can be too high, if the
recovery information is dispersed over a wide range of cells. The tradeoff schemes are
Movement-based handoff strategies, which are Distance-based and Frequency-based
[4]. Under the Distance-based scheme, which focuses on the distance between MHi
and the MSS carrying latest checkpoint of MHi, the checkpoint and message logs need
to be moved into a MSS near MHi, only when the moving distance of MHi from a MSS
carrying the latest checkpoint exceeds a certain threshold. On the other hand, the
Frequency-based scheme concerns the number of handoffs, since that number
indicates the number of sites carrying the message logs and the frequency of
communication for collecting the message logs in case of recovery. Hence, in this
scheme, MHi keeps counting the number of handoff and transfers the checkpoint and
logs if the number exceeds a certain value. Of course, in both of the above schemes,
the recovery cost and the fault-free operation cost is adjustable using the threshold
values. Checkpoint and logs are moved to new local MSS when fault-free, the
Movement-based schemes have the disadvantage of Eager. Checkpoint and logs are
not moved to new local MSS until recovery, the Movement-based schemes have the
disadvantage of Lazy. Obviously, how effective these strategies would be depends on
various system parameters, including the checkpoint rate, logging message arrival
rate, user mobility rate, failure rate, and bandwidth. No one scheme is always better
than others under all situations [6].

3 The Recovery Scheme

The proposed recovery scheme is based on independent checkpointing, pessimistic
message logging and asynchronous rollback-recovery. An efficient handoff scheme is
proposed. Different from Eager, Lazy and Movement-based schemes which move the
whole recovery information or do not move any recovery information until recovery,
in our strategy, the whole recovery information which include checkpoint and logs are
broken into two parts. One part includes only a little part of recovery information with

414 C. Men, Z. Xu, and D. Wang

high-priority. The other part includes the rest of the recovery information with low-
priority. The high-priority part of recovery information is treated as that in Eager
scheme and the low-priority part of recovery information is treated as that in Lazy
scheme. Appropriate partitions high-priority and low-priority recovery information
can satisfy both quick recovery and fault-free cost. When recovering from a fault, the
high-priority part can be transferred instantly to the recovering MH, the low-priority
part can be collected by the local MSS simultaneously from other MSSs and then be
transferred to the recovering MH successively. From the view of the recovering MH,
it seems that all recovery information always resides on the local MSS.

3.1 The Data Structure and Denotations

Let CKi,α denotes the αth checkpoint of MHi; CK_infoi is a record which contains six
variables, CK_sn, CK_loc, CK_low, Logm_seq, Send_max, and Log_queue. CK_sn
denotes the sequence number of the latest checkpoint and the CK_loc denotes the
identifier of the MSS carrying the high-priority of the latest checkpoint; CK_low
denotes the identifier of MSS carrying the low-priority of the latest checkpoint;
Logm_seq denotes the sequence number of the first message logged after the latest
checkpoint; Send_max denotes the maximum sequence number of message sent
successfully by MHi to other MHs since the latest checkpoint; Log_queue is a list
established for the local MSS to save the identifiers of MSSs which have the logs
saved after the latest checkpoint; Msgi,α denotes the αth message sent by MHi;
Rcv_seqi is an integer variable, which denotes the maximum sequence number of
messages that have been received and consumed in MHi. Logmi,α denotes the αth
message log.

3.2 The Checkpointing and Logging

Each MHi takes an initial checkpoint on initialization and sets the corresponding
checkpoint sequence number CK_infoi.CK_sn to 0. Every MH takes checkpoint
periodically. When MHi finishes a new checkpoint, the information about this
checkpoint is recorded in CK_infoi. The CK_infoi and the new checkpoint will be sent
to its local MSSp.

Each MSS logs the received messages before delivering to MHs in its cell. As a
message heading for MHi should be routed through the local MSSp, using the local
MSSp to log the message into its storage space will not incur extra overhead. MSSp
also logs the messages of the mobility of MHs, including the messages of MHs to join
in, leave from, disconnect from and reconnect to the cell. Upon a user input of the
MH, a copy of it is firstly forwarded to the local MSSp for logging in case of its lost.
On receipt of the acknowledgment from MSSp, the MH starts to process the input
event. When MHi leaves or disconnects from MSSq, it sends Disconnect(i) message to
the local MSSq for logging. MSSq logs the event on the receipt of it and deals with it.
When MHi joins in a new cell of MSS, says MSSr, it sends Join(MSSq) to MSSr. And
MSSr will add MSSp into the CK_infoi.Log_queue if MSSp is not in the
CK_infoi.Log_queue.

The checkpointing and message logging algorithm is described in Fig. 2.

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 415

Actions taken when checkpointing Timer of MHi Expires:
CK (i, ++CK_infoi.CK_sn);
/*saves the state of MHi as a new checkpoint of MHi.*/
CK_infoi.Logm_seq=Rcv_seqi+1;

/*assigns the sequence number of the first message which will be logged after
the new checkpoint.*/
Send (CKi,α , CK_infoi, MSSp) ;
/* Sends the new checkpoint and its information to its local MSS. */

Actions taken when MSSp receives CKi,α and CK_infoi from MHi:

Store (CKi,α , CK_infoi);
/* Saves the new checkpoint and its information in local MSSp. */
CK_infoi.CK_loc= MSSp;
/* identifies the MSS carrying the high-priority of latest checkpoint.*/
CK_ low = MSSp ;
/* identifies the MSS carrying the low-priority of latest checkpoint.*/

Actions taken when MHi receives a message Msgk,α from local MSSp:

Consume Msgk,α;
/* MHi deals with the message.*/
Rcv_seqi ++;
/* MHi adds the sequence number of message.*/

Actions taken when MSSp receives a message Msgi,α from MHi:
Log Msgi,α ;
Logmi,α++;
/* saves the new message into log-space and adds the message number. */
If MSSp∉CK_infoi.Log_queue

Then CK_infoi.Log_queue = CK_infoi.Log_queueU {MSSp};
/*add MSSp to the CK_infoi.Log_queue. */
Transfer Msgi,α;
/* forwards the computational message to goal MHi.*/
If (Msgi,α∈{join, leave, disconnect, reconnect})
 Actions ;

/* takes related actions according to the received messages.*/

Fig. 2. Checkpointing and message logging algorithm

3.3 The Handoff Strategy

The recovery information including checkpoint and massage logs are broken into two
parts that one with high-priority and the other with low-priority. The main idea is that
low-priority checkpoint information can be sent to the local MSS of recovering MH
through high speed wired network at the same time as the high-priority recovery
information is being sent to recovering MH through low speed wireless network.

The amount of high-priority part and low-priority part of recovery information
depend on the speeds of wired and wireless networks. Set LTmax and WTmin denote the
maximum communication speed of wireless network and minimum communication
speed of wired network respectively. Set VP0 denotes the amount of high-priority

416 C. Men, Z. Xu, and D. Wang

recovery information. For simplicity, we assume that the amount transmitted is the
integral multiple of packet size.

When a MHi recovers from a fault, the VP0 will be sent to MHi from the local MSSp
instantly. The transmission time at least is:

max

0

1 LT

VP
t = . (1)

The amount of low-priority recovery information collected from other MSSs
simultaneously in time t1 at least is:

 min11 *WTtVP =
max

min0

LT

WTVP ×= . (2)

Because the speed of wired network is faster than the speed of wireless, so
VP1>VP0, that is more information can be collected through wired network when an
amount of information is sent through wireless network. In turn, more recovery
information, VP2, can be collected through wired network when VP1 is sent through
the wireless network. The amount of recovery information transferred to MSSp from
other MSSs is:

L+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎢

⎣

⎡
×

2

max

min

max

min
0 LT

WT

LT

WT
VP

⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

− nn

LT

WT

LT

WT

max

min

1

max

min . (3)

The effective handoff scheme is described in Fig. 3.

Actions taken when MSSp receives join (MSSq) request:
Send (VP0_retrieve, MSSq)

/*sends request message to MSSq get high-priority part of CKi,α */
Actions taken when MSSq receives VP0_retrieve from the new local MSSp:

Send (VP0 , MSSp)
/*sends high-priority part of recovery information to MSSp. */

Actions taken when MSSp receives VP0:
CK_loc=MSSp;
Store CK_infoi and high-priority part of CKi,α;

/* identifies the MSS carrying the high-priority of latest checkpoint and saves
the high-priority of recovery information.*/

Fig. 3. An effective handoff scheme

3.4 Independent Recovery

When recovering from a fault, MHi sends a recovery request, RollbackReq(i), to its
local MSSp. If CK_infoi is saved in the local MSSp, the high-priority part of recovery
information is sent to MHi instantly. To collect the rest of checkpoint and logs, the
local MSSp sends Chkpt_retrieve(CK_infoi.CK_sn) and Log_retrieve(CK_infoi.Logm_
seq) request to other MSSs according to CK_low and CK_infoi.Log_queue. After
receiving the request, the other MSSs reply with the low-priority checkpoint part and

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 417

the logs whose sequence number is not less than CK_infoi.Logm_seq. After transfer-
rring the high-priority part of recovery information to the recovering MHi, the local
MSSp sends the low-priority checkpoint part to the recovering MHi successively. After
receiving the whole checkpoint, MHi reloads the checkpoint to restore the system, and
then resumes and replays the logs. During recovering, new message sent to MHi is
saved in its local MSSp, and will be forwarded to MHi, in turn, after recovering. The
message that sequence number less than CK_infoi.Logm_seq is discarded to avoid
repeat messages.

If there is not CK_infoi in the local MSSp, it means that a fault has occurred in other
cell and then MHi enters this cell in where it submits the recovery request. MSSp
broadcasts recovering request to all MSSs. The previous local MSSq sends the high-
priority part of recovery information to MSSp. MSSp executes the recovering process.
The asynchronous recovery algorithm is described in Fig. 4.

Actions taken when MHi occurs a fault:
Send (RollbackReq(i), MSSp);
/*Sends recovery request to the local MSSp.*/

Actions taken when MSSp receives RollbackReq(i) from MHi:
If (MHi∈(Active_MH_Listp or Disconnected_MH_Listp))
Send (VP0, MHi);
/*if MSSp holds latest checkpoint with high-priority, sends it to MHi. */
Send (Chkpt_retrieve (CK_infoi.CK_sn), CK_low);
/* sends retrieval message to CK_low to get the remnant part of checkpoint.*/
Send (Log_retrieve(CK_infoi.Logm_seq), CK_infoi.Log_queue);
/* sends request to MSSr in the list of Cpinfoi.Log_queue to get message logs.*/
Else
 Broadcast info_retrieve(i);
/* If the local MSSp don’t hold the latest CK_infoi, broadcasts the recovery

request.*/
Actions taken when MSSk receives Broadcast info_retrieve(i) from MSSp:

Send (high-priority of CKi,α, CK_infoi , MSSp);
 /* sends the high-priority part of recovery information to local MSSp.*/

Actions taken when MSSq receives Chkpt_retrieve(CK_sn) from MSSp:
Send (the remnant of CKi,α, MSSp);
 /*sends the remnant of checkpoint to local MSSp.*/

Actions taken when MSSq receives Log_retrieve (Logm_seq) from MSSp:
If (∃Logmi,α in MSSq log space and α≥Logm_seq)
Send (Logmi,α, MSSp);
/*sends related message logs to local MSSp.*/

Actions taken when MHi receives the full CKi,α from MSSp:
Restore CKi,α;
 /*restores the full checkpoint.*/
Resume action;
/*starts the computation process of recovery.*/

Fig. 4. The asynchronous recovery algorithm

418 C. Men, Z. Xu, and D. Wang

3.5 Garbage Collection

MHi takes new checkpoint CKi,α and sends the checkpoint and CK_infoi to MSSp.
MSSp sends a message which a new checkpoint has been taken to all MSSs which will
delete old checkpoint CKi,α-1 and relative information that denoted by old
CK_infoi.CK_loc, CK_infoi.CK_low, CK_infoi.Log_queue. Every MSS will release the
space held by checkpoint CKi,α-1 and implement garbage collection.

4 Correctness of the Algorithm

Theorem 1. The asynchronous recovery of MHi is a consistent recovery.

Proof: Recoverable: the latest checkpoint and the messages with the sequence number
larger than the CK_infoi.logm_seq were saved safely due to the reliable
communication, the reliable MSSs and the pessimistic message logging. Therefore, on
the recovery of MHi, every message logs and the latest checkpoint can be retrieved.
The messages can be replayed according to the sequence number after restoring the
latest checkpoint. In other words, MHi can reconstruct one possible sequence of state
intervals as those constructed before the fault due to processes following the piece-
wise deterministic execution model. So MHi is recoverable on fault in the strategy.

Consistent recovery: The lost events which incurs L(i,f) can only be the messages or
user inputs that had not been sent successfully to the local MSS before a fault. This
implies the corresponding messages could not be transferred to their destinations.
According to the definition 1, the lost events can not incur new dependency relations
between MHs. Therefore, for any I(i,α)∈L(i,f) there exists no I(j,β), such that I(i,α)→
I(j,β). The independent recovery is a consistent recovery as the recovery strategy
satisfies the definition 3. □

5 Performance Study

The model and parameters in [6] are adopted. MHs communicate with MSSs through
802.11a wireless network adapter. MH moves from one cell to another follows a
Poisson process with rate σ=0.01. The message sending rate of a MH follows a
Poisson process with rate λ=0.1. Each MH takes a checkpoint with a fixed interval
Tc=1000s, the failure rate of each MH follows an exponential distribution with rate
δ=0.0001. Increment strategy is adopted for saving a checkpoint and its size is 1MB.
The size of a logs entry is 50B. The ratio of wireless network speed to wired network
speed is r=0.1. The time required to load a log entry through a wireless channel is
T1=0.016s, and the time required to load a checkpoint through a wireless channel is
T3=0.32s. The time required to execute a log entry is T2=0.0008s. We assume that
when a MH moves 5 times, its checkpoint should be moved to the new local MSS in
Frequency-based strategy and when a MH moves 10 times, its checkpoint should be
moved to the new local MSS in Distance-based strategy.

Fig. 5 shows the amounts of recovery information needed to be transmitted in every
recovery strategies. The y-axis indicates the overhead of message transfer incurred by
different strategies for MH’s recovery, while the x-axis denotes the time that a fault

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 419

occurs on the MH. The overhead of recovery information management under our
virtual strategy is always less than those under Eager, Frequency-based and Distance-
based strategy, and only a little large than that under Lazy strategy, because our
compromise strategy only moves little, not the whole, latest checkpoint to the local
MSS when a MH moves from one cell to another.

Fig. 6 shows the amounts of recovery information needed be transmitted by every
strategy under different message sending rate after the system has run 500 seconds.
The overhead of every handoff strategy becomes increment with the increment of
message sending rateλ. The overhead of our handoff strategy almost equals to that
under Lazy and far less than the other’s.

Let N(t) denotes the number of logs saved until MH faults. ff(t) denotes the
probability when a fault occurs in time t. Under our and Eager strategies, the
recovering probability of time T is [6]:

[] dttfTTTTtNTF
M

TcM

MTc

f∑ ∫
+∞

=

+

≤++=
0

)1(

3211)(})(Pr{)(. (4)

M denotes the checkpoint number experienced by a MH in time t, T1, T2 and T3 denote
the mean time of loading a log entry through wireless network, executing a log entry
and loading whole checkpoint through wireless network respectively. N(t) is a
Poisson process with rate λ=0.1, and ff(t) is an exponential distribution with rate
δ=0.0001, we get:

Fig. 5. The amounts of recovery inform-
ation need transmitted

Fig. 6. The amounts of recovery information
need transmitted with different rate

'
!

)'(
)('

0 0 0

'

1

21

3

dtee
n

te
TF MTct

M

Tc TT

TT

n

nt
δδ

λ

δλ −−
∞+

=

⎥
⎦

⎥
⎢
⎣

⎢
+
−

=

−

••= ∑ ∫ ∑

Tc

Tc TT

TT

n

t
nt

e

dte
n

te

δ

δ
λ

δλ

−

⎥
⎦

⎥
⎢
⎣

⎢
+
−

=

−
−

−

•
=
∫ ∑

1

!
)(

0 0

21

3

. (5)

420 C. Men, Z. Xu, and D. Wang

Under Lazy strategy, the recovering probability of time T is:

∑ ∫
+∞

=

+

==≤=
0

)1(

2 },|Pr{)(
M

TcM

MTc

bfr kkttTTTF

dttfttkk ffb)(}|Pr{ ==• . (6)

Replacement N(t) and ff(t) by their value:

∑ ∫∑ ∑
∞+

=

∞+

=

⎥
⎦

⎥
⎢
⎣

⎢
++
−−−

=

−

=
0 0 0 0

'

2

211

333

!
)'(

)(
M

Tc

k

TTrT

rkTrTTT

n

nt

n

te
TF

λλ
'

!
'

)'('

dtee
k

e MTct
tt k

δδ
σσ

δ −−
−

•••

Tc

Tc

k

TTrT

rkTrTTT

n

t
ttnt

e

dte
k

e

n

te
k

δ

δ
σσλ

δλ

−

∞+

=

⎥
⎦

⎥
⎢
⎣

⎢
++
−−−

=

−
−−

−

••
=
∫∑ ∑

1

!!
)(

0 0 0

)(211

333

 . (7)

Fig. 7 shows the probabilities of recovering time under various handoff strategies.
Our strategy which only has a little overhead large than that under Eager is better than
that under Lazy and has the same recovery probability as Eager has. Fig. 8 shows the
executing overhead under our asynchronous recovery strategy and coordinated
recovery strategy which the number of MHs is 100 and only 10 MHs need recovery
from a fault. As shown in the figure, our strategy is better than coordinated strategy,
and is more effective.

Fig. 7. The fault recovery probability Fig. 8. The actual execution time of the mob-
ile applications

6 Conclusion

The handoff strategy taken when a MH moves from one cell to another will affect the
executing efficiency and recovering time of checkpoint algorithm. Different from
other schemes, in the strategy proposed in the paper, the recovery information is

 An Efficient Handoff Strategy for Mobile Computing Checkpoint System 421

broken into two parts, which the first part must be transferred instantly to the new cell
when a handoff happens and the second part can be transferred simultaneously to the
local MSS through static network as the first part is transferred to the recovering MH.
The partition principle is that the first part as little as possible and the second part as
large as possible under guaranteeing recovering information to be transmitted to
recovering MH successively. From the view of recovering MH, it seems that all
recovery information resides on the local MSS all the time. This strategy considers
both minimum executing time on fault-free and quickly recovering from a fault.
Experiments and analysis show our strategy is better than others.

References

1. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A Survey of Rollback-Recovery
Protocols in Message-Passing Systems. ACM Computing Surveys 34(3), 375–408 (2002)

2. Ching, E.Y., Phipatanasuphorn, V.: A Survey of Checkpoint-Recovery Techniques in
Wireless Networks (2002), http://www.cae.wisc.edu/ ece753/papers/Paper_9.pdf

3. Park, T., Woo, N., Yeom, H.Y.: An Efficient Optimistic Message Logging Scheme for
Recoverable Mobile Computing Systems. IEEE Transactions on Mobile Computing 1(4),
265–277 (2002)

4. Park, T., Woo, N., Yeom, H.Y.: An Efficient Recovery Scheme for Mobile Computing
Environments. In: The 8th International Conference on Parallel and Distributed Systems
(ICPADS), Kyongju City, Korea, pp. 53–60 (2001)

5. Pradhan, D.K., Krishna, P., Vaiday, N.H.: Recoverable Mobile Environment: Design and
Trade-off Analysis. In: Proc. of the 26th Int’l Symp. on Fault Tolerant Computing System,
Sendai, Japan, pp. 16–25 (1996)

6. Chen, I.-R., Gu, B., George, S.E., Cheng, S.-T.: On failure recoverability of client-server
applications in mobile wireless environments. IEEE Transactions on Reliability 54(1),
115–122 (2005)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 422–431, 2007.
© IFIP International Federation for Information Processing 2007

A Lightweight RFID Protocol Using Substring

Hung-Yu Chien and Chen-Wei Huang

Dept. of Information Management, National Chi Nan University, Taiwan, R.O.C.
{hychien,s95213508}@ncnu.edu.tw

Abstract. As low-cost RFIDs with limited resources will dominate most of the
RFID market, it is imperative to design lightweight RFID authentication
protocols for these low-cost RFIDs. However, most of existing RFID
authentication protocols either suffer from some security weaknesses or require
costly operations that are not available on low-cost tags. In this paper, we
analyze the security vulnerabilities of a lightweight authentication protocol
recently proposed by Li et al. [4], and then propose a new lightweight protocol
to improve the security.

Keywords: RFID, authentication, low-cost cryptography, tracing, reader, DOS
attack.

1 Introduction

A Radio Frequency Identification (RFID) system mainly consists of three
components: radio frequency tags, readers, and a backend server/database (or a set of
distributed databases) which maintains information on the tagged objects. Generally,
the tag consists of a microchip with some data storage and an antenna. A reader
queries tags to obtain tag contents though wireless communications.

Recently, the wide deployment of RFID systems in a variety of applications has
raised many concerns about the privacy and the security. An RFID tag can be attached
to a product, an animal, or a person for the purpose of identification using radio
waves. For any possible reasons, an adversary may perform various attacks such as
eavesdropping, traffic analysis, spoofing, disabling the service, or disclosing sensitive
information of tags, and hence infringes people’s privacy and security.

Even though RFID tags with full-fledged capacity are available, to attain great
market penetration, RFID tags should be low-cost, which limit the computation
power, the storage space, the communication capacity and the gates count. As studied
by the previous work like [2], a low-cost RFID tag has approximately 4,000 logic
gates. Although there have been many works devoted to design security mechanisms
for low-cost RFIDs, most of these works require the tags to be equipped with costly
operations such as one-way hashing functions [1, 3, 5], which are still un-available on
low-cost tags. Contrary to these works, the schemes [4, 6, 8, 9] do not require the
support of hashing functions on tags. However, the schemes [6, 8, 9] have been
reported to show some security weaknesses [6, 7]. Recently, Li et al. [4], based on
only bitwise XOR (⊕), the Partial ID concept and pseudo random numbers, proposed
a lightweight RFID authentication protocol for low-cost RFIDs. Different from most

 A Lightweight RFID Protocol Using Substring 423

of existing solutions like [1, 3, 5] which used conventional cryptographic primitives
(encryptions, hashing, etc), this protocol only used simple operations like XOR and
substring. Unfortunately, we find that Li et al.’s scheme has several security weak-
nesses. In this paper, we shall analyze the security weaknesses of Li et al.’s RFID
authentication protocol. To heal the weaknesses while preserving the lightweight
feature, we propose a new RFID authentication protocol.

The rest of this paper is organized as follows. Section 2 reviews Li et al.
lightweight RFID authentication protocol. Section 3 analyzes the vulnerabilities of Li
et al.’s scheme. Section 4 proposes a new RFID authentication protocol that heals the
security weaknesses while preserving the lightweight feature for low-cost RFID tags.
Section 5 analyzes the security of our proposed protocol. Finally, conclusion remarks
and future work are drawn in Section 6.

2 Review of Li et al.’s Scheme

The tags in Li et al.’s RFID authentication protocol [4] use only bitwise XOR (⊕),
the partial ID concept and pseudo random numbers. Costly operations such as
multiplications and hash functions are eliminated in the design. In Li et al.’s scheme,
each tag and the backend server share an l-bit secret information, SID (the secure ID).
During the authentication the tag generates two random numbers n1 and n2 such that
2l≧n1+n2≧l/2. The two random numbers are used in the substring function f to
extract the partial IDs, PID1L and PID2R, where PID1L denotes the left substring of SID
and PID2R denotes the right substring of SID. That is, let f(SID, i, j) denotes the
substring of SID starting from position i to position j, then PID1L = f(SID, 1, n1) and
PID2R = f(SID, n2, l). Li et al.’s scheme is depicted in figure 1.

SID: Secure ID DB: Backend Database/server
PID: Partial ID ⊕: XOR operation
f : substring function

Fig. 1. Li et al.’s scheme

424 H.-Y. Chien and C.-W. Huang

The scheme consists of four stages: the PID generating stage, the SID searching
and tag authentication stage, the reader authentication stage and the result returning
stage.

 PID generating stage: The reader generates a random number R, and then sends
it to the tag. Upon receiving the probe from the reader, the tag uses two random
numbers n1, n2 and the substring function f to compute PID1L= f(SID, 1, n1), PID2R
= f(SID, n2, l) and R’= R⊕PID1L ⊕PID2R. The tag then responds the data R’, n1
and n2 to the reader.

 SID searching and tag authentication stage: The reader sends R’, R, n1 and n2 to
the server. The server computes PID’= R’⊕R, and iteratively picks up one
candidate SID’ from the database to check whether PID’1L ⊕PID’2R = PID’,
where PID’1L = f(SID’, 1, n1) and PID’2R = f(SID’, n2, l). If a match is found, then
the selected SID’ is the tag’s identification; otherwise, it continues the process
until a match is found or responds with “failure” if no match could be found in
the whole database. If a match is found, it computes PID”= f (SID’, n1, n2) and
then sends it to the reader.

 Reader authentication stage: The reader sends PID” to the tag, which then
checks whether f (SID, n1, n2) equals PID” to authenticate the reader. After the
reader is authenticated successfully, the tag sends ’OK’ to the reader; otherwise,
it responds with “no find” information.

 Result returning stage: If the reader receives ‘OK’, and then sends it to the
server, which will transmit the SID to the reader. Otherwise the reader stops the
protocol.

3 Vulnerabilities of Li et al. Scheme

In this section, we remark that Li et al.’s scheme is vulnerable to replay attack and is
prone to reveal the secret information SID.

3.1 The Replay Attack

An adversary can easily eavesdrop on the communications from a legal tag, modify
the data, and then replay the messages to masquerade as the legal tag as follows. The
attack consists of two stages- the data deriving stage and the spoofing stage.

 The data deriving stage: The adversary records the communication (R, 'R , n1,
n2) from a tag (say Ta), and then derives PID1L⊕PID2R from RR ⊕' .

 The spoofing stage: In this stage, the adversary uses the derived data
PID1L⊕PID2R to masquerade as the tag Ta as follows.

1. Upon receiving the probe Query|| R from the reader, the adversary computes
'R = RPIDPID RL ⊕⊕ 21 , and responds with 21 ||||' nnR to the reader.

2. It is easy to see that the forged data 21 ||||' nnR will be accepted by the server,

and the reader will forward the data "PID from the server to the adversary.

 A Lightweight RFID Protocol Using Substring 425

3. The adversary just records the data "PID and always responds with “OK” to
the reader. We can see that the reader finally accepts this spoofing tag as the
genuine tag Ta.

3.2 Disclosing the Secret Value SID

Since an adversary can eavesdrop on the communications and record the data R’, R,
n1, n2 and PID”, and he can compute R’⊕R to obtain PID1L ⊕PID2R. With n1, n2, R’⊕R

and PID”, an adversary can derive partial information of SID, and can repeatedly run
the process many times to fully disclose all the bits of SID or derive partial
information of SID (if most bits of the identification are known, then it is highly
possible to guess the rest bits because the identification of a tag- for example, the EPC
code- has a pre-defined format). In the following, we describe the single run of our
attack process, and examine some cases to point out the vulnerabilities of Li et al.’s
scheme.

As the lengths of PID1L, PID2R and PID” are unequal to l bits, we assume that 0s
are padded to them such that each length of them equals l-bit in the following scenario
(we can also assume 1s are padded to these strings, and the same attack still works).
Based on the values R’⊕R=PID1L ⊕PID2R and PID”= f (SID, n1, n2), an adversary can
derive parts of SID. The length of the disclosed part of SID depends on the values of
n1 and n2. With 2l≧n1+n2≧l/2 property, the values of n1 and n2 generally have four
situations. Firstly, if n1 = l-n2, an adversary can derive f(SID, n1, n2). Secondly, if n1 >
l-n2, an adversary can derive f(SID, n1, n2) and f(SID, l-n2, n1). Thirdly, if n1 < l-n2, an
adversary can derive f(SID, n1, n2) and f(SID, n1+n2, l). Finally, if n1 =l, l-n2=0, an
adversary can obtain all of SID. Some example cases are discussed as follows.

Example 1. Deriving parts of SID. Assume n1 = l/4 and n2 = 3/4 l, an adversary can
directly derive the l/2-bits f(SID, n1, n2) from PID”.

x...x 0101…0111 x…x

0 n1 n2 l
SID

x...x 00……………..0

0101…0111 0………..0

Derive l/2-bits of SID

l/4

PID”

PID1L PID2R

Example 2. Deriving parts of PID1L. Assume n1 = l/2 and n2 = 3/4 l, an adversary
can derive l/4-bit f(SID, l-n2, n1) from PID1L ⊕PID2R, and derive l/4-bit f(SID, n1, n2)
from PID” as follows.

426 H.-Y. Chien and C.-W. Huang

xx…….xx 0…1 x...x

0 n1 n2 l
SID

xx…….xx 0……….0

x...x 00……………..0

PID2R

PID1L PID2R

x…x ..xx 0………..0

Derive l/4-bit f(SID, l-n2, n1)

l/4

0…1 0……….………..0PID”

Derive l/4-bit f(SID, n1, n2)

PID1L

Example 3. Deriving parts of PID2R. Assume n1 =1/3 l and n2 = l/2, an adversary
derives l/6-bit f(SID, n1+n2, l) from PID1L ⊕PID2R, and derive l/6-bit f(SID, n1, n2)
from PID” as follows.

x…...x 0…1 xx…..…xx

0 n1 n2 l
SID

xx….…..xx 0….….0

PID1L
x......x 0…………….0

xx…xx x..x 0……….0

Derive l/6-bit f(SID, n1+n2, l)

l/6

0…1 0…….………..0
PID”

Derive l/6-bit f(SID, n1, n2)

PID2R

PID1L PID2R

Example 4. Deriving all the bits of SID. Assume n1 = l and n2 = l, an adversary can
obtain all the bits of SID as follows.

 A Lightweight RFID Protocol Using Substring 427

xx…………………..xx

0 l
SID

xx…………………..xx

PID1L

0……………………..0

PID2R

xx…………………..xx

Derive l-bit SID

n2

n1

PID1L PID2R

In a single run of the above attack, an adversary can derive partial information of

SID, and he can launch the above attack several times to aggregate the partial
information of SID or even derive all the bits of SID. Although it is possible that part
of the SID can not be directly derived in the above process, one might guess the rest
bits, because the identifications of tags are usually with fixed format.

4 A New Lightweight RFID Authentication Protocol

In this section, we propose a new protocol to improve the security while preserving
the lightweight property. Our proposed protocol is depicted in figure 2 and described
as follows.

We assume that each tag and the database share an l-bit secret key x, x = x0x1…..xl-

1xl. The reader generates a random number R1, and the tag generates a random number
R2. Some notations are introduced as follows.

g(z): g() is a random number generator, and z is an input number.
g~ : the random output of g(z).

rotate(p, w): rotate denotes the bitwise left rotation operator, and the operand p is
rotated w positions.
Left(s): the left half of s.
Right(s): the right half of s.

Step1: The reader generates a random number R1, and then sends it to the tag. Upon
receiving the probe from the reader, the tag generates another random number
R2, computes g~ = g(R1⊕R2⊕x) and rotates its SID to obtain SID’ =

rotate(SID, g~). It calculates R’=Left(SID’ ⊕ g~), and responds the data R’ and

R2 to the reader.

428 H.-Y. Chien and C.-W. Huang

Fig. 2. Our proposed protoco1

Step2: The reader forwards R1, R2, and R’ to the server. The server iteratively picks up
one candidate SID from the database, computes g~ = g(R1⊕R2⊕x) and SID’ =

rotate(SID, g~) and checks whether Left(SID’ ⊕ g~) = R’. If a match is found,

then the selected SID is taken as the tag identification; otherwise, it continues
the process until a match is found or responds with “failure’” if it cannot find a
match in the whole database. If a match is found, it computes R”=Right(SID’
⊕ g~) and then sends it to the reader.

Step3: The reader sends R” to the tag, which then checks whether Right(SID’ ⊕ g~)

equals R” to authenticate the reader. After the reader is authenticated
successfully, the tag sends ’OK’ to the reader; otherwise, it responds with “no
find” information.

Step4: If the reader receives ‘OK’, and then sends it to the server, which then
transmits the SID to the reader. Otherwise the reader stops the protocol.

During singulation, if multiple tags respond simultaneously to a query, they will
interfere with each other. Therefore, we suggest that an anti-collision algorithm like
the binary tree-walking [3] could be used in our proposed protocol to solve the
problem of collisions.

5 Analysis

5.1 Security Analysis

We now analyze the security of the proposed scheme as follows.

 No traceability. During each authentication instance, an adversary can only
observe the values (",',, 21 RRRR), where 21, RR are random numbers and

 A Lightweight RFID Protocol Using Substring 429

"/' RR are respectively the left/right half bits of the random string gSID ~'⊕ . No

identity-related information can be derived from these values, and these values
are distinct and look random to an adversary. So, an adversary cannot trace the
tags.

 Mutual authentication. The server authenticates the tag by verifying the
substring Left(SID’⊕ g~), and the tag authenticates the server by verifying the

substring Right(SID’ ⊕ g~). Since only the genuine tag and the server who have

the secret key x can generate and verify the values, the scheme provides mutual
authentication.

 Replay attack prevention. An adversary could eavesdrop on the
communications between the reader and the tag. However, the substring
Left(SID’ ⊕ g~) and the substring Right(SID’ ⊕ g~) should depend on the

random challenges 21, RR , and replay messages cannot satisfy the verification

either by the reader or by the tag.
 DOS attack prevention. In some previous schemes, the technique of varying

pseudonyms is used to resist tracing, and these schemes need to synchronize the
pseudonyms between the server and the tags; otherwise, they are unable to
authenticate each other. In our scheme, there is no requirement of state
synchronization. Therefore, it can resist the DOS attack.

In Table 1, we show a comparison of the security with previous mentioned

schemes [1, 2, 3, 5].

Table 1. Comparison between schemes

5.2 Performance Analysis

It is important to minimize the storage cost, the computational cost and the
communication cost of low-cost tags. In Table 2, we examine the performance of our
scheme in terms of storage space, computational cost and communication cost, and
compare it with the previous schemes [1, 2, 3, 5].

 Storage space: In our scheme, the tag has to store its tag ID of length l and an l-
bit secret key. For identifying the tag, the database has also to store related
information. Therefore, implementation of our scheme, the tag and the database
both only require 2l bits of memory, which is suitable to low-cost tags.

430 H.-Y. Chien and C.-W. Huang

 Computational cost: In Henrici-Müller’s scheme [1], Lee et al.’s scheme [2],
Weis et al.’s scheme [3] and Lee-Verbauwhede’s scheme [5], the tag has to be
equipped with hash functions, which are still un-available on low-cost tags. On
the contrary, in our scheme, the tag only needs random number generation,
XOR, shifting, and substring function. The computations are very efficient and
lightweight.

 Communication cost: In our scheme, messages of tag-to-reader communic-

ation are R2 and R’ with a total of 1
2

1 l bits and a message of reader-to-tag

communication is R” with
2

1 l bits. Compared to Henrici-Müller’s scheme [1],

Weis et al.’s scheme [3] and Lee-Verbauwhede’s scheme [5], the commu-
nication performance of our scheme is more efficient.

Table 2. Performance analysis

Notations of Table: l – size of required memory, h – the cost of a hash function operation, α –
between l /2 and 2l, β – less than l.

6 Conclusion and Future Work

This paper has shown the replay attack and the secret disclosure problem of Li et al.’s
scheme. In the attack, an adversary can easily derive partial information of the secret
SID or even all the bits of the SID. We also have proposed a new lightweight RFID
authentication protocol, which improves the security, the communication performance
and the computational performance. And taking into account that low-cost tags are
highly resource-constrained, the tags only need to store tag’s ID of length l and an l-
bit secret key. So it can easily be implemented on those low-cost RFIDs like EPC
generation 2 RFID.

In Our proposed protocol, it doesn’t offer forward secrecy since the key updating is
not fulfilled after the mutual authentication. But, we find that the previous re-keying
protocols like [1, 2, 5, 8, 9] all suffer from DOS attacks. Furthermore, designing a
protocol that simultaneously ensures forward secrecy and DOS attack resistance is our
future work.

Acknowledgments. This research is partially supported by National Science Council
with project number NSC95-2221-E-260-050-MY2.

 A Lightweight RFID Protocol Using Substring 431

References

1. Henrici, D., Müller, P.: Hash-based Enhancement of Location Privacy for Radio-Frequency
Identification Devices using Varying Identifiers. In: PerSec 2004 at IEEE PerCom (2004)

2. Lee, S.M., Hwang, Y.J., Lee, D.H., Lim, J.I.: Efficient Authentication for Low-Cost RFID
Systems. In: Gervasi, O., Gavrilova, M., Kumar, V., Laganà, A., Lee, H.P., Mun, Y.,
Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, Springer, Heidelberg (2005)

3. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and Privacy Aspects of Low-
Cost Radio Frequency Identification Systems. In: International Conference on Security in
Pervasive Computing (March 2003)

4. Li, Y.Z., Cho, Y.B., Um, N.K., Lee, S.H.: Security and Privacy on Authentication Protocol
for Low-cost RFID. In: IEEE International Conference on Computational Intelligence and
Security, vol. 2, pp. 1101–1104 (November 2006)

5. Lee, Y.K., Verbauwhede, I.: Secure and Low-cost RFID Authentication Protocols.
Adaptive Wireless Networks–AWiN (November 2005)

6. Chien, H.Y., Chen, C.H.: Mutual Authentication Protocol for RFID Conforming to EPC
Class 1 Generation 2 Standards. Computers Standards and Interfaces 29(2), 254–259
(2007)

7. Lin, C.-L., Chang, G.-G.: Cryptanalysis of EPC Class 1 Generation 2 RFID authentication.
In: Information Security Conference 2007, ChiaYi, Taiwan (2007)

8. Duc, D.N., Park, J., Lee, H., Kim, K.: Enhancing Security of EPCglobal Gen-2 RFID Tag
against Traceability and Cloning. In: The 2006 Symposium on Cryptography and
Information Security (2006)

9. Karthikeyan, S., Nesterenko, M.: RFID security without extensive cryptography. In:
Workshop on Security of ad hoc and sensor networks, pp. 63–67. ACM Press, Alexandria,
Virginia, USA (2005)

The Reliability of Detection in Wireless

Sensor Networks: Modeling and Analyzing

Ming-Tsung Hsu1, Frank Yeong-Sung Lin1, Yue-Shan Chang2,
and Tong-Ying Juang2

1 Dept. of Information Management, NTU,
No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan

{d94004,yslin}@im.ntu.edu.tw
2 Dept. of Computer Science and Information Engineering, NTPU,

No. 151, University Rd., San Shia, Taipei, 237 Taiwan
{ysc,juang}@mail.ntpu.edu.tw

Abstract. A Wireless Sensor Network (WSN) composed of tiny sensor
nodes may operate in an unfavorable terrain. The coupling of inherent
limitations and harsh environments makes WSNs fallible. For this reason,
reliability becomes one of the most important issues in WSN research.
Some of the early work in the field of detection reliability focuses on col-
laborative effort. Instead of the collaborative work, the sensing improve-
ments are proposed for detection reliability enhancement. Two types of
detection models are constructed based on the scenarios of WSN oper-
ations for probability decomposition. The fault probability of detection
and the probability of detection reliability in WSNs can then be esti-
mated based on the decomposition of probabilities and empirical data.
In analyzing the decomposition of probabilities, sensing improvements
are shown to enhance detection reliability. An illustrative example is
demonstrated to show how detection reliability can be controlled by dif-
ferent sensing improvements in different application situations.

Keywords: Wireless sensor networks, Detection models, Detection reli-
ability, Fault probability of detection, Sensing improvements.

1 Introduction

Recently, WSNs are developed and used for information collection [1], [7]. Includ-
ing environmental monitoring, automatic controlling, and target tracking, WSN
applications all have a data collection task. A tiny sensor node equipped with
multifunctional sensors, a micro-processor, and a radio transceiver is responsible
for this task.

The reliability becomes one of the most important issues in WSN research
since sensor nodes are usually deployed in unattended and unfavorable environ-
ments, which makes each component of sensor nodes fault or crash easily. The
techniques and mechanisms for the operations of sensing, processing, and com-
munication are necessarily aware of this essential fact to maximize the reliability
of WSNs. In this paper, sensing (detection) reliability is discussed in detail.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 432–443, 2007.
c© IFIP International Federation for Information Processing 2007

The Reliability of Detection in WSN: Modeling and Analyzing 433

Faults in the sensing system, which is responsible for sensing environmental
energies, may be caused by the hardware or software failure; may be produced
by environmental noise; may last for a short or long time period; and can make
the behavior of sensor nodes inactive or arbitrary. The results of sensing faults,
such as the missing detection, false alarm, and unusual reading, can affect the
data collection task severely, so they must be effectively overcome.

In most WSN applications, sensor nodes only send detection decisions or
reports to a sink or a fusion center for energy conservation. For detection relia-
bility improvement, the collaborative effort of a large number of sensor nodes is
proposed previously [1], [6], [11], [13], [20]. Instead of the collaborative work, de-
tection reliability is estimated by the analysis of detection models and enhanced
by proposed sensing improvements in this paper.

In a detection-based (event-driven) WSN, there are four possible scenarios of
a sensor node: (i) the sensor node misses an interesting event; (ii) the sensor node
issues a false alarm; (iii) the sensor node accurately reports an interesting event;
and (iv) the sensor node faultily reports an interesting event [11]. These scenarios
show that the interesting event and detection error result in detection and there
are four types of events (missing detection, false alarm, validity detection, and
hidden fault detection) in the detection process.

The sensing system can be enhanced in different ways to increase detection
reliability, e.g., increasing sensing capability may reduce the missing detection
while increasing error resistance capability can avoid the false alarm. In this
paper, four types of sensing improvements (including sensibility, dependability,
effectiveness, and resistiveness) are theoretically defined.

The remainder of this paper is organized as follows: The detection models are
constructed in Section 2. The fault probability of detection and the probability
of detection reliability are also estimated in this section for detection models.
Section 3 defines the sensing improvements and shows how to improve detec-
tion reliability theoretically. An illustrative example is depicted in Section 4 to
demonstrate the effect of sensing improvements. Section 5 briefly reviews the
related work of reliability in WSNs. Section 6 draws our conclusions and future
work.

2 Detection Models

In this section, we first construct two types of detection models by the scenarios
of WSN operations as mentioned previously. The fault probability of detection
(P (FD)) and the probability of detection reliability (P (R)) are also defined by
the scenarios of WSN operations. P (FD) and P (R) can be estimated based on
the decomposition of probabilities or the observation of missing detection (M),
false alarm (F), and hidden fault detection (H) in different detection models.

2.1 Model Construction

As introduced in Section 1, the interesting event (A) and detection error (E)
lead to detection (D). Since A results from the environmental factors whose

434 M.-T. Hsu et al.

energies are sensed by sensor nodes and E also results from the environmental
factors which make sensor nodes dysfunctional, A and E are thus both caused
by environmental factors.

In an Independent Detection Model (IDM), A and E are affected by different
environmental factors and these factors are mutually independent. Fig. 1(a)
shows the structure of IDM. The intrusion detection system is an example of
IDM, where infrared sensors sense the heat of objects (the environmental factor
of intrusion events) and can be affected by high temperature and moisture (the
environmental factors of errors) [1], [2].

The Conditionally Independent Detection Model (CIDM) is that A and E can
be both affected by common environmental factors and/or the environmental
factors affecting A and E are not mutually independent. Fig. 1(b) shows the
structure of CIDM, where A and E are both affected by common environmental
factors (V1, V2, . . . , Vw) and the environmental factors affecting A and E are not
mutually independent. The forest fire tracking system is an example of CIDM
where a fire event is detected and tracked as the temperature and humidity (the
environmental factors of fire events) sensed by thermometers and hygrometers
are both high, and an error may also be produced as the high temperature
seriously affecting thermometers and hygrometers [1], [8].

Event (A)

Detection (D)

Error (E)

Va1 … VanVa2 VemVe2Ve1 …

(a) IDM: A and E lead to D and are affected by different and mutually independent
environmental factors. The (Va1, Va2, . . . , Van) and (Ve1, Ve2, . . . , Vem) are the environ-
mental factors affecting A and E, respectively.

Event (A)

Detection (D)

Error (E)

Va1 …Van VemVe1 …… V1 VwVa2 V2 Ve2

(b)CIDM: A and E lead to D and are both affected by common environmental factors
and/or the environmental factors affecting A and E are not mutually independent.

Fig. 1. Detection models

The Reliability of Detection in WSN: Modeling and Analyzing 435

2.2 Fault Probability of Detection

As introduced in Section 1, the operation of detection-based WSNs exists four
possible events where M and F are widely discussed in the Signal Detection
Theory (SDT). The fault probability of detection in SDT is defined as follows
[20]:

Definition 1. The fault probability of detection is defined by

P (FD) = P (A)P (D̄|A) + P (Ā)P (D|Ā) = P (A)P (M) + P (Ā)P (F) . (1)

Based on Bayesian theorem and detection models, P (M) can be decomposed as
(2a) and (2b) for CIDM and IDM, respectively.

P (M) =
P (D̄|AE)P (AE) + P (D̄|AĒ)P (AĒ)

P (A)
(2a)

P (M) =P (D̄|AE)P (E) + P (D̄|AĒ)P (Ē) . (2b)

In a similar manner, P (F) of CIDM and IDM can also be decomposed based
on Bayesian theorem as shown in (3a) and (3b), respectively.

P (F) =
P (D|ĀE)P (ĀE) + P (D|ĀĒ)P (ĀĒ)

P (Ā)
(3a)

P (F) =P (D|ĀE)P (E) + P (D|ĀĒ)P (Ē) . (3b)

2.3 Probability of Detection Reliability

P (FD) is focused for detection reliability in most of previous work [6], [11], [13],
[17], [20]. For example, in a WSN, P (A) is 0.05 while P (M) and P (F) of senor
nodes are 0.05 and 0.008, respectively. By Definition 1, P (FD) is 0.0101 and
detection reliability might be treated as 0.9899.

It must be noted that errors are essential facts in WSNs and therefore, the
correct detection (D|A) can be differentiated into the validity detection and
hidden fault detection. However, sensor nodes which faultily report interesting
events should be considered as faulty. Considering that the hidden fault detection
(DE|A) may exist, the probability of reliability is defined as follows:

Definition 2. The probability of detection reliability is defined by

P (R) = 1 − (P (M) + P (H))P (A) − P (F)P (Ā) . (4)

The decomposition of P (H) of CIDM and IDM by Bayesian theorem are shown
in (5a) and (5b), respectively.

P (H) =
P (D|AE)P (AE)

P (A)
(5a)

P (H) =P (D|AE)P (E) . (5b)

436 M.-T. Hsu et al.

2.4 Probability Estimation

To compute the probabilities in the subsection 2.2 and 2.3, P (A), P (E), and
probabilities of D given A and E must be known.

P (A) can be computed in (6a) and (6b) for CIDM and IDM, respectively, if
all environmental factors affecting A are sensed. For the computing purpose, the
value of environmental factors is assumed to be divided into levels.

P (A) =
∑

i

· · ·
∑

h

P (A|Va1,i · · · Vw,h)P (Va1,i · · · Vw,h) (6a)

P (A) =
∑

i

· · ·
∑

l

P (A|Va1,i · · · Van,l)P (Va1,i) · · · P (Van,l) (6b)

where Van,i and Vw,h are the environmental factor Van with level i and the
environmental factor Vw with level h, respectively.

In a similar manner, P (E) of CIDM and IDM can be computed by (7a) and
(7b), respectively.

P (E) =
∑

i

· · ·
∑

h

P (E|Ve1,i · · · Vw,h)P (Ve1,i · · · Vw,h) (7a)

P (E) =
∑

i

· · ·
∑

l

P (E|Ve1,i · · · Vem,l)P (Ve1,i) · · · P (Vem,l) (7b)

where Vem,i is the environmental factor Vem with level i.
In practical applications, P (A) and P (E) cannot be computed theoretically

since some of environmental factors are difficult to sense. Instead of theoretically
computing, the t-out-of-n rule [20] can be used to estimate P (A) as sensor nodes
are deployed densely. P (M) and P (F) of sensor nodes can also be estimated by
counting the number of missing detection and false alarms [9]. P (H) can be
estimated as detection reports contain the energy readings of sensors. Since the
error rate (including missing detection, false alarm, and unusual reading) of
sensor nodes also can be computed by t-out-of-n rule, P (E) can be estimated as
the average error rate of all sensor nodes. P (FD) and P (R) then can be estimated
in practical applications as P (A), P (E), P (M), P (F), and P (H) are known.

3 Theoretical Analysis

This section theoretically analyzes P (M), P (F), and P (H) by proposed sens-
ing improvements to minimize P (FD) and to maximize P (R). For simplicity of
analysis, Fig. 2, which illustrates the relationship among A, E, and D, is used
in this section.

3.1 Sensing Improvements

The obvious method for improving P (FD) and P (R) is that sensor nodes must
be reinforced to resist the environmental interference and uncertainty. Based on
the (2a), (2b), (3a), (3b), (5a), and (5b), the sensing improvements of sensor
nodes can be classified as follows:

The Reliability of Detection in WSN: Modeling and Analyzing 437

1. The sensibility improvement (SS): the sensibility is the capability of a sensor
node that it can report detection when only event occurs (D|AĒ).

2. The dependability improvement (SD): the dependability is the capability of
a sensor node that it will not report detection when both error and event do
not occur (D̄|ĀĒ).

3. The effectiveness improvement (SE): the effectiveness is the capability of a
sensor node that it can report detection when both event and error occur
(D|AE).

4. The resistiveness improvement (SR): the resistiveness is the capability of
a sensor node that it will not report detection when only error occurs
(D̄|ĀE).

The capability of SS , SD, SE , and SR can be improved by decreasing the area of
α, γ, λ, and μ or increasing the area of β, η, δ, and θ. In practical applications,
these sensing improvements might be the trade-off and might not be improved
simultaneously, e.g., improving SS (increasing the area of D in Fig. 2(a)) might
make SR degraded (μ is increased and θ is decreased as in Fig. 2(b)).

A D

E

α γ

δ

β

μ

η

θ

λ

(a) Relationship among A, E, and D.

 A D

E

α γ

δ

β

μ

η

θ

λ

(b) Increasing SS makes SR degraded.

Fig. 2. Relationship among A, E, and D

3.2 Probability Analysis

There are two parts in (2a) and (2b) for P (M): one is the environmental interfer-
ence (D̄|AE) while another is the uncertainty (D̄|AĒ). Enhancing SE can reduce
the environmental interference and enhancing SS can reduce the uncertainty.

Similarly, the reduction of P (F) can be achieved when the SR and SD of
sensor nodes can be enhanced to reduce the environmental interference (D|ĀE)
and the uncertainty (D|ĀĒ), respectively.

In IDM, P (E) is the multiplier of sensing improvements in P (M) and P (F),
which determines the efficiency of sensing improvements. As P (E) is small, the
effect of SS is more than that of SE for P (M) and the effect of SD is more
than that of SR for P (F). Unlike IDM, the multiplier of sensing improvements
in P (M) and P (F) for CIDM is the joint probabilities of A and E divided by
the P (A) or P (Ā).

438 M.-T. Hsu et al.

As shown in (1), P (FD) is the function of P (M), P (F), and P (A), where P (A)
is the multiplier of P (M) and P (F). To reduce P (FD) needs to simultaneously
reduce both of P (M) and P (F) in Bayesian detection problem [20]. Therefore,
SS , SD, SE , and SR all affect P (FD) while P (A) and P (E) are the multiplier
of sensing improvements in IDM and the joint probabilities of A and E are the
multiplier of sensing improvements in CIDM.

P (H) can be improved in (5a) and (5b) for CIDM and IDM, respectively, as
SE degraded. Then, P (R) can only be affected by SS , SD, and SR since SE can
reduce the environmetal interference in P (M) but can also increase P (H).

SS , SE , and SR can be directly estimated from observation of empirical data,
which is the same as discussed in subsection 2.4. SD can be estimated by (3a)
and (3b) for CIDM and IDM, respectively, as P (F), P (E), P (A), the joint
probabilities of A and E, and SR are known.

4 Illustrative Example

Although Section 3 shows how to theoretically enhance P (FD) and P (R), the
impact of sensing improvements on P (FD) and P (R) still needs to discern clearly.
This section illustrates an example of IDM to show the impact of different sensing
improvements in different application situations.

4.1 Intrusion Detection System

As mentioned in subsection 2.1, the intrusion detection system is an example of
IDM. In an intrusion detection system, the prior probability used for probability
computation can be obtained by empirical data or training data as discussed in
subsection 2.4 and in [5], [9].

Based on the t-out-of-n rule, the probability of intrusion is observed by count-
ing the times of intruder’s arrival divided by the total time intervals in the
empirical data, where at most one intrusion will occur in each interval.

P (M) and P (F) can be estimated by the average of missing detection and
false alarm probabilities of each sensor node as shown in [9]. P (H) can also be
estimated by the observation as detection reports contain the energy readings.
P (E) can be estimated as the average error rate of all sensor nodes. The ratio
of sensing improvements can be obtained as discussed in subsection 3.2. Table 1
lists these probabilities.

Table 1. The prior probabilities of an intrusion detection system

Event True False Event True False Event True False

A 0.050 0.950 E 0.020 0.980 M 0.050 0.950
F 0.050 0.950 H 0.019 0.981 D|AĒ 0.950 0.050
D|ĀĒ 0.050 0.950 D|AE 0.950 0.050 D|ĀE 0.050 0.950

The Reliability of Detection in WSN: Modeling and Analyzing 439

4.2 Impact of Sensing Improvements

By the settings of Table 1, Fig. 3 shows the impact of different sensing im-
provements on P (FD). The slope of sensing improvements in figures means the
decreasing speed of P (FD) and is determined by P (A) and P (E) as introduced
in subsection 3.2.

In Fig. 3(a), SS , SE , and SR scarcely affect P (FD), which reflects the small
P (A) and P (E) of this example. Fig. 3(b) shows that SR can reduce P (FD) as
P (E) increased. P (E) can be treated as the weight of SR for P (FD) in IDM.
SS can be used to reduce P (FD) as P (A) increased, which is shown in Fig. 3(c).
P (A) can then be treated as the weight of SS for P (FD) in IDM. In Fig. 3(d),

0

0.01

0.02

0.03

0.04

0.05

0.06

95% 96% 97% 98% 99% 100%
Improvement ratio

P
(F

D
)

S S

S E

S D

S R

(a) Settings of Table 1

0

0.01

0.02

0.03

0.04

0.05

0.06

95% 96% 97% 98% 99% 100%
Improvement ratio

P
(F

D
)

S S

S E

S D

S R

(b) Settings of Table 1 and P (E) = 0.16

0

0.01

0.02

0.03

0.04

0.05

0.06

95% 96% 97% 98% 99% 100%
Improvement ratio

P
(F

D
)

S S

S E

S D

S R

(c) Settings of Table 1 and P (A) = 0.4

0

0.01

0.02

0.03

0.04

0.05

0.06

95% 96% 97% 98% 99% 100%
Improvement ratio

P
(F

D
)

S S

S E

S D

S R

(d) Settings of Table 1, P (E) = 0.16, and
P (A) = 0.4

Fig. 3. Impact of sensing improvements on P (FD)

440 M.-T. Hsu et al.

0.88

0.9

0.92

0.94

0.96

0.98

1

95% 96% 97% 98% 99% 100%

Improvement ratio

P
(R

)

S S

S E

S D

S R

(a) Settings of Table 1

0.88

0.9

0.92

0.94

0.96

0.98

1

95% 96% 97% 98% 99% 100%

Improvement ratio

P
(R

)

S S

S E

S D

S R

(b) Settings of Table 1 and P (E) = 0.16

0.88

0.9

0.92

0.94

0.96

0.98

1

95% 96% 97% 98% 99% 100%

Improvement ratio

P
(R

)

S S

S E

S D

S R

(c) Settings of Table 1 and P (A) = 0.4

0.88

0.9

0.92

0.94

0.96

0.98

1

95% 96% 97% 98% 99% 100%

Improvement ratio

P
(R

)

S S

S E

S D

S R

(d) Settings of Table 1, P (E) = 0.16, and
P (A) = 0.4

Fig. 4. Impact of sensing improvements on P (R)

SD and SS can reduce P (FD) efficiently in IDM as P (A) and P (E) are both
increased. The effect of SR is reduced as P (A) increased in Fig. 3(c) and 3(d).

Fig. 4 shows that the effect of sensing improvements on P (R) based on the
settings of Table 1. The results of Fig. 4(a), 4(b), and 4(c) are the same as Fig.
3 while Fig. 4(d) shows that the P (R) will be significantly affected by P (H) as
P (A) and P (E) are both large. In Fig. 3 and 4, SE is shown to be less important
in sensing improvements for P (FD) and P (R) in IDM as P (A) and P (E) are
small.

The results of the impact of sensing improvements on P (FD) and P (R) shown
in Fig. 3 and 4, respectively, are the same as that discussed in Section 3. In ad-
dition, they can provide the quantitative and illustrative information of sensing
improvements.

The Reliability of Detection in WSN: Modeling and Analyzing 441

5 Related Work

There are many approaches proposed to reinforce the reliability of WSNs. Most
of these approaches are based on the collaborative work of sensor nodes since
WSNs is generally deployed densely [1], [19].

For the purpose of reliable communication, Cerpa and Estrin [3] proposed
an adaptive self-configuring routing protocol, named ASCENT, to establish a
routing forwarding backbone by using a subset of sensor nodes; Chang, Hsu,
Liu, and Juang [4] proposed a dependable geographical routing to dodge the
faulty region; Ruiz, Siqueira, Oliveira, Wong, Nogueira, and Loureiro [14] used
MANNA to identify the faulty sensor nodes and proposed a management scheme
for event-driven sensor networks; and Staddon, Balfanz, and Durfee [15] proposed
a tracing scheme in continuous sensor networks to monitor the crashed sensor
nodes.

In reliable density control, Huang, Lo, Tseng, and Chen [10] proposed several
decentralized protocols that schedule the duty cycle of sensor nodes to prolong
the network lifetime while the sensing field is sufficiently covered; and Ye, Zhong,
Cheng, Lu, and Zhang [18] proposed an adaptive scheduling approach, named
PEAS, to ensure the coverage requirement of target area is fulfilled.

The fault tolerance mechanisms are also based on the collaboration of sen-
sor nodes with the goal of reliable computing and detecting. Sun, Chen, Han,
and Gerla [16] proposed a simple distributed technique, named CWV, by using
neighbor’s result and exploiting redundant information to discern local data de-
pendability for improving reliability. Krishnamachari and Iyengar [11] proposed
a scheme which let an individual sensor node use binary decisions of neighbors
to correct its own decision to detect the event region for increasing fault tolerant
capability. Luo, Dong, and Huang [13] enhanced this work by considering both
measurement error and sensor node fault, which minimized the probability of
detection error by choosing a proper neighborhood size in fault correction.

The collaboration of sensor nodes may cause the consistency problem when
the Byzantine faults exist. Clouqueur, Saluja, and Ramanathan [6] proposed two
fusion schemes, value fusion and decision fusion, to solve the Byzantine problem
[12] and to accomplish better reliability in data fusion.

6 Conclusions and Future Work

Most WSNs are coupled with inherent limitations and harsh environments, which
makes them fallible. The collected data might be flawed especially under the
unfavorable conditions. The reinforcement of the reliability must be seriously
considered before the deployment of WSNs and during the network operation.

In this paper, we show how to estimate P (FD) and P (R) in different detection
models. P (R), which considers the hidden fault detection, is first proposed in the
detection reliability research. We also discuss and analyze the impact of sensing
improvements, including SS , SD, SE , and SR on P (FD) and P (R). These sensing
improvements can be obtained in laboratory experiments before sensor nodes

442 M.-T. Hsu et al.

are deployed and can be corrected in different applications by observed data as
disscused in subsection 2.4 and 3.2.

The theoretical analysis illustrates the relationship among sensing improve-
ments, P (FD), and P (R). The enhancement in both of P (FD) and P (R) are
shown in Section 3. Further, the illustrative example of the intrusion detection
system clearly shows how to control and improve P (FD) and P (R) based on the
different sensing improvements in different situations.

This paper shows that we can control detection reliability before the deploy-
ment of WSNs by default sensing improvements. P (FD) and P (R) can then be
used to compute the neighborhood size for collaborative work in the critical ter-
rain as discussed in previous research. During the network operation, sensing
improvements can be re-measured by practical data and the network protocols
can be adapted by the information of P (FD) and P (R).

The future work of this research will include the adaptive algorithm to rapidly
adapt to the environmental interference for minimizing P (FD) and maximizing
P (R) during the network operation.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38, 393–422 (2002)

2. Biswas, P.K., Phoha, S.: Self-Organizing Sensor Networks for Integrated Target
Surveillance. IEEE Trans. on Computers 55(8) (2006)

3. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring sEnsor Networks
Topologies. IEEE Trans. on Mobile Computing, Special Issue on Mission-Oriented
Sensor Networks 3(3) (2004)

4. Chang, Y.-S., Hsu, M.-T., Liu, H.-H., Juang, T.-Y.: Dependable Geographical
Routing on Wireless Sensor Networks. In: LNCS, vol. 4523 (2007)

5. Chang, Y.-S., Juang, T.-Y., Lo, C.-J., Hsu, M.-T., Huang, J.-H.: Fault estimation
and fault map construction in Cluster-based Wireless. In: The IEEE International
Workshop on Ad Hoc and Ubiquitous Computing (AHUC 2006), Taichung, Taiwan,
June 5–7 (2006)

6. Clouqueur, T., Saluja, K.K., Ramanathan, P.: Fault Tolerance in Collaborative
Sensor Networks for Target Detection. IEEE Trans. on Computers 53(3), 320–333
(2004)

7. Culler, D., Estrin, D., Srivastava, M.: Overview of Sensor Networks. IEEE Com-
puter, Special Issue in Sensor Networks (August 2004)

8. Doolin, D.M., Sitar, N.: Wireless sensors for wildfire monitoring. In: Proceedings
of SPIE Symposium on Smart Structures & Materials/ NDE 2005, March 6–10,
San Diego, California (2005)

9. Hsu, M.-T., Lin, F.Y.-S., Chang, Y.-S., Juang, T.-Y.: The Fault Probability Es-
timation and Decision Reliability Improvement in WSNs. In: Proceedings of the
IEEE Region 10 Annual International Conference (TENCON 2007), October 30–
November 2 Taipei, Taiwan (2007)

10. Huang, C.-F., Lo, L.-C., Tseng, Y.-C., Chen, W.-T.: Decentralized Energy-
Conserving and Coverage-Preserving Protocols for Wireless Sensor Networks. ACM
Trans. on Sensor Networks 2(2) (2006)

The Reliability of Detection in WSN: Modeling and Analyzing 443

11. Krishnamachari, B., Iyengar, S.: Distributed Bayesian Algorithms for Fault-
Tolerant Event Region Detection in Wireless Sensor Networks. IEEE Trans. on
Computers 53(3), 241–250 (2004)

12. Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem. ACM
Trans. on Programming Languages and Systems 4(3), 382–401 (1982)

13. Luo, X., Dong, M., Huang, Y.: On Distributed Fault-Tolerant Detection in Wireless
Sensor Networks. IEEE Trans. on Computers 55(1) (2006)

14. Ruiz, L., Siqueira, I., Oliveira, L., Wong, H., Nogueira, J., Loureiro, A.: Fault Man-
agement in Event-Driven Wireless Sensor Networks. In: ACM/IEEE International
Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
2004 (MSWIM 2004) (2004)

15. Staddon, J., Balfanz, D., Durfee, G.: Efficient Tracing of Failed Nodes in Sensor
Networks. In: First ACM International Workshop on Wireless Sensor Networks
and Applications (September 002)

16. Sun, T., Chen, L.-J., Han, C.-C., Gerla, M.: Reliable Sensor Networks for Planet
Exploration. In: The 2005 IEEE International Conference On Networking, Sensing
and Control (ICNSC 2005) (2005)

17. Varshney, P.: Distributed Detection and Data Fusion. Springer, Heidelberg (1996)
18. Ye, F., Zhong, G., Cheng, J., Lu, S., Zhang, L.: PEAS: A Robust Energy Conserving

Protocol for Long-lived Sensor Networks. In: Proceedings of the 23rd International
Conference on Distributed Computing Systems (ICDCS 2003) (2003)

19. Zhang, H., Hou, J.C.: Maintaining Sensing Coverage and Connectivity in Large
Sensor Networks. Wireless Ad Hoc and Sensor Networks: An International Jour-
nal 1(1–2), 89–123 (2005)

20. Zhang, Q., Varshney, P.K., Wesel, R.D.: Optimal Bi-Level Quantization of i.i.d.
Sensor Observations for Binary Hypothesis Testing. IEEE Trans. Information The-
ory 48(7), 2105–2111 (2002)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 444–455, 2007.
© IFIP International Federation for Information Processing 2007

Fast and Simple On-Line Sensor Fault Detection Scheme
for Wireless Sensor Networks

Jeng-Yang Wu1, Dyi-Rong Duh1,*, Tsang-Yi Wang2, and Li-Yuan Chang3

1 Department of Computer Science and Information Engineering
National Chi Nan University, Puli, Nantou Hsieh 54561, Taiwan

{s94321522,drduh}@ncnu.edu.tw
2 Institute of Communications Engineering

National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
tcwang@mail.nsysu.edu.tw

3 Department of Computer Science and Information Engineering
National Cheng Kung University, Tainan 70101, Taiwan

lance@csie.ncku.edu.tw

Abstract. Wireless sensor networks (WSN) are composed of a large number of
sensor nodes and usually used to monitor a region of interest. The sensor nodes
are very prone to damage due to low-cost design and random deployment.
Additionally, faulty nodes may degrade the performance of the distributed
hypothesis testing. This work addresses fault isolation in WSN where the fusion
center attempts to identify faulty nodes through temporal sequences of received
local decisions. Owing to the processor, memory, and power constraints in
embedded systems, the employed method should be as simple as possible.
Therefore, the primary goal of this investigation is to design a low-complexity
sensor fault detection scheme, which can detect most sensor faults by using the
majority voting technique. The simulation results show the proposed approach
is effective in terms of identifying faulty members in a distributed sensor
network.

Keywords: Wireless sensor networks, fusion technique, sensor fault detection,
distributed detection; fault-tolerant detection; false testing.

1 Introduction

The problem of distributed decision fusion in wireless sensor networks (WSN) has
received much attention because of many important applications [1, 4, 7, 8, 9, 10, 11].
Sensor nodes in WSN are deployed in the region of interest for collecting data. These
sensor nodes, which consist of sensing, data processing, communicating, and power
components, observe the phenomenon at each measured time step. After processing
the observation, each node transmits individual local decision to a fusion center. The
fusion center then makes a final decision based on these preliminary local decisions.

* Corresponding author.

Fast and Simple On-Line Sensor Fault Detection Scheme for Wireless Sensor Networks 445

WSN usually consist of a large number of sensor nodes, which are deployed in
inaccessible and harsh environments. Furthermore, the sensor nodes are prone to
damage as a result of low-cost design and random deployment. Additionally, placing
sensor nodes in inaccessible areas makes them irreplaceable. Therefore, the design of
distributed detection in WSN needs to be fault tolerant. The types of sensor faults in
WSN may range from simple stuck-at faults to random sensor faults, which render
prior failure probability models unsuitable for the design of distributed detection in
WSN. For this reason, the primary goal of this study is to design an effective fault
detection scheme, which can tolerate most sensor faults.

The fusion center may make a wrong decision when the combined effect of the
number of faulty nodes and sensor fault types is high. To provide fault-tolerance
capability in distributed detection, the detection system can remove the unreliable
local decisions transmitted from faulty sensor nodes during the process of final
decision making. This work considers the fault detection based on a collaboratively
sequential detection scheme. The problem formulation in this study is the fusion
center needs to identify faulty nodes at every time step. In the decision fusion process,
the data sent form faulty nodes will be discarded for making more dependable final
decisions. The considered scenario has many applications such as health monitoring
and security surveillance. A deployed sensor network in each of these applications
may have to report its decision at every measured time step; for this reason, an
appropriate strategy can be immediately selected when an unexpected event occurs.

Some related investigations have addressed several variants of fault detection
problems. Fault detection problems by central testing can be found in [2, 3]. The
distributed fault detection problem for general nonlinear, non-Gaussian stochastic
systems with multiple sensor nodes has been addressed [6]. The work in [9] applies
the non-parametric statistics-based technique for identifying the faulty sensor nodes in
a sensor network. For information assurance of the data fusion in WSN, a witness
based approach has been demonstrated to verify the fusion data [8]. An improved
witness-based approach using a direct voting mechanism has also been proposed to
verify the fusion data without any cryptographic operation [10].

This work also considers the problem of sensor fault detection as follows. Assume
that all sensors will have the same readings and make the same decision if they are
fault-free and deployed in an area. The fusion center can identify a faulty node by
judging whether its behavior is very different from the others since each node sends
its local decision to the fusion center at every time step. Therefore, a sensor fault
detection scheme with a record table, which records the history of all local decisions
during the monitor process, is proposed. Because of the processor, memory, and
power constraints in embedded systems, the employed approach should be as simple
as possible. For this reason, the proposed scheme just applies the majority voting
technique to differentiate between normal nodes and faulty nodes. Since the employed
method is quite simple, applying the proposed sensor fault detection scheme in real
applications is feasible.

The remainder of this investigation is organized as follows. Section 2 formally
presents the system model and the problem formulation. The details of the proposed
sensor fault detection scheme are described in Section 3. Section 4 shows the
performance evaluation of the proposed approach by simulation. Finally, conclusions
are drawn in Section 5.

446 J.-Y. Wu et al.

2 System Model and Problem Formulation

This section first describes the system model and the problem formulation. In
practice, the types of sensor faults in a sensor network are actually very diverse. Three
considered sensor fault types in this study are presented finally.

2.1 Network Operation

A two-layer detection system is considered in this work, as illustrated in Fig. 1. The
parallel fusion system, which consists of N identical sensor nodes and a fusion center,
is used to determine whether an unknown binary hypothesis is H0 or H1. The prior
probabilities of H0 and H1 are assumed to be known. Each member of N sensor nodes
is denoted by si, where i = 1, …, N. Let xt

i denote the observation of the ith sensor
node and ut

i denote the binary decision of the ith node, where i = 1, …, N and t
represents the time index. The observations across sensor nodes are independent and
identically distributed condition on phenomenon.

Fig. 1. System model of a parallel fusion network

Assume that an identical local decision rule is employed at each sensor node. Each
node independently makes a binary decision based only on its observation. The local
decision ut

i of node si is obtained through the local decision rule γ as (1). Each sensor
node reports its local decision to the fusion center at each time step. A decision ‘0’ is
sent if the sensor node makes a decision in favor of H0; otherwise, a decision ‘1’ is
transmitted.

u
t
i = γ(xt

i). (1)

Fast and Simple On-Line Sensor Fault Detection Scheme for Wireless Sensor Networks 447

A parallel fusion network employing identical local decision rules at each node is
asymptotically optimal based on error exponents when the number of nodes becomes
very large. The error exponents of the identical local decision rules are equal to that of
the non-identical local decision rules obtained by system-wide optimization [5]. For
this reason, employing the identical local decision rule at each node is quite suitable
for large-scale sensor networks.

Let’s consider the fusion center is processing its information at time step t. All
preliminary decisions up to time step t from all nodes are available at the fusion
center. The fusion center begins to identify faulty members by utilizing the proposed
sensor fault detection scheme. In the decision fusion process, the fusion center
discards the data of faulty nodes for making a more believable final decision.

2.2 Sensor Fault Types

A sensor network is very likely to contain faulty nodes, because sensor nodes are
usually low-cost and deployed randomly. Additionally, the sensor faults may include
hardware or software damage resulting in all misbehavior; hence, the types of sensor
faults are diverse.

Three types of sensor faults are considered in this work. In one fault type, a faulty
sensor node is frozen to transmit a fixed local decision ‘0’ to the fusion center
regardless of the real observation. This type of sensor fault is named stuck-at-zero
fault. Similarly, a fault type is called stuck-at-one fault when a faulty node always
transmits a fixed decision ‘1’. The last sensor fault type is that a faulty sensor node
reports decision ‘0’ or ‘1’ randomly regardless of the present hypothesis and called
random fault. The fusion center does not know the sensor fault types in advance. The
detection system identifies faulty nodes just according to the behavior of each node.

3 Sensor Fault Detection Scheme

The record table, which records the history of all local decisions during the monitor
process, is introduced in this section. The record table will faithfully present the
behavior of each node in a network. In fact, the record table plays a key role in the
proposed fault detection scheme. The details of the proposed approach are described
subsequently.

3.1 Record Table

This investigation considers that sensor nodes sequentially transmit local decisions to
the fusion center. A sensor node can be reasonably assumed to be faulty when its
behavior is very different from the majority of nodes. Recording the history of local
decisions transmitted from all nodes is a method to represent the behavior of sensor
nodes, since the fusion center receives each node’s decision at every time step.
Therefore, a record table is designed to record the behavior of each node at each time
step. Let R

t
i denote the ratio of decisions ‘1’ to all decisions which have been

transmitted to the fusion center by the ith node at time step t as

448 J.-Y. Wu et al.

R
t
i =

1
t∑

j=1

t

 uj
i (2)

As shown in (2), each Rt
i is independent of all other nodes and realistically shows

the condition of local decisions transmitted by node si. For example, if a sensor node
has ever sent three decisions ‘1’ to the fusion center at the first five time steps, its rate
of decision ‘1’ is recorded as 3/5. For instance, a node has never transmitted decision
‘1’ to the fusion center at the first seven time steps and then its rate of decision ‘1’ is
recorded as 0/7. The value of Rt

i is just between 0 and 1 obviously.

3.2 Proposed Scheme

The fusion center can identify faulty nodes through comparing each node’s behavior.
The rates of decision ‘1’ of normal sensor nodes are similar since they have the same
density function. A sensor node has the highest probability to be faulty when its rate
is very different from the other nodes. For making a distinction between normal nodes
and faulty nodes, the proposed scheme divides the entire rate value into q equal
regions. Let pi denote the range of each rate region as (3).

range of pi = [
i−1
q ,

i
q), (3)

where i = 1, …, q. Exceptionally, the 1.0 rate value is included in the last rate region.
The Rt

i of each node can be corresponded to a rate region. At each time step, the
number of nodes in each rate region is initialized to 0 first. After updating the record
table, the Rt

i of each node is placed to the corresponding rate region. A rate region
owning the maximum number of nodes can be easily found. The fusion center then
identifies faulty nodes by using the majority voting technique. However, all normal
nodes do not always exactly locate in the same rate region. Several normal nodes
possibly locate in the neighbor regions. For this reason, the proposed scheme marks
every three continuous rate regions to form a rate group except the first group and the
last one. Let gi denote the range of each rate group as (4).

g1 = p1 + p2,

gi = pi−1 + pi + pi+1,

gq = pq−1 + pq,

(4)

where i = 2, …, q−1. Rate groups are presently used to replace rate regions for
lowering the probability of erroneous judgment. Similarly, the fusion center scans all
rate groups for discovering a group which possesses the maximum count of nodes at
each time step. A node is determined to be faulty by the fusion center if its rate does
not locate in the group having the maximum number of sensor nodes.

The counts of nodes in different groups are sometimes equal. If two groups, ga and
gb, have the same number of nodes, the fusion center will select ga when rate region pa
has a larger count of nodes; if pa and pb also own the identical number of nodes, the
fusion center will randomly select one rate group. Finally, the flow chart of the
proposed sensor fault detection scheme at time step t is illustrated in Fig. 2.

Fast and Simple On-Line Sensor Fault Detection Scheme for Wireless Sensor Networks 449

Fig. 2. Flow chart of the proposed scheme

4 Simulation Results

The error rate of fault detection in this study is described first in this section. The
performance of the proposed sensor fault detection scheme is then evaluated. The
sensor fault types and the actual number of faulty nodes are unknown in advance in
these simulations.

4.1 Error Rate of Fault Detection

This investigation decides the error rate of fault detection through comparing the
results detected by the proposed scheme with the real conditions. For instance, the
proposed approach identifies two faulty sensor nodes at time step t, but all nodes are
actually normal. The error rate at this time step is indicated as 2/N. For example, there
are three faulty nodes in fact, but the proposed scheme only detects two of them. The
error rate in this condition is then indicated as 1/N. Restated, the error rate of fault
detection is the rate of difference between the detected result and the reality.

4.2 Simulation Setup

The detection of known signals in Gaussian noise is considered. This study lets the
conditional densities at the sensor nodes be Gaussian with unit variance. Under H0
and H1, the mean at all the sensor nodes is assumed to be zero and m respectively.
Accordingly, the signal-to-noise ratio (SNR) can be defined as 20 log10m .
Additionally, each sensor node makes the local decision based on the bisection
threshold m/2. The number of deployed sensor nodes N is set to 10 in all simulated
conditions. In the following simulations, the number of rate partitions q is set to 10.
Each simulated scenario is iterated 10,000,000 times to obtain the simulated
performance. The true hypothesis and faulty sensor nodes are randomly chosen at the
beginning of every iteration step.

450 J.-Y. Wu et al.

4.3 Results and Analysis

In practice, a sensor network probably contains several types of faults at the same
time and the fault types are unknown in advance. For convenience, a scenario, which
simultaneously contains three kinds of fault sensor types including stuck-at-zero fault,
stuck-at-one fault, and random fault, is investigated. The fault type of individual
faulty node is randomly decided at the beginning of every iteration step.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

E
rr

or
 r

at
e

of
 fa

ul
t d

et
ec

tio
n

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
ro

ba
bi

lit
y

False positive
False negative

(b)

Fig. 3. (a) Error rate of fault detection and (b) probabilities of false positive and false negative
in a network with one faulty node at 0 dB SNR

Fast and Simple On-Line Sensor Fault Detection Scheme for Wireless Sensor Networks 451

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

E
rr

or
 r

at
e

of
 fa

ul
t d

et
ec

tio
n

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
ro

ba
bi

lit
y

False positive
False negative

(b)

Fig. 4. (a) Error rate of fault detection and (b) probabilities of false positive and false negative
in a network with two faulty nodes at 0 dB SNR

The performance of fault detection at 0 dB SNR in a situation with one faulty node
is shown in Fig. 3(a). The error rate of fault detection rises in the first three time steps.
The reason is no rate group can be formed in these three time steps because every
possible value of rate is distinct from each other. Therefore, the fusion center
identifies faulty nodes through comparing the number of nodes in each rate region.
After time step three, several rate groups are formed and the probability of erroneous
judgment is lowered.

452 J.-Y. Wu et al.

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

E
rr

or
 r

at
e

of
 fa

ul
t d

et
ec

tio
n

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
ro

ba
bi

lit
y

False positive
False negative

(b)

Fig. 5. (a) Error rate of fault detection and (b) probabilities of false positive and false negative
in a network with three faulty nodes at 0 dB SNR

Fig. 3(b) shows the probabilities of reported false positive (fault-free node was
indicated as faulty) and false negative (a node with fault was not detected) when one
faulty node occur in a network. In the first several time steps, the rates of sensor
nodes are unstable. Therefore, the corresponding rate regions of normal nodes are
mutable. Several normal nodes are probably judged to be faulty at the moment. When
time increases, the behavior of a normal node is gradually similar to other normal
ones. Most normal sensor nodes will locate in a rate group which possesses the

Fast and Simple On-Line Sensor Fault Detection Scheme for Wireless Sensor Networks 453

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

E
rr

or
 r

at
e

of
 fa

ul
t d

et
ec

tio
n

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
ro

ba
bi

lit
y

False positive
False negative

(b)

Fig. 6. (a) Error rate of fault detection and (b) probabilities of false positive and false negative
in a network with four faulty nodes at 0 dB SNR

maximum count of nodes. Therefore, the probability of false positive will gradually
lower. On the other hand, the probability of false negative rises. The reason is that the
behavior of random fault is not significantly different from that of a normal node in
fact. When the rates of all nodes are more and more stable, random faults might be
contained by the rate group having maximum number of nodes. Consequently, the
probability of false negative rises owing to the erroneous judgment.

454 J.-Y. Wu et al.

Figs. 4, 5 and 6 present the same evaluation information for the cases where two,
three and four deployed sensor nodes were faulty, respectively. The descending error
rate of fault detection shows the major part of faulty nodes can be identified by the
fusion center apparently. For this reason, the proposed approach has the capability to
assist the distributed detection system in making more dependable decisions by
isolating most sensor faults. The reason for the trends of false positive and false
negative in Fig. 6 is similar to the aforementioned statement. The rates of normal
nodes become more and more stable and similar when time increases. The probability
of false positive will gradually decline. Contrarily, the probability of failing in
detecting random faults increases when the number of faulty nodes is large.

5 Conclusions

Faulty sensor nodes in WSN always report unreliable information. For this reason, the
fusion center may make wrong decisions according to inaccurate local decisions. This
study investigates the problem of detecting faulty sensor nodes in distributed sensor
networks at every time step.

A sensor node whose behavior is very unusual may be faulty. In order to show the
behavior of each node in a network, this work designs a record table for recording the
history of all local decisions during the monitor process. Additionally, designing a
simple fault detection scheme for WSN is necessary owing to the computing
capability constraint. For this reason, this investigation applies the majority voting
technique to identify faulty members. The simulation results show that the proposed
scheme with a record table is effective in terms of fault detection. Most importantly,
the proposed sensor fault detection scheme does not need complex operations.
Therefore, the precious energy resource in WSN could be conserved. The number of
faulty nodes in this investigation is fixed during the whole monitor process. This work
will be continuously improved for dealing with the increasable number of faulty
nodes in a network as the further work.

References

1. Aldosari, S.A., Moura, J.M.F.: Detection in decentralized Sensor Networks. In: Proc. of
the 2004 IEEE Int’l. Conf. on Acoustics, Speech, and Signal Processing, vol. 2, pp. 277–
280 (2004)

2. Basseville, M.: Detecting Changes in Signals and Systems-A Survey. Automatica 24(3),
309–326 (1988)

3. Basseville, M., Nikiforov, I.: Detection of Abrupt Changes-Theory and Applications.
Prentice-Hall, Englewood Cliffs, NJ (1993)

4. Chamberland, J.F., Veeravalli, V.V.P.: Asymptotic Results for Decentralized Detection in
Power Constrained Wireless Sensor Networks. IEEE Journal of Selected Areas in
Communications 22(6), 1007–1015 (2004)

5. Chen, P.N., Papamarcou, A.: New Asymtotic Results in Parallel Distributed Detection.
IEEE Transactions on Information Theory 39(6), 1847–1863 (1993)

Fast and Simple On-Line Sensor Fault Detection Scheme for Wireless Sensor Networks 455

6. Cheng, Q., Varshney, P.K., Michels, J., Belcastro, C.M.: Distributed Fault Detection via
Particle Filtering and Decision Fusion. In: Proc. of the 8th Int’l. Conf. on Information
Fusion, vol. 2, pp. 1239–1246 (2005)

7. D’Costa, A., Sayeed, A.M.: Data versus Decision Fusion for Distributed Classification in
Sensor Networks. In: Proc. of the 2003 IEEE Int’l. Conf. on Acoustics, Speech, and Signal
Processing, vol. 1, pp. 585–590 (2003)

8. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A Witness-Based Approach for Data Fusion
Assurance in Wireless Sensor Networks. In: Proc. of GLOBECOM 2003, vol. 3, pp. 1435–
1439 (2003)

9. Koushanfar, F., Potkonjak, M., Sangiovanni-Vincentelli, A.: On-Line Fault Detection of
Sensor Measurement. In: Proc. of IEEE Sensors, vol. 2, pp. 974–979 (2003)

10. Pai, H.T., Han, Y.S.: Power-Efficient Direct-Voting Assurance for Data Fusion in Wireless
Sensor Networks. IEEE Trans. on Computers (accepted)

11. Varshney, P.K.: Distributed Detection and Data Fusion. Springer, New York (1997)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 456–465, 2007.
© IFIP International Federation for Information Processing 2007

An Activity-Centered Wearable Computing
Infrastructure for Intelligent Environment Applications

Dipak Surie and Thomas Pederson

Department of Computing Science, Umeå University,
S-901 87 Umeå, Sweden

{dipak,top}@cs.umu.se

Abstract. There are many research efforts that focus on converting everyday
environments into intelligent and computationally active environments that
support and enhance the abilities of its occupants in executing their activities.
Such environments must have the ability to recognize the activities performed
by its occupant, maintain a real-time model of the environment, address the
occupant’s privacy and personalization issues, and provide interaction
capabilities in a way the occupant would with other people. In this paper we
present an activity-centered wearable computing infrastructure for designing
intelligent environment applications based on the occupant’s usage and storage
of everyday objects in that environment. Four components namely object
manager, situative space monitor, activity recognizer and egocentric interaction
manager are introduced and described in detail. A prototypical intelligent home
environment capable of supporting 15 Activities of Daily Living with an
activity recognition precision of 92% is presented as a “proof of concept” in a
virtual reality (VR) simulated home environment.

1 Introduction

There are many research efforts that focus on converting everyday environments into
intelligent and computationally active environments that support and enhance the
abilities of its occupants in executing their activities [1], [2], [3]. Such environments
must have the ability to detect its current state, the current state of its occupant and the
activity performed by the occupant for providing computational support that are
typically different to the office activities currently supported by desktop computing.
Examples of applications that are developed for intelligent environments include
providing support for activities of daily living at homes [4], for surgical activities in
operation theatres, for mechanical activities in car workshops, etc. A major problem
in building such applications has been the lack of uniform support for modelling and
detecting: 1) the occupant’s activities and actions; 2) the occupant’s interactive status
in terms of situative and multi-modal access to input and output devices; and 3) the
occupant’s environmental status in terms of available resources and their states. Many
efforts in developing intelligent environments are heavily influenced by the unde-
rlying technology resulting in a lack of generality in developing such environments.
We believe that starting out from a perspective centred around how occupants literally

 An Activity-Centered Wearable Computing Infrastructure 457

perceive the environment, based on the occupant’s usage and storage of everyday
objects in that environment and based on the weight that current cognitive science
give to activity-driving factors could offer a valuable complement. In particular, it
could offer a conceptual design platform robust enough to survive and handle
generations of changes in the field of sensor technology.

Intelligent environments are public and private spaces that allow computers to
participate in everyday activities that have previously never involved computation and
allow occupants to interact with computers in a way they would with other people: via
gesture, voice, context, etc. [5]. We follow similar design goals in developing an
activity-centered wearable computing infrastructure for an intelligent home
environment application capable of providing support for patients suffering from
mild-dementia in performing their Activities of Daily Living (ADL) [4]. Four
components namely object manager, situative space monitor, activity recognizer and
egocentric interaction manager are introduced and described in detail.

2 Challenges Involved in Designing Intelligent Environments

Designing intelligent environments involves many challenges of which we address
the following four fundamental challenges.

2.1 Activity Recognition

Intelligent environments that provide support for the occupant’s activities should
understand the concept of an activity and provide provisions for handling it [6].
Activity recognition in everyday environments is difficult due to the number, variety
and variations in activities performed by the occupants1. For many intelligent
environment applications, knowing the inhabitant’s activity information alone is not
sufficient [4]. This introduces a necessity to recognize activities and actions related to
those activities with fine granularity; to recognize those activities during the initial
phase of an activity before the activity reaches an irreversible state; and to determine
the end of an activity [7], [8]. According to Activity Theory [9], human activities have
an objective and are mediated through tools. We consider the objects present in the
occupant’s environment as tools for accomplishing his/her activities and recognize the
activities based on the occupant’s usage of those objects. For more information about
the two activity recognition systems that we have built based on the occupant’s usage
of everyday objects, we refer to [7], [8].

2.2 Situative and Multi-modal Interaction Design

Intelligent environments that provide support to the occupant’s activities should
consider the occupant’s current interactive status before requesting for explicit input
or for providing explicit output. Two issues that need to be addressed are [10]: 1) to
select the appropriate moment to grab the occupant’s attention and interact with
him/her since the occupant does not explicitly dedicate all his/her attention, and 2) to

1 We are interested in activities performed by an individual instead of group activities

performed by many occupants in an intelligent environment.

458 D. Surie and T. Pederson

select the appropriate interactive device to interact with the occupant considering the
number and variety of interactive devices present in such environments. The first
issue is addressed by considering the action the occupant is currently performing
within an activity and based on the status of an activity (initiated, interrupted or
completed). For more information about how activities are modelled, we refer to [8].
The second issue is addressed by considering interactive devices around the
occupant’s body and based on the occupant’s perceptual capabilities (explicit output
devices within the observable space and explicit input devices within the manipulable
space). For more information about observable space and manipulable space which is
part of the egocentric interaction model, we refer to [10].

2.3 Maintaining a Model of the Environment

Intelligent environments should maintain a real-time model of its environment in a
generalized manner required by all its applications. However there is no common way
to acquire and maintain a model of the environment. This is a problem addressed
within the research area of context-aware computing [11], [12], and [13]. We do not
maintain a model of the environment based on absolute location; instead we model
the environment in a symbolic manner in terms of the objects that are present in the
environment and their relationship to other objects (containment property discussed in
[14]) [15]. An important issue that needs to be addressed is to keep track of the
objects that enter or leave the intelligent environment in an ad-hoc manner. We
classify objects present in an intelligent environment into four types: 1) simple objects
- that do not change their internal state like knife, fork, coffee cup, etc; 2) complex
objects - that do change their internal state like microwave oven, stove, oven, tap, etc;
3) container objects - that contain other objects like fridge, freezer, cupboard, dining
table, etc; and 4) interactive devices - that are used for obtaining explicit input and for
providing explicit output like wall mounted display, wrist-worn display, audio
headset, speakers, etc. By considering a generalized approach to maintaining a model
of the environment, the intelligent environment applications can directly make use of
the model without knowing the details of how such information is sensed.

2.4 Privacy and Personalization

Intelligent environments should be designed to control the flow of information about
its occupants and to personalize the environment based on the occupant’s presence,
behavior and intentions [16], [17]. However, maintaining a complex model of each
person within an intelligent environment is a difficult task to handle, since such
models get outdated with time and needs to be updated everytime the occupant enters
an intelligent environment. Considering the issues of privacy and personalization, we
propose a wearable computing infrastructure for developing and executing intelligent
environment applications [10]. However, we are aware of the limitations of a purely
wearable computing infrastructure in managing environmental resources among
several occupants and in controlling the localized resources in the environment [18].
We intend to address such issues in the future.

 An Activity-Centered Wearable Computing Infrastructure 459

3 An Activity-Centered Wearable Computing Infrastructure

Based on the four fundamental challenges described earlier, we present an activity-
centered wearable computing infrastructure for developing and executing intelligent
environment applications. Refer to Figure 1.

Intelligent environment applications

Professionally
designed

End-user
designed

Activity recognizer Egocentric
interaction manager

Object manager Situative space
monitor

Wearable sensors
Sensors and actuators
embedded on everyday

objects

Activity-centered wearable computing Infrastructure
Explicit input

devices

Explicit output
devices

Fig. 1. An activity-centered wearable computing infrastructure for intelligent environment
applications, adapted from [10]

Sensors embedded on everyday objects2. All everyday objects that are present in the
occupant’s environment are embedded with passive RFID tags [21]. This includes
simple objects, complex objects, container objects and interactive devices. Simple,
but multiple state change sensors like on-off switches, temperature sensors, rotation
sensors, pressure sensors, etc. are embedded on complex everyday objects to sense
their internal states and state changes. RFID readers are embedded on container
objects to sense the objects present within the containers and when an object enters or
leaves a container [8]. The instrumented sensors communicate with the object
manager using ZigBee communication protocol [22].

Wearable sensors. A wearable RFID reader is worn on the inhabitant’s chest with
three antennas. Two antennas are worn on either wrist to sense the objects
grabbed/released events while the third antenna is worn on the chest to sense the objects
within the inhabitant’s manipulable space [21]. Objects present within the inhabitant’s
observable space is currently not considered for sensing using real world sensors.
However, observable space information channel is used in our VR simulation [7].

Object manager maintains a real-time model of the environment by capturing,
storing and managing information about the objects present in the occupant’s
environment. This component is responsible for the activation or deactivation of the
objects that enter or leave the intelligent environment respectively. It stores the
activated objects’ identity, type, and possible internal states. An object’s current

2 At present, actuators are not embedded on everyday objects and we have left it for future

work.

460 D. Surie and T. Pederson

internal state and current external state in terms of its container object can be queried.
For container objects, it stores the identities of the set of objects the container
contains. It also stores the event that is generated when an object enters or leaves a
container object [8].

 <Activate, {objectID, Type, “simple”, “complex”, “container”, “interactive”,
 set_of_internal_states}>

 <Deactivate, objectID>
 <objectID, {current_internal_state}>
 <objectID, {containerID}>3
 <containerID, {set_of_objectIDs}>
 <objectID, containerID, {has_entered, has_left}>

Situative space monitor maintains a real-time model of the environment by
capturing and storing information about the objects present in the environment from
the occupant’s egocentric perspective based on what the occupant can see and not see,
touch and not touch at any given moment in time [7], [10]. This component stores the
set of objects in the occupant’s hands, the set of objects within the occupant’s
manipulable space and the set of objects within the occupant’s observable space. It
can be queried to check if an object is in the occupant’s hands or within the
occupant’s manipulable space or within the occupant’s observable space. It also stores
the event that is generated when an object is grabbed or released by the occupant [7].

 <OM, {set_of_objects}>
 <MS, {set_of_objects}>
 <OS, {set_of_objects}>
 <objectID, OM, {is_OM}>
 <objectID, MS, {within_MS}>
 <objectID, OS, {within_OS}>
 <objectID, {is_grabbed, is_released}>

Egocentric interaction manager is responsible for the situative and multi-modal
selection of input and output devices considering the occupant’s situation, current
activity, personal preferences, and based on the application. It obtains explicit input
for the applications and presents explicit output from the applications to the occupant
by communicating with the interactive devices that are either worn (using Bluetooth
communication) or present in the occupant’s environment (using WLAN) [10]. This
component is responsible for the activation or deactivation of the devices that are
available or not available for interaction respectively. It stores the activated devices’
identity, type, access level and modality. It can be queried to obtain the set of
available input devices, the set of available input devices within the occupant’s
manipulable space, the set of available output devices, and the set of available output
devices within the occupant’s observable space.

 <Activate, {deviceID, Type, “input”, “output”, AccessLevel, “private”, “public”,
Modality, “voice”, “visual”, “gesture”, “tactile”}>4

 <Deactivate, deviceID>

3 containerID is valid only for container objects and is the same as its objectID.
4 deviceID is valid only for interactive devices and is the same as its objectID.

 An Activity-Centered Wearable Computing Infrastructure 461

 <InputDevices, {set_of_available_input_devices}>
 <InputDevices, MS, {set_of_input_devices_within_MS}>
 <OutputDevices, {set_of_available_output_devices}>
 <OutputDevices, OS, {set_of_output_devices_within_OS}>

Activity recognizer is responsible for modeling, recognizing and storing the
occupant’s activities and actions performed within the intelligent environment. For
more information about activity recognition based on object manipulation,
manipulable space and observable space information channels, we refer to [7]. For
more information about activity recognition based on intra manipulation and extra
manipulation information channels, we refer to [8]. This component is responsible for
the activation or deactivation of the activities that are included or excluded for
recognition respectively. It can be queried for current activity (recognition probability
included), current action (recognition probability included), an activity’s current
status and also an action’s current status.

 <Activate, {activityID, set_of_actionIDs, set_of_mandatory_events}>
 <Deactivate, activityID>
 <CurrentActivity, {activityID, activityPR, set_of_actionIDs,

set_of_mandatory_events, Status, “initiated”, “interrupted”, “completed”}>
 <CurrentAction, {actionID, actionPR, activityID}>
 <activityID, {activityPR, set_of_actionIDs, set_of_mandatory_events, Status,

“initiated”, “interrupted”, “completed”}>
 <actionID, {actionPR, activityID}>

The object manager, situative space monitor, activity recognizer, egocentric

interaction manager and the intelligent environment applications write data into a
common black board and exchanges information among themselves using
Information and Content Exchange (ICE) Protocol.

4 Experimental Set-Up and Evaluation

VR was used as a test-bed [7] in order to speed up the design process of our activity-
centered wearable computing infrastructure and to allow us to compensate for the
limitations with the currently available sensing technologies (especially for sensing
the objects present within the container objects and for sensing the occupant’s
observable space). A VR model, developed using the Colosseum3D real-time physics
platform [19] is used to simulate a physical home environment with wearable sensors
and sensors embedded on selected everyday objects (discussed in section 3). Fig. 2
shows a snapshot of our VR simulated intelligent home environment. We have
experimented with 78 different objects (128 objects in total) which include 56
different simple objects, 7 different complex objects, 11 different container objects
and 4 different interactive devices (wall-mounted display, wrist-worn display, audio
headset, and environmental speakers). We represent objects by their object identity
(objectID) and not by their individual identity. For instance, both fork_1 and fork_2
are represented as fork. Hence all forks have the same objectID.

462 D. Surie and T. Pederson

The experiments were performed by 5 subjects (none of them are affiliated to the
system development team)5 in a virtual reality simulated intelligent home
environment6. 15 activities of daily living were included based on the AMPS
framework [20]. The activities were performed 10 times as part of various scenarios.
A scenario comprises of a few related activities performed in some sequence. We
have used 7 scenarios with some activities common for several scenarios like for
instance, the activity of preparing coffee which is common to both the lunch scenario
and the coffee-break scenario. All the subjects were allowed to perform the activities
in their own way (often in many different ways) within the intelligent home. We had
conducted ethnographical studies in 5 households to compare how ADLs are
performed in the “real-world” and in the “VR-world”. For more information, we refer
to [23].

Situative space monitor captures object
information within the occupant’s OS (observable
space), MS (manipulable space) and OM (object

manipulation)

1

1

2
2

2
3

3

3

4
OM OM

OS

MS

Object manager captures object information
available in the occupant’s environment: 1) simple
object, 2) complex object, 3) container object, and

4) interactive device

Fig. 2. VR simulated intelligent home environment

ADL support for mild-dementia patients. The proposed activity-centered wearable
computing infrastructure was evaluated by building a professionally designed ADL
support application. To learn about our user group, we have conducted over 10
brainstorming sessions and 4 interview sessions with 6 occupational therapists (from
HjälpmedelsCentrum Norr and Geriatric Medicine Department at the University
Hospital of Northern Norrland in Sweden).
 The data generated based on the activities performed by the 5 subjects were used
to train 5 different wearable computing systems, each one personalized for the
particular subject. By applying leave-one-out cross-validation (LOOCV) scheme for
each subject without mixing the data, we obtain a recognition precision of 92% at the

5 Dementia patients were not used as subjects in the VR environment. Based on our initial

results, we are currently working on a hardware prototype which will be evaluated by the
mild-dementia patients.

6 The subjects were initially taught how to perform activities in a virtual reality environment
and then given a time period to practice in this environment. Only when the subjects were
comfortable with the environment, they were allowed to perform the activities.

 An Activity-Centered Wearable Computing Infrastructure 463

activity-level (recall is 99%) and 81% at the action-level (recall is 94%) among 15
ADLs. For more information, refer to [8]. However by mixing the data of all the 5
subjects and applying the LOOCV scheme, we obtain a low recognition precision of
59% at the activity-level (recall is 92%) among the 15 ADLs. One important
requirement for our application is that the infrastructure should recognize activities
and action with high precision and recall values. Hence by considering a personalized
approach for modelling and recognizing the occupant’s activities, we were able to
obtain high precision and recall values.

The support application operates in the occupant’s background, constantly keeping
track of the activities performed by the occupant. For all the activities initiated by the
occupant, the application checks if the occupant has completed the following: 1)
Mandatory Events – examples include forgetting to turn off the stove after preparing
vegetables, forgetting to place the knife and the fork on the dining table during the
activity of preparing the table for lunch, etc., 2) Mandatory Actions – examples include
forgetting to clean-up the dining table after having lunch, etc. If the occupant forgets to
complete the mandatory events and actions as part of an activity (determined using a
sliding window of 2 actions “before” and 2 actions “after” from the system detected
current activity state), the application intervenes and attempts to establish communication
with the occupant through the egocentric interaction manager.

The egocentric interaction manager was qualitatively evaluated by the 5 subjects.
The egocentric interaction manager attempted to grab the occupant’s attention by
playing a beep sound on his/her Bluetooth headset. Incase the Bluetooth headset is
currently not available the system plays the sound in the environmental speakers (if the
AccessLevel is “public”). Since mild-dementia patients comprehend better when the
events and actions are represented by pictures with less information, we have used
pictures with some bright colours that inform about the missing events and actions. The
egocentric interaction manager attempts to present this information on a wall-mounted
screen present in the occupant’s kitchen if the occupant is present in the kitchen
environment and if the screen is within or near to his/her observable space. Otherwise
this information is presented on the occupant’s wrist-worn display. We have also
experimented with Voice User Interface (VUI) designed using Dragon Naturally
Speaking voice recognition software for obtaining explicit input using voice. Mobile
phone keys were used as a complementary option to VUI for obtaining explicit input
from the occupant. Even though the egocentric interaction manager at present is based
on simple rules, the subjects were positive on the idea of presenting information on
different devices based on the occupant’s situation. 2 subjects were not completely
positive with the idea of having to always wear the Bluetooth headset and the wrist-
worn display for explicitly interacting with the system. In the future, we intend to import
more intelligence into the egocentric interaction manager and also experiment with
other multimodal interaction approaches that are based on gesture and tactility.

5 Conclusions

In this paper we have presented an activity-centered wearable computing infrast-
ructure for developing intelligent environment applications. Four fundamental
challenges were outlined for designing intelligent environments and the components

464 D. Surie and T. Pederson

developed to address such challenges were described and evaluated in a VR simulated
home environment. By considering a personalized approach, the activity recognizer
has shown as recognition precision of 92% at the activity-level and 81% at the action-
level among 15 ADLs. The egocentric interaction manager has shown initial promise
with the idea of interacting with the occupant based on his/her situation within an
intelligent environment. An ADL support application capable of providing support for
missing mandatory events and actions within activities was developed based on the
infrastructure proposed for intelligent environments.

Acknowledgements

We would like to thank Anders Backman, Björn Sondell, Daniel Sjölie, Fabien
Lagriffoul, Gösta Bucht, Kenneth Bodin, Lars-Erik Janlert, and Marcus Maxhall from
Umeå University, Sweden. This work is partially funded by the EC Target 1 structural
fund program for Northern Norrland, Sweden.

References

1. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: Technologies for
Intelligent Environments. In: Proceedings of the Intl. Conf. on Handheld and Ubiquitous
Computing, pp. 12–27 (2000)

2. Kidd, C.D., Orr, R.J., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B., Mynatt, E.,
Starner, T.E., Newstetter, W.: The Aware Home: A Living Laboratory for Ubiquitous
Computing Research. In: Streitz, N.A., Hartkopf, V. (eds.) CoBuild 1999. LNCS,
vol. 1670, pp. 191–198. Springer, Heidelberg (1999)

3. Mozer, M.C.: The Neural Network House: An Environment that Adapts to its Inhabitants.
In: Coen, M. (ed.) Proceedings of the American Association for Artificial Intelligence
Spring Symposium on Intelligent Environments, Menlo Park, CA, pp. 110–114. AAAI
Press, Stanford (1998)

4. Backman, A., Bodin, K., Bucht, G., Janlert, L.-E., Maxhall, M., Pederson, T., Sjölie, D.,
Sondell, B., Surie, D.: easyADL – Wearable Support System for Independent Life despite
Dementia. In: Workshop on Designing Technology for People with Cognitive
Impairments, CHI2006, pp. 22–23 (April 2006)

5. Coen, M.: Design Principles for Intelligent Environments. In: Proceedings of the 15th
national/10th conference on Artificial intelligence/Innovative applications of artificial
intelligence (March 23-25, 1998) ISBN:0-262-51098-7

6. Christensen, H.B., Bardram, J.: Supporting Human Activities - Exploring Activity-
Centered Computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS,
vol. 2498, pp. 107–116. Springer, Heidelberg (2002)

7. Surie, D., Pederson, T., Lagriffoul, F., Janlert, L.-E., Sjölie, D.: Activity Recognition using
an Egocentric Perspective of Everyday Objects. In: UIC 2007. Proceedings of IFIP 2007
International Conference on Ubiquitous Intelligence and Computing. LNCS, vol. 4611, pp.
246–257. Springer, Heidelberg (2007)

8. Surie, D., Lagriffoul, F., Pederson, T., Sjölie, D.: Activity Recognition based on Intra and
Extra Manipulation of Everyday Objects. In: UCS2007. Proceedings of the 4th
International Symposium on Ubiquitous Computing Systems. LNCS, Springer, Heidelberg
(to appear, 2007)

 An Activity-Centered Wearable Computing Infrastructure 465

9. Nardi, B. (ed.): Context and Consciousness: Activity Theory and Human-Computer
Interaction. MIT Press, Cambridge (1995)

10. Pederson, T., Surie, D.: Towards an Activity-Aware Wearable Computing Platform based
on an Egocentric Interaction Model. In: UCS 2007. Proceedings of the 4th International
Symposium on Ubiquitous Computing Systems. LNCS, Springer, Heidelberg (to appear,
2007)

11. Dey, A.: Providing Architectural Support for Building Context-Aware Applications, PhD
thesis, College of Computing, Georgia Institute of Technology (December 2000)

12. Dey, A.: Understanding and Using Context. In: Personal and Ubiquitous Computing,
vol. 5(1), pp. 4–7. Springer, Heidelberg (2001) ISSN:1617-4909

13. Schmidt, A.: Ubiquitous Computing – Computing in Context, Ph.D. thesis in computer
science, Lancaster University (November 2002)

14. Pederson, T.: From Conceptual Links to Causal Relations — Physical-Virtual Artefacts in
Mixed-Reality Space. PhD thesis, Dept. of Computing Science, Umeå university, report
UMINF-03.14, ISBN 91-7305-556-5 (2003)

15. Hightower, J., Borriello, G.: A Survey and Taxonomy of Location Sensing Systems for
Ubiquitous Computing. In: UW CSE 01-08-03, University of Washington, Seattle, WA
(August 2001)

16. Langheinrich, M.: Privacy Invasions in Ubiquitous Computing. In: Borriello, G.,
Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, Springer, Heidelberg (2002)

17. Chatfield, C., Carmichael, D., Hexel, R., Kay, J., Kummerfeld, B.: Personalisation in
Intelligent Environments: Managing the Information Flow. In: Proceedings of the 19th
conference of the computer-human interaction special interest group (CHISIG) of
Australia on Computer-human interaction: citizens online: considerations for today and the
future. ACM International Conference Proceeding Series, vol. 122, pp. 1–10 (2005)

18. Rhodes, B., Minar, N., Weaver, J.: Wearable Computing Meets Ubiquitous Computing.
The Proceedings of The Third International Symposium on Wearable Computers (ISWC
1999), San Francisco, CA, 141-149 (18-19 October,1999)

19. Backman, A.: Colosseum3D – Authoring Framework for Virtual Environments. In:
Proceedings of EUROGRAPHICS Workshop IPT & EGVE Workshop, pp. 225–226
(2005)

20. AMPS. as on 4nd (September 2007), http://www.ampsintl.com/
21. Finkenzeller, K.: RFID Handbook, 2nd edn. John Wiley and Sons, Chichester (2003)
22. Gutierrez, J.A., Callaway, E.H., Barrett, R.: IEEE: 802.15.4 Low-Rate Wireless Personal

Area Networks: Enabling Wireless Sensor Networks, IEEE ISBN-10: 0738135577, ISBN-
13: 978-0738135571 (November 30, 2003)

23. Bhatt, R.: Comparing the Performance of ADLs in Virtual and Real Life Environments.
Dept. of Computing Science, Umeå University, report UMINF-06.40 (2006)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 466–478, 2007.
© IFIP International Federation for Information Processing 2007

Finding and Extracting Data Records from Web Pages*

Manuel Álvarez, Alberto Pan**, Juan Raposo, Fernando Bellas, and Fidel Cacheda

Department of Information and Communications Technologies
University of A Coruña, Campus de Elviña s/n. 15071. A Coruña, Spain

{mad,apan,jrs,fbellas,fidel}@udc.es

Abstract. Many HTML pages are generated by software programs by querying
some underlying databases and then filling in a template with the data. In these
situations the metainformation about the data structure is lost, so automated
software programs cannot process these data in such powerful manners as
information from databases. We propose a set of novel techniques for detecting
structured records in a web page and extracting the data values that constitute
them. Our method needs only an input page. It starts by identifying the data
region of interest in the page. Then it is partitioned into records by using a
clustering method that groups similar subtrees in the DOM tree of the page.
Finally, the attributes of the data records are extracted by using a method based
on multiple string alignment. We have tested our techniques with a high number
of real web sources, obtaining high precision and recall values.

1 Introduction

In today’s Web, there are many sites providing access to structured data contained in
an underlying database. Typically, these sources, known as “semi-structured” web
sources, provide some kind of HTML form that allows issuing queries against the
database, and they return the query results embedded in HTML pages conforming to a
certain fixed template. For instance, Fig. 1 shows a page containing a list of data
records, representing the information about books in an Internet shop.

Allowing software programs to access these structured data is useful for a variety
of purposes. For instance, it allows data integration applications to access web
information in a manner similar to a database. It also allows information gathering
applications to store the retrieved information maintaining its structure and, therefore,
allowing more sophisticated processing.

Several approaches have been reported in the literature for building and
maintaining “wrappers” for semi-structured web sources ([2][9][11][12][13]; [7] pro-
vides a brief survey). Although wrappers have been successfully used for many web
data extraction and automation tasks, this approach has the inherent limitation that the
target data sources must be known in advance. This is not possible in all cases.

* This research was partially supported by the Spanish Ministry of Education and Science

under project TSI2005-07730.
** Alberto Pan’s work was partially supported by the “Ramón y Cajal” programme of the

Spanish Ministry of Education and Science.

 Finding and Extracting Data Records from Web Pages 467

Consider, for instance, the case of “focused crawling” applications [3], which
automatically crawl the web looking for topic-specific information.

Several automatic methods for web data extraction have been also proposed in the
literature [1][4][5][14], but they present several limitations. First, [1][5] require
multiple pages generated using the same template as input. This can be inconvenient
because a sufficient number of pages need to be collected. Second, the proposed
methods make some assumptions about the pages containing structured data which do
not always hold. For instance, [14] assumes the visual space between two data records
in a page is always greater than any gap inside a data record (we will provide more
detail about these issues in the related work section).

In this paper, we present a new method to automatically detecting a list of
structured records in a web page and extract the data values that constitute them. Our
method requires only one page containing a list of data records as input. In addition, it
can deal with pages that do not verify the assumptions required by other previous
approaches. We have also validated our method in a high number of real websites,
obtaining very good effectiveness.

The rest of the paper is organized as follows. Section 2 describes some basic
observations and properties our approach relies on. Sections 3-5 describe the
proposed techniques and constitute the core of the paper. Section 3 describes the
method to detect the data region in the page containing the target list of records.
Section 4 explains how we segment the data region into data records. Section 5
describes how we extract the values of each individual attribute from the data records.
Section 6 describes our experiments with real web pages. Section 7 discusses related
work.

Fig. 1. Example HTML page containing a list of data records

468 M. Álvarez et al.

2 Basic Observations and Properties

We are interested in detecting and extracting lists of structured data records embedded
in HTML pages. We assume the pages containing such lists are generated according to
the page creation model described in [1]. This model formally captures the basic
observations that the data records in a list are shown contiguously in the page and are
formatted in a consistent manner: that is, the occurrences of each attribute in several
records are formatted in the same way and they always occur in the same relative
position with respect to the remaining attributes. For instance, Fig. 2 shows an excerpt
of the HTML code of the page in Fig. 1. As it can be seen, it verifies the aforementioned
observations.

HTML pages can also be represented as DOM trees as shown in Fig. 3. The
representation as a DOM tree of the pages verifying the above observations has the
following properties:

− Property 1: Each record in the DOM tree is disposed in a set of consecutive sibling
subtrees. Additionally, although it cannot be derived strictly from the above
observations, it is heuristically found that a data record comprises a certain number
of complete subtrees. For instance, in Fig. 3 the first two subtrees form the first
record, and the following three subtrees form the second record.

− Property 2: The occurrences of each attribute in several records have the same path
from the root in the DOM tree. For instance, in Fig. 3 it can be seen how all the
instances of the attribute title have the same path in the DOM tree, and the same
applies to the remaining attributes.

3 Finding the Dominant List of Records in a Page

In this section, we describe how we locate the data region of the page containing the
main list of records in the page.

From the property 1 of the previous section, we know finding the data region is
equivalent to finding the common parent node of the sibling subtrees forming the data
records. The subtree having as root that node will be the target data region. For
instance, in our example of Fig. 3 the parent node we should discover is n1.

<html><body>
<div> ... </div>
<div> ... </div>
<div>
<table> ... </table>
<table>
<tr><td><table>
<tr><td>

<a>Head First Java. 2nd Edition

by Kathy Sierra and Bert Bates

Paperback - Feb 9. 2005</td>

<td></td></tr></table></td></tr>
<tr><td>Buy new: 29.67€

Price used: 20.00€</td></tr>

<tr><td><table>
<tr><td>

<a>Java Persistence with Hibernate

by Christian Bauer and Gavin King

Paperback - Nov 24. 2006</td>

<td></td></tr></table></td></tr>
<tr><td>Buy new: 37.79€</td></tr>
<tr><td>Other editions: e-Books & Docs

</td></tr>
...

</table>
...

</div>
</body></html>

Fig. 2. HTML source code for page in Fig. 1

 Finding and Extracting Data Records from Web Pages 469

Our method for finding the region containing the dominant list of records in a page
p consists of the following steps:

1. Let us consider N, the set composed by all the nodes in the DOM tree of p. To

each node ni Є N, we will assign a score called si. Initially, 0..1 =∀ = iNi s .

2. Compute T, the set of all the text nodes in N.
3. Divide T into subsets p1, p2,…,pm, in a way such that all the text nodes with the

same path from the root in the DOM tree are contained in the same pi. To compute
the paths from the root, we ignore tag attributes.

4. For each pair of text nodes belonging to the same group, compute nj as their
deepest common ancestor in the DOM tree, and add 1 to sj (the score of nj).

5. Let nmax be the node having a higher score. Choose the DOM subtree having nmax
as root of the desired data region.

Now, we provide the justification for this algorithm. First, by definition, the target
data region contains a list of records and each data record is composed of a series of
attributes. By property 2, we know all the occurrences of the same attribute have the
same path from the root. Therefore, the subtree containing the dominant list in the
page will typically contain more texts with the same path from the root than other
regions. In addition, given two text nodes with the same path in the DOM tree, the
following situations may occur:

1. By property 1, if the text nodes are occurrences of texts in different records (e.g.
two values of the same attribute in different records), then their deepest common
ancestor in the DOM tree will be the root node of the data region containing all the
records. Therefore, when considering that pair in step 4, the score of the correct
node is increased. For instance, in Fig. 3 the deepest common ancestor of d1 and d3
is n1, the root of the subtree containing the whole data region.

2. If the text nodes are occurrences from different attributes in the same record, then
in some cases, their deepest common ancestor could be a deeper node than the one
we are searching for and the score of an incorrect node would be increased. For
instance, in the Fig. 3 the deepest common ancestor of d1 and d2 is n2.

By property 2, we can infer that there will usually be more occurrences of the case 1
and, therefore, the algorithm will output the right node. Now, we explain the reason
for this. Let us consider the pair of text nodes (t11,t12) corresponding with the
occurrences of two attributes in a record. (t11, t12) is a pair in the case 2. But, by
property 2, for each record ri in which both attributes appear, we will have pairs (t11,
ti1), (t11, ti2), (t12, ti1), (t12, ti2), which are in case 1. Therefore, in the absence of
optional fields, it can be easily proved that there will be more pairs in the case 1.
When optional fields exist, it is still very probable.

This method tends to find the list in the page with the largest number of records
and the largest number of attributes in each record. When the pages we want to
extract data from have been obtained by executing a query on a web form, we are
typically interested in extracting the data records that constitute the answer to the
query, even if it is not the larger list (this may happen if the query has few results). If
the executed query is known, this information can be used to refine the above method.
The idea is very simple: in the step 2 of the algorithm, instead of using all the text

470 M. Álvarez et al.

TABLE

TR TR TR TR TR TR TR

TD

TABLE

TR

TD

IMG

TD

SPAN BR SPAN BR SPAN

TD

A

SPAN SPAN

n1

r0

r2 r3

TR TR

TD

TABLE

TR

TD

IMG

TD

SPAN BR SPAN BR SPAN

TD

A

SPAN

TR

TD

SPAN

r1

DIV

BODY

HTML

…

……

… …

TITLE: Head First Java. 2nd Edition
AUTHOR: Kathy Sierra and Bert Bates
FORMAT: Paperback
PUBDATE: Feb 9. 2005
PRICE: 29.67
PRICEUSED: 20.00

TITLE: Java Persistence with Hibernate
AUTHOR: Christian Bauer and Gavin King
FORMAT: Paperback
PUBDATE: Nov 24. 2006
PRICE: 37.79
OTHEREDITIONS: e-Books & Docs

… … … … …

Head First Java.
2nd Edition

Kathy Sierra
and Bert Bates

Paperback

Feb 9. 2005

29.67€€ 20.00€€ 37.79€€ e-Books
& Docs

Java Persistence
with Hibernate

Christian Bauer
and Gavin King

Paperback

Nov 24. 2006

t0 t1

#text

#text #text #text #text

t2 t3 t4 t5 t6 t7 t8 t9

d1

d2

n2

d3

**

**

**

**

#text

Fig. 3. DOM tree for HTML page in Fig. 1

nodes in the DOM tree, we will use only those text nodes containing text values used
in the query with operators whose semantic be equals or contains. For instance, let us
assume the page in Fig. 3 was obtained by issuing a query we could write as (title
contains ‘java’) AND (format equals ‘paperback’). Then, the only text nodes
considered in step 2 would be the ones marked with an ‘*’ in Fig. 3.

4 Dividing the List into Records

Now we proceed to describe our techniques for segmenting the data region in
fragments, each one containing at most one data record.

Our method can be divided into the following steps:

− Generate a set of candidate record lists. Each candidate record list will propose a
particular division of the data region into records.

− Choose the best candidate record list. The method we use is based on computing an
auto-similarity measure between the records in the candidate record lists. We
choose the record division lending to records with the higher similarity.

Sections 4.2 and 4.3 describe in detail each one of the two steps. Both tasks need a
way to estimate the similarity between two sequences of consecutive sibling subtrees
in the DOM tree of a page. The method we use for this is described in section 4.1.

4.1 Edit-Distance Similarity Measure

To compute “similarity” measures we use techniques based in string edit-distance
algorithms. More precisely, to compute the edit-distance similarity between two
sequences of consecutive sibling subtrees named ri and rj in the DOM tree of a page,
we perform the following steps:

 Finding and Extracting Data Records from Web Pages 471

TR TR

TD

TABLE

TR

TD

IMG

TD

SPAN BR SPAN BR SPAN

TD

A

SPAN SPAN

#text

#text

#text

#text

#text

t1 TR0

TD0

TEXT0 SPAN0

TEXT1

TEXT0 SPAN0

TEXT1

TR0

TD0

TABLE0

TR1

TD1

IMG0

TD1

#text

#text

#text #text

SPAN1

A1

TEXT4

BR0 TEXT2 SPAN1

TEXT3

BR0 SPAN1

TEXT3

TEXT2

t0

s0 t0: TR0 TD0 TABLE0 TR1 TD1 SPAN1 A1 TEXT4 BR0 TEXT2 SPAN1 TEXT3 BR0 SPAN1 TEXT3 TEXT2 TD1 IMG0
t1: TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1

s1 t2: TR0 TD0 TABLE0 TR1 TD1 SPAN1 A1 TEXT4 BR0 TEXT2 SPAN1 TEXT3 BR0 SPAN1 TEXT3 TEXT2 TD1 IMG0
t3: TR0 TD0 TEXT0 SPAN0 TEXT1
t4: TR0 TD0 TEXT0 SPAN0 TEXT1

r0

len(s0) = 26 len(s1) = 28 ed(r0, r1) = ed(s0, s1) = 2

Fig. 4. Strings obtained for the records r0 and r1 in Fig. 3

1. We represent ri and rj as strings (we will term them si and sj). It is done as follows:
a. We substitute every text node by a special tag called text.
b. We traverse each subtree in depth first order and, for each node, we

generate a character in the string. A different character will be assigned to
each tag having a different path from the root in the DOM tree. Fig. 4
shows the strings s0 and s1 obtained for the records r0 and r1 in Fig. 3.

2. We compute the edit-distance similarity between ri and rj , denoted as es (ri, rj), as
the string edit distance between si and sj (ed(ri,rj)) calculated using a variant of the
Levenshtein algorithm [8], which does not allow substitution operations (only
insertions and deletions are permitted). To obtain a similarity score between 0 and
1, we normalize the result using the equation (1). In our example from Fig. 4, the
similarity between r0 and r1 is 1- (2 / (26+28)) = 0.96.

 () () () ()jijiji slenslenssedrres +−= /,1, (1)

4.2 Generating the Candidate Record Lists

In this section, we describe how we generate a set of candidate record lists inside the
data region previously chosen. Each candidate record list will propose a particular
division of the data region into records.

By property 1, every record is composed of one or several consecutive sibling sub-
trees, which are direct descendants of the root node of the data region. We could
leverage on this property to generate a candidate record list for each possible division
of the subtrees verifying it. Nevertheless, the number of possible combinations would
be too high: if the number of subtrees is n, the possible number of divisions verifying
property 1 is 2n-1(notice that different records in the same list may be composed of a
different number of subtrees, as for instance r0 and r1 in Fig. 3). In some sources, n
can be low, but in others it may reach values in the hundreds (e.g. a source showing
25 data records, with an average of 4 subtrees for each record). Therefore, this

472 M. Álvarez et al.

exhaustive approach is not feasible. The remaining of this section explains how we
overcome these difficulties.

Our method has two stages: clustering the subtrees according to their similarity and
using the groups to generate the candidate record divisions.

Grouping the subtrees. For grouping the subtrees according to their similarity, we
use a clustering-based process we describe in the following lines:

1. Let us consider the set {t1,…,tn} of all the subtrees which are direct children of the
node chosen as root of the data region. Each ti can be represented as a string using
the method described in section 4.1. We will term these strings as s1,…,sn.

2. Compute the similarity matrix. This is a nxn matrix where the (i,j) position
(denoted mij) is obtained as es(ti, tj), the edit-distance similarity between ti and tj.

3. We define the column similarity between ti and tj, denoted cs(ti,tj), as the inverse
of the average absolute error between the columns corresponding to ti and tj in the
similarity matrix (2). Therefore, to consider two subtrees as similar, the column
similarity measure requires their columns in the similarity matrix to be very
similar. This means two subtrees must have roughly the same edit-distance
similarity with respect to the rest of subtrees in the set to be considered as similar.
We have found column similarity to be more robust for estimating similarity
between ti and tj in the clustering process than directly using es(ti, tj).

4. Now, we apply bottom-up clustering [3] to group the subtrees. The basic idea
behind this kind of clustering is to start with one cluster for each element and
successively combine them into groups within which inter-element similarity is
high, collapsing down to as many groups as desired.

() ∑ =
−−=

nk jkikji nmmttcs
..1

/1, (2) () () ()∑ Φ∈
−ΦΦ=Φ

ji tt ji ttcss
,

,1/2
(3)

Fig. 5 shows the pseudo-code for the bottom-up clustering algorithm. Inter-element
similarity of a set Φ is estimated using the auto-similarity measure (s(Φ)), and it is
computed as specified in (3).

1. Let each subtree t be in a singleton group {t}

2. Let G be the set of groups

3. Let Ωg be the group-similarity threshold and

Ωe be the element-similarity threshold

4. While |G| > 1 do

4.1 choose , a pair of groups which maximize the auto-similarity measure (see equation 3).

The set must verify:

a)

b)

4.2 if no pair verifies the above conditions, then stop

4.3 remove and from G

4.4 let

4.5 insert into G

5. End while

() ejicsji Ω>Δ∪Γ∈Δ∪Γ∈∀ ,,,

G∈ΔΓ, ()Δ∪Γs

() gs Ω>Δ∪Γ
Δ∪Γ

Δ∪Γ=Φ
Φ

Γ Δ

Fig. 5. Pseudo-code for bottom-up clustering

 Finding and Extracting Data Records from Web Pages 473

We use column similarity as the similarity measure between ti and tj. To allow a new
group to be formed, it must verify two thresholds:

− The global auto-similarity of the group must reach the auto-similarity threshold
Ωg. In our current implementation, we set this threshold to 0.9.

− The column similarity between every pair of elements from the group must reach
the pairwise-similarity threshold Ωe. This threshold is used to avoid creating
groups that, although showing high overall auto-similarity, contain some dissimilar
elements. In our current implementation, we set this threshold to 0.9.

Generating the candidate record divisions. For generating the candidate record
divisions, we assign an identifier to each of the generated clusters. Then, we build a
sequence by listing in order the subtrees in the data region, representing each subtree
with the identifier of the cluster it belongs to. For instance, in our example of Fig. 3,
the algorithm generates three clusters, leading to the string c0c1c0c2c2c0c1c2c0c1.

The data region may contain, either at the beginning or at the end, some subtrees
that are not part of the data. For instance, these subtrees may contain information
about the number of results or web forms to navigate to other result intervals. These
subtrees will typically be alone in a cluster, since there are not other similar subtrees
in the data region. Therefore, we pre-process the string from the beginning and from
the end, removing tokens until we find the first cluster identifier that appears more
than once in the sequence. In some cases, this pre-processing is not enough and some
additional subtrees will still be included in the sequence. Nevertheless, they will
typically be removed from the output as a side-effect of the final stage (see section 5).

Once the pre-processing step is finished, we proceed to generate the candidate
record divisions. By property 1, we know each record is formed by a list of
consecutive subtrees (i.e. characters in the string). From our page model, we know
records are encoded consistently. Therefore, the string will tend to be formed by a
repetitive sequence of cluster identifiers, each sequence corresponding to a data
record. The sequences for two records may be slightly different. Nevertheless, we will
assume they always either start or end with a subtree belonging to the same cluster
(i.e. all the data records always either start or end in the same way). This is based on
the following heuristic observations:

− In many sources, records are visually delimited in an unambiguous manner to
improve clarity. This delimiter is present before or after every record.

− When there is not an explicit delimiter between data records, the first data fields
appearing in a record are usually key fields appearing in every record.

Based on the former observations, we will generate the following candidate lists:

− For each cluster ci, i=1..k, we will generate two candidate divisions: one assuming
every record starts with ci and another assuming every record ends with ci. For
instance, Fig. 6 shows the candidate divisions obtained for the example of Fig. 3.

− In addition, we will add a candidate record division considering each record is
formed by exactly one subtree.

This reduces the number of candidate divisions from 2n-1, where n is the number of
subtrees, to 1+2k, where k is the number of generated clusters, turning feasible to
evaluate each candidate list to choose the best one.

474 M. Álvarez et al.

0.9489

0.7207

0.5766

0.7477

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

starting with c0

ending with c1

ending with c0

starting with c2

0.4805

0.4595

0.5105

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

c0 c1 c0 c2 c2 c0 c1 c2 c0 c1

starting with c1

one record for each subtree

ending with c2

Fig. 6. Candidate record divisions obtained for example page from Fig. 3

4.3 Choosing the Best Candidate Record List

To choose the correct candidate record list, we rely on the observation that the records
in a list tend to be similar to each other. Therefore, we will choose the candidate list
showing the highest auto-similarity.

Given a candidate list composed of the records <r1, …, rn>, we compute its auto-
similarity as the weighted average of the edit-distance similarities between each pair
of records of the list. The contribution of each pair to the average is weighted by the
length of the compared registers. See equation 4.

() () ()() () ()∑∑ ≠==≠==
++

jinjni jijinjni jiji rlenrlenrlenrlenrres
,..1,..1,..1,..1

/, (4)

For instance, in Fig. 6, the first candidate record division is chosen.

5 Extracting the Attributes of the Data Records

In this section, we describe our techniques for extracting the values of the attributes of
the data records identified in the previous section.

The basic idea consists in transforming each record from the list into a string using
the method described in section 4.1, and then using string alignment techniques to
identify the attributes in each record. An alignment between two strings matches the
characters in one string with the characters in the other one, in such a way that the
edit-distance between the two strings is minimized. There may be more than one
optimal alignment between two strings. In that case, we choose any of them.

For instance, Fig. 7a shows an excerpt of the alignment between the strings
representing the records in our example. Each aligned text token roughly corresponds
with an attribute of the record. Notice that to obtain the actual value for an attribute
we may need to remove common prefixes/suffixes found in every occurrence of an
attribute. For instance, in our example, to obtain the value of the price attribute we
would detect and remove the common suffix “€€ ”. In addition, those aligned text nodes
having the same value in all the records (e.g. “Buy new:”, “Price used:”) will be
considered “labels” instead of attribute values and will not appear in the output.

To achieve our goals, it is not enough to align two records: we need to align all of
them. Nevertheless, optimal multiple string alignment algorithms have a complexity
of O(nk). Therefore, we need to use an approximation algorithm. Several methods
have been proposed for this task [10][6]. We use a variation of the center star
approximation algorithm [6], which is also similar to a variation used in [14]
(although they use tree alignment). The algorithm works as follows:

 Finding and Extracting Data Records from Web Pages 475

r0 … TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1

r1 … TR0 TD0 TEXT0 SPAN0 TEXT1 TR0 TD0 TEXT0 SPAN0 TEXT1

r2 … TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1 TR0 TD0 TEXT0 SPAN0 TEXT1

r3 … TR0 TD0 TEXT0 SPAN0 TEXT1 TEXT0 SPAN0 TEXT1

PRICE PRICEUSED OTHEREDITIONS

“Buy new:” “Price used:” “Other editions:”
a b c b c

a b d c e

current master, m =

new record, s =

optimal alignment
a b – c b c
a b d c b -

a b d c b cnew master, m =

a) b)

Fig. 7. (a) Alignment between records of Fig. 1 (b) example of alignment with the master

1. The longest string is chosen as the “master string”, m.
2. Initially, S, the set of “still not aligned strings” contains all the strings but m.
3. For every s Є S, align s with m. If there is only one optimal alignment between s

and m and the alignment matches any null position in m with a character from s,
then the character is added to m replacing the null position (an example is shown
in Fig. 7b). Then, s is removed from S.

4. Repeat step 3 until S is empty or the master string m does not change.

6 Experience

This section describes the empirical evaluation of our techniques. During the
development phase, we used a set of 20 pages from 20 different web sources. The
tests performed with these pages were used to adjust the algorithm and to choose
suitable values for the used thresholds.

For the experimental tests, we chose 200 new websites in different application
domains (book and music shops, patent information, publicly financed R&D projects,
movies information, etc). We performed one query in each website and collected the
first page containing the list of results. Some queries returned only 2-3 results while
others returned hundreds of results. The collection of pages is available online*.

While collecting the pages for our experiments, we found three data sources where
our page creation model is not correct. Our model assumes that all the attributes of a
data record are shown contiguously in the page. In those sources, the assumption does
not hold and, therefore, our system would fail. We did not consider those sources in
our experiments. In the related work section, we will further discuss this issue.

We measured the results at three stages of the process: after choosing the data
region containing the dominant list of data records, after choosing the best candidate
record division and after extracting the structured data contained in the page. Table 1
shows the results obtained in the empirical evaluation.

In the first stage, we use the information about the executed query, as explained at
the end of section 3. As it can be seen, the data region is correctly detected in all
pages but two. In those cases, the answer to the query returned few results and there
was a larger list on a sidebar of the page containing items related to the query.

In the second stage, we classify the results in two categories: correct when the
chosen record division is correct, and incorrect when the chosen record division
contains some incorrect records (not necessarily all). For instance, two different
records may be concatenated as one or one record may appear segmented into two.

* http://www.tic.udc.es/~mad/resources/projects/dataextraction/testcollection_0507.htm

476 M. Álvarez et al.

As it can be seen, the chosen record division is correct in the 93.50% of the cases.
It is important to notice that, even in incorrect divisions, there will usually be many
correct records. Therefore, stage 3 may still work fine for them. The main reason for
the failures at this stage is that, in a few sources, the auto-similarity measure
described in section 4.3 fails to detect the correct record division, although it is
between the candidates. This happens because, in these sources, some data records are
quite dissimilar to each other. For instance, in one case where we have two
consecutive data records that are much shorter than the remaining, and the system
chooses a candidate division that groups these two records into one.

In stage 3, we use the standard metrics recall and precision. These are the most
important metrics in what refers to web data extraction applications because they
measure the system performance at the end of the whole process. As it can be seen,
the obtained results are very high, reaching respectively to 98.55% and 97.39%. Most
of the failures come from the errors propagated from the previous stage.

7 Related Work

Wrapper generation techniques for web data extraction have been an active research
field for years. Many approaches have been proposed [2][9][11][12][13]. [7] provides
a brief survey.

All the wrapper generation approaches require some kind of human intervention to
create and configure the wrapper. When the sources are not known in advance, such
as in focused crawling applications, this approach is not feasible.

Several works have addressed the problem of performing web data extraction tasks
without requiring human input. IEPAD [4] uses the Patricia tree [6] and string
alignment techniques to search for repetitive patterns in the HTML tag string of a
page. The method used by IEPAD is very probable to generate incorrect patterns
along with the correct ones, so human post-processing of the output is required.

RoadRunner [5] receives as input multiple pages conforming to the same template
and uses them to induce a union-free regular expression (UFRE) which can be used to
extract the data from the pages conforming to the template. The basic idea consists in
performing an iterative process where the system takes the first page as initial UFRE
and then, for each subsequent page, tests if it can be generated using the current
template. If not, the template is modified to represent also the new page. The
proposed method cannot deal with disjunctions in the input schema and it requires
receiving as input multiple pages conforming to the same template.

Table 1. Results obtained in the empirical evaluation

Precision

% Correct# Incorrect# Correct
Stage 2

98.553557# Records to Extract

Stage 3

97.39

Recall

3464# Correct Extracted Records

3515# Extracted Records

93.5013187

99.002198

% Correct# Incorrect# Correct
Stage 1

Precision

% Correct# Incorrect# Correct
Stage 2

98.553557# Records to Extract

Stage 3

97.39

Recall

3464# Correct Extracted Records

3515# Extracted Records

93.5013187

99.002198

% Correct# Incorrect# Correct
Stage 1

 Finding and Extracting Data Records from Web Pages 477

As well as RoadRunner, ExAlg receives as input multiple pages conforming to the
same template and uses them to induce the template and derive a set of data extraction
rules. ExAlg makes some assumptions about web pages which, according to the own
experiments of the authors, do not hold in a significant number of cases: for instance,
it is assumed that the template assign a relatively large number of tokens to each type
constructor. It is also assumed that a substantial subset of the data fields to be
extracted have a unique path from the root in the DOM tree of the pages. It also
requires receiving as input multiple pages.

[14] presents DEPTA, a method that uses the visual layout of information in the
page and tree edit-distance techniques to detect lists of records in a page and to extract
the structured data records that form it. As well as in our method, DEPTA requires as
input one single page containing a list of structured data records. They also use the
observation that, in the DOM tree of a page, each record in a list is composed of a set
of consecutive sibling subtrees. Nevertheless, they make two additional assumptions:
1) that exactly the same number of sub-trees must form all records, and 2) that the
visual gap between two data records in a list is bigger than the gap between any two
data values from the same record. Those assumptions do not hold in all web sources.
For instance, neither of the two assumptions holds in our example page of Fig. 3. In
addition, the method used by DEPTA to detect data regions is considerably more
expensive than ours.

A limitation of our approach arises in the pages where the attributes constituting a
data record are not contiguous in the page. Those cases do not conform to our page
creation model and, therefore, our current method is unable to deal with them.
Although DEPTA assumes a page creation model similar to the one we use, after
detecting a list of records, they try to identify these cases and transform them in
“conventional” ones before continuing the process. These heuristics could be adapted
to work with our approach.

References

1. Arasu, A., Garcia-Molina, H.: Extracting Structured Data from Web Pages. In: Proc. of the
ACM SIGMOD Int. Conf. on Management of Data (2003)

2. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with Lixto.
In: Proc. of Very Large DataBases (VLDB) (2001)

3. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann Publishers, San Francisco (2003)

4. Chang, C., Lui, S.: IEPAD: Information extraction based on pattern discovery. In: Proc. of
2001 Int. World Wide Web Conf., pp. 681–688 (2001)

5. Crescenzi, V., Mecca, G., Merialdo, P.: ROADRUNNER: Towards automatic data
extraction from large web sites. In: Proc. of the 2001 Int. VLDB Conf., pp. 109–118
(2001)

6. Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New Indices for Text: Pat trees and Pat
Arrays. Information Retrieval: Data Structures and Algorithms. Prentice Hall, Englewood
Cliffs (1992)

7. Laender, A.H.F., Ribeiro-Neto, B.A., Soares da Silva, A., Teixeira, J.S.: A Brief Survey of
Web Data Extraction Tools. ACM SIGMOD Record 31(2), 84–93 (2002)

478 M. Álvarez et al.

8. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10, 707–710 (1966)

9. Muslea, I., Minton, S., Knoblock, C.: Hierarchical Wrapper Induction for Semistructured
Information Sources. Autonomous Agents and Multi-Agent Systems, 93–114 (2001)

10. Notredame, C.: Recent Progresses in Multiple Sequence Alignment: A Survey. Technical
report, Information Genetique et (2002)

11. Pan, A., et al.: Semi-Automatic Wrapper Generation for Commercial Web Sources. In:
Proc. of IFIP WG8.1 Conf. on Engineering Inf. Systems in the Internet Context (EISIC)
(2002)

12. Raposo, J., Pan, A., Álvarez, M., Hidalgo, J.: Automatically Maintaining Wrappers for
Web Sources. Data & Knowledge Engineering 61(2), 331–358 (2007)

13. Zhai, Y., Liu, B.: Extracting Web Data Using Instance-Based Learning. In: Ngu, A.H.H.,
Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS,
vol. 3806, pp. 318–331. Springer, Heidelberg (2005)

14. Zhai, Y., Liu, B.: Structured Data Extraction from the Web Based on Partial Tree
Alignment. IEEE Trans. Knowl. Data Eng. 18(12), 1614–1628 (2006)

Towards Transparent Personal Content Storage

in Multi-service Access Networks

Koert Vlaeminck, Tim Wauters, Filip De Turck, Bart Dhoedt,
and Piet Demeester

Ghent University, Dept. of Information Technology - IBBT - IMEC
Gaston Crommenlaan 8 bus 201, B-9050 Gent, Belgium

Tel.: +32 (0)9 331 49 42, Fax: +32 (0)9 331 48 99
koert.vlaeminck@intec.ugent.be

Abstract. Anytime, anywhere and anyhow access to personalized ser-
vices requires the complete decoupling of devices for accessing the service
and the supporting personal data storage. When deploying such trans-
parent personalized services, an important question that needs answering
is where to install the storage servers. In this respect, this paper consid-
ers the deployment of a personal content storage service in multi-service
access networks. The storage server placement problem is formulated as a
binary integer linear programming (BILP) problem and a heuristic stor-
age server placement algorithm (SSPA) is presented and evaluated. First
it is assumed that servers do not fail. Consequently, the problem formu-
lation is extended to include replication and striping and both BILP and
heuristic methods are modified to cope with the additional constraints.
The extended SSPA heuristic is used to analyze several resilience and
striping scenarios. It is shown that the SSPA produces close to optimal
results and is very efficient for optimizing server placement in personal
content storage deployments.

Keywords: Distributed Storage, Server Placement, Resilience, Access
Network, Personal Content.

1 Introduction

In a converged media world consumers increasingly call the shots. No longer
a captive, mass media audience, today’s consumer is unique, demanding, and
engaged. He wants anytime, anywhere and anyhow access to a personalized ex-
perience, generates his own content, mixes it, and shares it on a growing number
of social networks [1]. Transparent anytime, anywhere access to such a personal-
ized media experience requires the complete decoupling of devices for accessing
the data and the actual data storage. In pursuing transparency, one important
question that needs answering is where to install the storage servers. A ma-
jor opportunity of emerging, converged, multi-service IP access and aggregation
networks [2] is providing consumers with transparent storage, enabling anytime,
anywhere access to a personal data collection, consisting of both acquired and
created content.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 479–492, 2007.
c© IFIP International Federation for Information Processing 2007

480 K. Vlaeminck et al.

Storage of acquired content (e.g. a digital movie and music collection) has
many similarities with content distribution networks (CDNs), where content is
replicated to regional servers at the edge of the network in order to tackle the
performance issues of a classical central server based approach [3]. Acquired
content is typically read-only and relatively popular, making it an ideal fit for
content distribution networks.

Storage of created content (e.g. personalized play lists or even remixes, digital
photo albums and home videos) is entirely different. Because of its read/write
nature, delay is much more important and replication or caching close to the
consumer a must. Furthermore, created personal content is typically a lot less
popular—although the ability to share created content with (a limited amount
of) other users is still desirable—and requires an ever increasing storage capac-
ity. Where CDNs are designed to distribute a limited amount of very popular
content, a (created) personal content storage service stores a huge amount of
relatively unpopular content. CDN-based systems assign storage capacity per
item, while a personal content storage service assigns capacity per user.

This paper presents and evaluates an algorithm for determining the best lo-
cations for deploying a storage service supporting created content, minimizing
the deployment cost while guaranteeing customer satisfaction. Both access and
aggregation nodes are candidate storage server locations. Servers have limited
storage- and read/write capacity and can only serve a limited number of simul-
taneous users. Furthermore, the access and aggregation network only has limited
bandwidth assigned to the storage service. Within this restricted environment,
consumers expect a guaranteed minimum throughput and maximum delay for
accessing their content.

After a discussion of related work in Section 2, the remainder of this paper
is structured as follows: First, Sections 4 to 6 assume that system crashes and
disasters are nonexistent. In that case, no redundancy is required and each data
item is stored only once. These sections extend earlier work on dimensioning
read-mostly data storage in the access and aggregation network to support read-
write content [4]. Both a Binary Integer Linear Programming (BILP) [5] and a
heuristic solution are presented. The heuristic Storage Server Placement Algo-
rithm (SSPA) is evaluated by comparing its placement decisions to the optimal
solution, acquired from a direct implementation of the BILP formulation. After
that, Section 7 studies the more realistic situation where servers do fail. Both
BILP solution and SSPA heuristic are extended to include replication and strip-
ing and some simulation results, illustrating the requirements for striping and
resilience in terms of number of server locations and total accumulated band-
width on all network links, are presented. Finally Section 8 summarizes the main
results of this paper.

2 Related Work

Many distributed filesystems exist today, ranging from client-server systems
such as NFS [6], AFS [7] and Coda [8] over cluster filesystems (e.g. Lustre [9],

Transparent Personal Content Storage in Multi-service Access Networks 481

GPFS [10] and the Google File System [11]) to global scale peer-to-peer filesys-
tems (e.g. OceanStore [12], FARSITE [13] and Pangaea [14]).

None of the above filesystems were designed for large-scale deployment in a
service aware access and aggregation network environment. However, two of the
peer-to-peer filesystems seem good candidates for this purpose: OceanStore and
Pangaea. One of OceanStore’s design goals is support for nomadic data using
a promiscuous caching policy, allowing data to be cached anytime, anywhere.
OceanStore uses introspection for replica management, optimizing the number
and location of replicas based on observation of the access requests. Pangaea,
on the other hand, uses a pervasive replication mechanism that replicates data
wherever and whenever it is accessed.

Guaranteeing fast access to a distributed filesystem, requires replication on
nodes close to the user: Pangaea, with its pervasive replication mechanism, sup-
ports this by design. Another interesting replication mechanism is fluid repli-
cation, which creates a replica on a nearby node when the connection quality
between a client and its current server becomes poor [15]. Whichever replication
mechanism is chosen, a minimum set of replicas should be maintained at all
times in order to ensure reliability.

Before deciding on how and where data is replicated, an important ques-
tion that needs answering is where to install the storage servers. This paper
investigates how servers can be deployed in the access and aggregation network,
supporting fast and reliable personal content storage, minimizing cost, while
guaranteeing user satisfaction. In literature, server placement was already dis-
cussed in a web server environment [16] and for the placement of regional servers
for content distribution networks [3]. However, as discussed in the introduction,
personal content storage, supporting created content, has different requirements.

3 Use Cases

Throughout this paper, the two typical access and aggregation network topolo-
gies were selected as use cases: a mesh of trees topology, used in DSL deployment,
and a ring of rings topology, used in cable Internet access deployment, both con-
sisting of 250 access nodes. In both topologies, all nodes are assumed to be
service-aware and thus candidate locations for installing storage servers.

The mesh of trees topology is depicted in Fig. 1(a). The 250 access nodes are
at the leaf nodes of five trees of depth two, aggregated per ten at depth two and
per five at depth one. The available bandwidth between the access nodes and
the first aggregation node is 600 Mbps. Those aggregation nodes are connected
to the root of a tree, each by a 1.2 Gbps link. The five trees are intercon-
nected by a full mesh of 3 Gbps links. The ring of rings topology, is depicted in
Fig. 1(b). It consists of five unidirectional six-node secondary rings of 2 Gbps.
One node connects the secondary ring to a primary ring of 10 Gbps (also uni-
directional). The other five secondary ring nodes each connect to ten access
nodes trough a shared medium of 2 Gbps, resulting in a total of 250 access
nodes.

482 K. Vlaeminck et al.

...

Full Mesh
3 Gbps bidirectional per link

...

Fanout 5 at depth 1
1.2 Gbps per link

Fanout 10 at depth 2
600 Mbps per link

(a)

... Primary Ring
10 Gbps

Secondary Ring
2 Gbps

Shared Medium
2Gbps

(b)

Fig. 1. Topology (a): mesh of trees access and aggregation network topology, used for
DSL deployment. Topology (b): ring of rings access and aggregation network topology,
used for cable Internet access deployment.

4 Model Description

This paper studies the deployment of a personal content storage service, sup-
porting created content, in the access and aggregation network. The goal is to
minimize the number of server locations, while guaranteeing fast access from
any access node. Before discussing the storage server placement algorithm in the
next section, this section introduces some definitions and formalizes the problem
description by presenting it as a Binary Integer Linear Programming (BILP)
problem [5].

Define N = {N1, . . . , Nn} as the set of all nodes and A = {A1, . . . , Am} as
the set of access nodes (A ⊂ N). Furthermore, define E = {E1, ..., Eo} as the
set of all edges. An edge El ∈ E represent a simplex link in the network. Delay
over El is defined as cl and its bandwidth as bl. Finally define U = {U1, . . . , Up}
as the set of all users.

Server limitations are defined as follows: a server location has storage capacity
S, total read speed (download capacity) D, total write speed (upload capacity)
D′ and supports at most V simultaneous users.

Now the service requirements can be defined: a user Uu at access node Aj

(Uu@Aj) requires a certain amount of storage capacity Sju, with a downstream
(read) bandwidth Dju and an upstream (write) bandwidth D′

ju. The total re-
quired storage capacity, downstream bandwidth, upstream bandwidth from ac-
cess node Aj is Sj =

∑
Uu@Aj

Sju, Dj =
∑

Uu@Aj
Dju, D′

j =
∑

Uu@Aj
D′

ju

respectively. The maximum delay for accessing the storage service is defined
as d.

Finally, before describing the BILP problem, some variables need to be de-
fined: si is a binary variable indicating whether servers are installed at node Ni

or not, while siju is a binary variable representing whether user Uu at access node
Aj is served by a server at node Ni. Defining Pij as the set of all downstream
paths from node Ni to access node Aj , then pijk is a continuous variable rep-
resenting the flow on the kth path Pijk from Ni to Aj and pij =

∑
Pijk∈Pij

pijk

is the total flow from Ni to Aj . Analogously, defining P ′
ij as the set of all up-

stream paths from access node Aj to node Ni, then p′ijk is a continuous variable

Transparent Personal Content Storage in Multi-service Access Networks 483

representing the flow on the kth path P ′
ijk from Aj to Ni and p′ij =

∑
P ′

ijk∈P ′
ij

p′ijk

is the total flow from Aj to Ni. The BILP problem can now be described as fol-
lows:

Minimize:
z =

∑

Ni∈N

si (1)

subject to:

pij =
∑

Uu@Aj

siju.Dju/b, p′ij =
∑

Uu@Aj

siju.D′
ju/b, ∀Ni ∈ N, ∀Aj ∈ A (2)

pij ≤ si.Dj/b, p′ij ≤ si.D
′
j/b, ∀Ni ∈ N, ∀Aj ∈ A (3)

∑

Ni∈N

siju ≥ R, ∀Aj ∈ A, ∀Uu ∈ U (4)

∑

Ni∈N

pij = R.Dj/b,
∑

Ni∈N

p′ij = R.D′
j/b, ∀Aj ∈ A (5)

∑

∀Pijk�El

pijk +
∑

∀P ′
ijk

�El

p′ijk ≤ bl, ∀El ∈ E (6)

∑

El∈Pijk

cl ≤ d,
∑

El∈P ′
ijk

cl ≤ d, ∀Ni ∈ N, ∀Aj ∈ A, ∀Pijk ∈ Pij , ∀P ′
ijk ∈ P ′

ij (7)

∑

Aj∈A

pij ≤ D,
∑

Aj∈A

p′ij ≤ D′, ∀Ni ∈ N (8)

∑

Aj∈A

∑

Uu@Aj

siju.Sju/b ≤ S, ∀Ni ∈ N (9)

∑

Aj∈A

∑

Uu@Aj

siju ≤ V, ∀Ni ∈ N (10)

For now, assume R = b = 1, as these parameters are only required for in-
cluding striping and resilience in the BILP formulation (cf. Section 7). The con-
straints in (2) guarantee the (down- and upstream) bandwidth requirements
between node Ni and access node Aj are met for each user Uu at Aj that is
served by a server at Ni. Constraints (3) ensure the total flow from a node Ni to
an access node Aj does not exceed the total (down- and upstream) bandwidth
demand of Aj . Furthermore, together with the constraints in (2) and the fact
that we’re dealing with a minimization problem, the constraints in (3) implic-
itly guarantee that si = 1 if and only if one of the siju = 1. Constraints in (4)
and (5) ensure that each user Uu is assigned at least one server and that total

484 K. Vlaeminck et al.

(down- and upstream) bandwidth demand for each access node Aj is met, re-
spectively. Link bandwidth constraints are described in (6) and delay constraints
in (7). Finally, the last three sets of constraints represent the server capabilities:
read and write performance of a server in (8), storage capacity in (9) and a
maximum number of simultaneous users in (10).

5 Storage Server Placement Algorithm (SSPA)

As BILP solutions to a server placement problem tend to scale poorly, a heuristic
algorithm was designed to solve the storage server placement problem, formalized
by the BILP model in Section 4. The algorithm consists of two phases. In the first
phase, servers are installed one by one at the best candidate locations, until all
users are served, while respecting the maximum delay constraint, link bandwidth
constraints and server constraints. The quality Qi of a candidate location Ni is
determined using local information, such as the number of access nodes that
can be reached from that location, without exceeding the maximum delay d,
the average delay to those access nodes and the total available bandwidth on
paths with delay ≤ d to those access nodes. Once a server location is added,
it is used to its maximum capacity (respecting server and network constraints),
before a new location is selected. In the second phase, the allocation of servers
to users is redistributed in such a way that, where possible, each user is served
by the server location closest to his access node. During this redistribution, only
locations selected during the first phase are considered. Server locations that no
longer serve any users after phase two are removed.

The operation of the first phase is illustrated in Fig. 2. In the figure, Qi is
defined as the number of access nodes in range from Ni. When two candidate
nodes Ni have equal quality Qi, one is selected at random. Once a server location
Ni is selected, all access nodes Aj in range from Ni are connected to a helper node
T , using helper edges with delay 0 and link bandwidth Dj , the total (remaining)
required downstream bandwidth from Aj . That way, a successive shortest path
algorithm (from Ni to T) can be used to assign as much users Uu as possible to
the newly installed server location Ni. This successive shortest path algorithm
continues until Ni has no capacity left, all demand from the access nodes in range
is served or no more paths with delay ≤ d are available. By using the remaining
downstream bandwidth requirements as link capacity for helper edges connecting
an access node to T , total capacity assigned to the access node is guaranteed not
to exceed total demand, as storage capacity and down and upstream bandwidth
are assigned to a single server location on a per user basis. This process is
repeated until all users Uu on all access nodes Aj are served.

In the example of Fig. 2, each user requires a server location at maximum
two hops from his access node. In the first iteration, N3 and N4 both have four
access nodes in range. Assume N4 is selected as the first server location. The
access nodes in range from N4, i.e. A1, A2, A3 and A4, are connected to a helper
node T after which a successive shortest path algorithm is executed to assign
users connected through these access nodes to N4.

Transparent Personal Content Storage in Multi-service Access Networks 485

A1 = N6 (Q6 = 1)

N1 (Q1 = 2)

N5 (Q5 = 2)

N2 (Q2 = 3)

N3 (Q3 = 4)

N4 (Q4 = 4)

T

D1

D2

D3

D4

A2 = N7 (Q7 = 1)

A3 = N8 (Q8 = 2)

A4 = N9 (Q9 = 2)

A5 = N10 (Q10 = 1)

Fig. 2. Operation of the first phase of SSPA. Qi is defined as the number of access
nodes in range from Ni and each user requires a server location at maximum two hops
from his access node.

In the second phase, the allocation of servers to users is redistributed in such a
way that, where possible, each user is served by the server location closest to his
access node. Server locations that become obsolete after this redistribution are
removed. The second phase considers server locations added during phase one
in reverse order. As phase one only adds a new server location when previously
added locations can no longer handle additional user demand, the later added
locations are the most unlikely to be expendable. Phase two only adds a server
location (out of the server locations selected during phase one) when previously
added server locations can’t take over all user demand it served after phase one.
Phase two only considers server locations on the path from Uu’s phase one server
location to the access node connecting Uu. That way, phase two is guaranteed
to respect link bandwidth constraints.

6 Implementation and Evaluation

The SSPA heuristic was implemented using the Telecom Research Software li-
brary (TRS) [17], a Java network library, which was extended to support mod-
eling of personal content storage. For evaluating the heuristic, its placement re-
sults were compared to those of a direct implementation of the BILP formulation
through CPLEX, a branch and bound solver [18]. In order to keep the ILP cal-
culations feasible, unlimited server capacity was assumed and only downstream
bandwidth demand was considered, removing constraints (8), (9) and (10) and
all p′ related expressions from the BILP problem formulation in Section 4. Fur-
thermore, by only enumerating paths Pij with length ≤ d, constraint (7) can
also be removed and a further speed-up can be achieved.

The number of storage server locations, required for providing a fast storage
service, was computed for varying total demand per access node (equally divided
between 1000 users connected through each access node) and maximum delay.

486 K. Vlaeminck et al.

BILP / SSPA
max # hops 1 2 3

0 - 60 Mbps 25 / 25 5 / 5 1 / 1
61 - 120 Mbps 25 / 25 5 / 5 2 / 2

121 - 600 Mbps 25 / 25 25 / 25 25 / 25
> 600 Mbps 250 / 250 250 / 250 250 / 250

Fig. 3. Simulation results for the mesh of trees topology, depicted in Fig. 1(a). The table
gives number of server locations for a varying demand per access node and increasing
maximum delay.

For the evaluation, maximum delay for accessing a server is expressed as the
number of hops from the access node and the candidate node quality, Qi, is
defined as the number of access nodes in range from node Ni. In order to allow
SSPA to break free from suboptimal solutions, a random node is selected from
the n best candidate nodes (with n a configurable upper bound) and the best
placement after multiple (i.e. ten) runs is used. For instance, in the ring of rings
topology of Fig. 1(b), n should be at least 6, to allow SSPA to choose a non-
primary ring node as first server location.

Results for the mesh of trees topology are summarized in the table of Fig. 3.
For this rather simple topology, the SSPA heuristic produces optimal results.
Results from the simulations on the ring of rings topology are depicted in Fig. 4.
Here, the SSPA heuristic adds slightly more server locations than the optimal
result. Results are still close to optimal, however. Furthermore, each SSPA iter-
ation takes less than a minute on modern PC hardware1, as opposed to hours to
days—depending on the parameters—for the BILP implementation to produce
a single result.

7 Striping and Resilience

High availability is an important feature of a network storage system. In a world
where harddisks are failure prone and recordable optical media only have limited
archival lifespan [19], high availability and guaranteed data retention are major
selling points for a high speed network storage service. In order to protect data
from node failures, two alternative approaches are considered: whole-file replica-
tion and erasure code (or block) replication [20]. In case of whole-file replication,
a user’s data is replicated on R > 1 server locations. The user’s data is available,
as long as at least one of the R replicas is online. As a drawback, whole-file
replication requires R times the storage capacity of storing each data item once.
Furthermore, a user’s bandwidth requirements must be guaranteed to each of the
R replica locations in order to guarantee service quality in case of node failure.

In case of block replication, a data item is split into b > 1 blocks. Erasure
coding is then applied to these b data fragments, producing R > b fragments of
1 The simulations were executed on an AMD64 3000+ system with 512 MB of memory,

running Linux and the Sun J2SE 5.0 Runtime Environment.

Transparent Personal Content Storage in Multi-service Access Networks 487

 25

 20

 15

 10

 5

 0
 10 9 8 7 6 5 4 3 2 1

St

or
ag

e
se

rv
er

s

Maximum delay (hops)

BILP: 0 - 40 Mbps
BILP: 41 - 50 Mbps
BILP: 51 - 100 Mbps
BILP: 101 - 200 Mbps
SSPA: 0 - 40 Mbps
SSPA: 41 - 50 Mbps
SSPA: 51 - 100 Mbps
SSPA: 101 - 200 Mbps

Fig. 4. Simulation results for the ring of rings topology, depicted in Fig. 1(b). Lines
represent the optimal BILP results, while dots represent the SSPA results.

the same size as before [21]. The essential property of erasure coding is that any
b of the R coded fragments are sufficient to reconstruct the original data item.
Each of the R coded fragments are stored at a different server location. A data
item is available as long as at least b of the R data fragments are online. Block
replication only requires R

b times the storage capacity of storing each data item
once. Furthermore, each of the R replica server locations only has to guarantee 1

b
of a user’s bandwidth requirements, at the cost of greater complexity. Note that
whole-file replication can be represented as a special case of block replication,
where b = 1.

Lin, Chiu and Lee [20] showed that the benefit of erasure code (block) replica-
tion depends on the node availability, relative to the storage overhead S (S = R
for whole-file replication and S = R

b for block replication). Defining μ as the
node availability, the file availability is given by:

A =
R∑

i=b

(
R

i

)

μi(1 − μ)R−i (11)

A thorough analysis of the file availability, using different scenarios for both
replication schemes, shows that whole-file replication might actually perform
better for the same storage overhead S when node availability is low [20].

Striping can be defined as a special case of block replication, where R = b. A
file is split into b blocks, each block stored at a different server location. Striping
provides no resilience—once one of the b server locations goes offline, the file
can no longer retrieved—but allows to better distribute the load of the storage
system. With the above definitions of b ≥ 1 and R ≥ b, the BILP problem
description from Section 4 now includes striping and resilience.

For solving the storage server placement problem, supporting striping and
resilience, the SSPA heuristic from Section 5 is extended. Phase one operates

488 K. Vlaeminck et al.

roughly the same, but only assigns 1
b of a user’s storage and bandwidth require-

ments to a single server location. A user Uu is only removed from the set of users
U when he has R server locations assigned. Furthermore, the link bandwidth of
the helper edges EAjT is initialized at Dj

b , as a single server location provides at
most 1

b of the total required bandwidth from access node Aj . In phase two, an
additional check should be made whether a closer server location on the path,
from the current server location on that path to an access node, does not already
serve (some of) the users on that access node, before relocating these users to
that closer server location.

For illustrating the effect of replication and striping on the storage server
placement problem, the ring of rings topology from Fig. 1(b) was used. In order to
keep the simulations interpretable, read operations are assumed to be dominating
the demand. First, server locations are assumed to have unlimited capacity, in
order to analyze network limitations and SSPA’s load distribution. After that,
the number of simultaneous users per server location is limited by installing a
maximum read capacity. The quality metric Qi for selecting the best candidate
server location Ni was constructed in such a way that the nodes Ni with the
highest number of access nodes in range and the lowest average delay to those
access nodes are the most likely to be chosen. Again, for avoiding local optima, a
location is randomly selected from the n best candidates (n > 6, if multiple nodes
have equal quality, they are all considered). The figures show the best result
after five runs. Again, the hop-count was used as a delay measure. Simulation
results include the total number of server locations, the total accumulated link
bandwidth (the sum of the bandwidth usage on all links in the network), and
bandwidth requirements at the least and the most loaded server location.

Assuming unlimited server capacity, simulations were run for varying ser-
vice requirements: maximum delay, read bandwidth per access node, number of
replica locations (R) and number of blocks (b) per data item. Simulations results
show that for a fixed storage overhead R

b , the total accumulated link bandwidth
(hence the bandwidth cost for deploying the service) is constant for increasing R,
when the network has sufficient bandwidth available (small fluctuations are ex-
plained by the heuristic nature of SSPA). Furthermore, as one would expect, for
fixed R

b the total number of server locations increases and the maximum server
load decreases for increasing R. This is illustrated in Fig. 5 for a maximum delay
of 4 hops and a read bandwidth of 20 Mbps per access node.

As SSPA seeks to minimize the number of server locations, it will tend to max-
imize the usage of each server location. As a side-effect, load is not evenly dis-
tributed among the available server locations. This is clearly visible in Fig. 5(c)
and 5(d): e.g. in the case where each data item is only stored at one server
location (R

b = 1 and R = 1), the maximum loaded server location provides al-
most 25% of the 5 Gbps total required bandwidth, while the least loaded server
location only provides 400 Mbps. Work is in progress to design a third phase
for SSPA, providing better balancing of the load over the available server loca-
tions, using a modified minimum cost flow algorithm—from the server locations

Transparent Personal Content Storage in Multi-service Access Networks 489

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 3 6 2 4 6 3 6

se

rv
er

 lo
ca

tio
ns

R

R/b=1 R/b=1.5 R/b=2 R/b=3

(a) # servers

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 3 6 2 4 6 3 6

T
ot

al
 a

cc
um

ul
at

ed
 li

nk
 b

an
dw

id
th

 (
G

bp
s)

R

R/b=1 R/b=1.5$ R/b=2 R/b=3

(b) total link bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 6 3 6 2 4 6 3 6

M
ax

im
um

 s
er

ve
r

lo
ad

 (
G

bp
s)

R

R/b=1 R/b=1.5 R/b=2 R/b=3

(c) maximum server load

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 6 3 6 2 4 6 3 6

M
in

im
um

 s
er

ve
r

lo
ad

 (
G

bp
s)

R

R/b=1 R/b=1.5$ R/b=2 R/b=3

(d) minimum server load

Fig. 5. Number of server locations, total link bandwidth, maximum and minimum
server location read bandwidth for varying R

b
and increasing R. Service requirements

are a maximum delay of 4 hops and a read bandwidth of 20 Mbps per access node.
Server capacity is assumed unlimited.

remaining after phase two to the access nodes—with dynamic costs for avoiding
saturated links and heavily loaded locations, i.e. costs ∼ 1

1−load(%) [3].
For the remainder of the simulations, server location read capacity is restricted

to 1 Gbps2. Furthermore, the maximum delay is set to 4 hops and the number
of fragments per data item is set to b = 2. Fig. 6 summarizes simulation results
for varying storage overhead R

b and increasing read bandwidth demand per ac-
cess node. From these simulations it is clear that SSPA effectively tries to use
servers at each location to their maximum capabilities before adding a new server
location. Total accumulated link bandwidth increases linearly with increasing de-
mand per access node and increasing storage overhead. Furthermore, doubling
the storage overhead roughly doubles the number of server locations. Both ob-
servations only hold as long as the access and aggregation network has sufficient
bandwidth available. Note that for a read bandwidth demand of 50 Mbps per
access node and a storage overhead R

b = 3, which implies 6 server locations per
data item for b = 2, SSPA is forced to add multiple storage server locations at
the access nodes, as the secondary ring bandwidth becomes the limiting factor.

2 Note that in Fig. 5, the maximum server location read bandwidth is 1.2 Gbps.

490 K. Vlaeminck et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

se

rv
er

 lo
ca

tio
ns

Read bandwidth / access node (Mbps)

R/b=1 R/b=1.5 R/b=2 R/b=3

(a) # servers

 0

 10

 20

 30

 40

 50

 60

 70

 80

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

T
ot

al
 a

cc
um

ul
at

ed
 li

nk
 b

an
dw

id
th

 (
G

bp
s)

Read bandwidth / access node (Mbps)

R/b=1 R/b=1.5$ R/b=2 R/b=3

(b) total link bandwidth

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

M
ax

im
um

 s
er

ve
r

lo
ad

 (
G

bp
s)

Read bandwidth / access node (Mbps)

R/b=1 R/b=1.5 R/b=2 R/b=3

(c) maximum server load

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

M
in

im
um

 s
er

ve
r

lo
ad

 (
G

bp
s)

Read bandwidth / access node (Mbps)

R/b=1 R/b=1.5$ R/b=2 R/b=3

(d) minimum server load

Fig. 6. Number of server locations, total link bandwidth, maximum and minimum
server location bandwidth for varying R

b
and increasing read bandwidth requirements

per access node. A maximum delay of 4 hops is required. The number of data fragments
per file b = 2 and server locations have a maximum read capacity of 1 Gbps.

8 Conclusion

The deployment of transparent personalized services requires the complete de-
coupling of devices for accessing the service and the supporting personal data
storage. This paper studied the deployment of a personal content storage ser-
vice, supporting created content, in the access and aggregation network, mini-
mizing the number of server locations, while guaranteeing fast access from any
access node. Both network restrictions—link bandwidth and maximum delay—
and server restrictions—read and write performance, storage capacity and a
maximum number of simultaneous users—are taken into account.

First it was assumed that servers do not fail and storing each data item once
is sufficient. This problem was first formulated as a Binary Integer Linear Pro-
gramming (BILP) problem. Next, a heuristic Storage Server Placement Algo-
rithm (SSPA) was presented, installing servers one by one at the best candidate
locations, until all users are served. Two typical access and aggregation network
topologies were used for evaluating the algorithm: a mesh of trees, used in DSL
deployment, and a ring of rings, used for cable Internet access deployment. Simu-
lations, comparing SSPA’s placement results to the optimal placement, achieved

Transparent Personal Content Storage in Multi-service Access Networks 491

using a CPLEX branch and bound implementation of the BILP formulation,
showed the heuristic algorithm produces close to optimal results.

As high availability is an important feature of online personal content storage
systems, while real-world servers do fail, both the BILP formulation and the
SSPA heuristic were extended to support resilience and striping. The extended
storage server placement problem was used to simulate some resilience and strip-
ing scenarios in the aforementioned ring of rings topology. As one would expect,
simulation results showed that doubling the storage overhead roughly doubles
the number of required server locations and the total accumulated link band-
width, as long as the access and aggregation network has sufficient bandwidth
available. For all use cases presented in this paper, simulation took less than
a minute per parameter combination on modern PC hardware, showing that
SSPA is very efficient for optimizing server placement in personal content stor-
age deployments. The presented SSPA simulator was already used for evaluating
a business case for deploying a digital media library service in the access and
aggregation network of the Belgian DSL operator Belgacom [22].

Acknowledgment

This work is partially funded by the IBBT GBO project PeCMan.

References

1. Baya, V., Gauntt, J.: The Rise of Lifestyle Media: Achieving Success in the Digital
Convergence Era. Technical report, PriceWaterHouseCoopers (2006)

2. Stevens, T., Vlaeminck, K., Van de Meerssche, W., De Turck, F., Dhoedt, B.,
Demeester, P.: Deployment of Service-Aware Access Networks through IPv6. In:
8th Int. Conf. on Telecommunications (2005)

3. Wauters, T., Coppens, J., Turck, F.D., Dhoedt, B., Demeester, P.: Replica Place-
ment in Ring Based Content Delivery Networks. Journal of Computer Communi-
cations 29(16), 3313–3326 (2006)

4. Vlaeminck, K., De Turck, F., Dhoedt, B., Demeester, P.: Deploying Digital Me-
dia Libraries in Multi-Service Access Networks. In: 8th IEEE Int. Symposium on
Multimedia, pp. 105–112 (2006)

5. Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.: Progress in Linear
Programming-Based Algorithms for Integer Programming: An Exposition. IN-
FORMS Journal on Computing 12(1), 2–23 (2000)

6. Callaghan, B., Pawlowski, B., Staubach, P.: RFC1813: NFS version 3 protocol
specification (June 1995)

7. Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M., Side-
botham, R.N., West, M.J.: Scale and Performance in a Distributed File System.
ACM Trans. Comput. Syst. 6(1), 51–81 (1988)

8. Mummert, L.B., Ebling, M.R., Satyanarayanan, M.: Exploiting Weak Connectivity
for Mobile File Access. In: 15th ACM Symposium on Operating Systems Principles,
pp. 143–155. ACM Press, New York (1995)

9. Cluster File System Inc.: Lustre: A Scalable, High-Performance File System. Tech-
nical report (November 2002)

492 K. Vlaeminck et al.

10. Jones, T., Koniges, A., Yates, R.K.: Performance of the IBM General Parallel File
System. In: IEEE Int. Parallel & Distributed Processing Symposium, May 2000,
pp. 673–683 (2000)

11. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: 19th ACM
Symposium on Operating Systems Principles, pp. 29–43. ACM Press, New York
(2003)

12. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Wells, C., Zhao, B.: OceanStore:
an Architecture for Global-Scale Persistent Storage. SIGARCH Comput. Archit.
News 28(5), 190–201 (2000)

13. Bolosky, W.J., Douceur, J.R., Ely, D., Theimer, M.: Feasibility of a Serverless Dis-
tributed File System Deployed on an Existing Set of Desktop PCs. SIGMETRICS
Perform. Eval. Rev. 28(1), 34–43 (2000)

14. Saito, Y., Karamanolis, C., Karlsson, M., Mahalingam, M.: Taming Aggres-
sive Replication in the Pangaea Wide-Area File System. SIGOPS Oper. Syst.
Rev. 36(SI), 15–30 (2002)

15. Noble, B., Fleis, B., Kim, M.: A Case for Fluid Replication. In: Network Storage
Symposium, Seattle, WA, USA (October 1999)

16. Qiu, L., Padmanabhan, V.N., Voelker, G.M.: On the Placement of Web Server
Replicas. In: INFOCOM, pp. 1587–1596 (2001)

17. Casier, K., Verbrugge, S., Coller, D., Pickavet, M., Demeester, P.: Using Aspect-
oriented Programming for Event-handling in a Telecom Research Softwave Library.
In: 8th Int. Conf. on Software Reuse (2004)

18. ILOG: CPLEX. http://www.ilog.com/products/cplex/
19. Vitale, T.: Digital Imaging in Conservation: File Storage. AIC News 31(1) (2006)
20. Lin, W.K., Chiu, D.M., Lee, Y.B.: Erasue Code Replication Revisisted. In: 4th Int.

Conf. on Peer-to-Peer Computing, pp. 90–97 (August 2004)
21. Pless, V.: Introduction to the Theory of Error-Correcting Codes, 3rd edn. Wiley,

Chichester (1998)
22. Van Ooteghem, J., Vlaeminck, K., Colle, D., Pickavet, M., De Turck, F., Dhoedt,

B., Demeester, P.: Business Case for Deploying Digital Media Libraries in Multi-
Service Access Networks. In: 2007 Int. Conf. on Business and Information, Tokyo,
Japan (July 2007)

http://www.ilog.com/products/cplex/

Extraction and Classification of User Behavior

Matheus L. dos Santos1, Rodrigo F. de Mello1, and Laurence T. Yang2

1 University of São Paulo, Institute of Mathematics and Computer Science
São Carlos, SP, Brazil

{matheusl,mello}@icmc.usp.br
2 St. Francis Xavier University, Antigonish, NS, Canada

lyang@stfx.ca

Abstract. The multimedia document generator, iClass system, has
been used by professors from the Institutes of Chemistry, Mathemat-
ics and Computer Science from the University of São Paulo aiming at
helping the multimedia content production and availability. Data from
user interactions, available in iClass system, have motivated this work
which aims at studying the user behavior under different circumstances.
The behavior extracted makes possible the analysis of different patterns
of the same user, among groups, and distinct users. Those pattern dif-
ferences should help to understand user evolution in iClass system under
diverse situations. The data are grouped by a neural network and after-
wards Markov Chains are built to represent their behaviors in different
time moments. The detected user or group behavior variations are related
to classify profiles and comprehend them in different situations.

1 Introduction

The iClass system, developed by the Intermı́dia Laboratory at University of
São Paulo, captures information from conventional environments (such as class-
rooms), allowing the production of multimedia documents which, afterwards, are
delivered through the Web [1]. This system has been adopted to help professors
during classes.

During the classes, students make experiments, works and tests using iClass
system. The iClass works as a whiteboard, generating databases containing user
interaction information. Such information is stored in XML1 documents, which
stores the interaction instant and the number of points defined by users. Words
and pictures are composed in groups of points, named strokes.

The availability of such information motivates the study of user behaviors
under different circumstances (experiments, tests, classes, etc). The extracted
behavior makes possible the analysis of different user patterns, among groups
and distinct users. Such pattern differences help to understand user evolution in
the iClass system under diverse situations.

This behavior study is conducted applying statistics techniques (like Markov
Chains [2][3]), classification by neural networks (SOM [4][5][6], ART [7]) and
1 Extensible Markup Language – http://www.w3.org/XML.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 493–506, 2007.
c© IFIP International Federation for Information Processing 2007

494 M.L. dos Santos, R.F. de Mello, and L.T. Yang

detection of changes in pattern behavior by measuring energy variation (entropy
[8][9][10][11]). The statistics techniques help to detect differences in the interac-
tion intervals. Users at low interaction intervals should demonstrate more famil-
iarity with the tool or with the subject covered in classes. Neural networks assist
the behavior classification of user interactions, resulting in groups (or clusters),
which represent interaction states such as: low, medium and high interaction.
The variation between such states help to understand user behaviors.

This paper proposes a model to identify and classify user behavior patterns
to allow comparisons in different moments and understand their interactions in
computational systems.

This paper is organized as follows: section 2 presents related work; The
methodology used to classify user behavior is presented in section 3; section
4 compares two users interacting in the iClass system; Conclusions and consid-
erations are presented in section 5; The plans for future works are described in
section 6.

2 Related Work

Works considering methods of user behavior classification are found in literature.
The search for information under the human behavior is a concern of diverse
research areas such as [12][13][14][15][16][17].

Brosso [12] considers an user authentication system in computer networks,
which uses behavior analysis and face recognition to obtain the confidence degree
to identify a system user. By analyzing the user behavior, the author uses the
concept of Context-aware Computing which is based in the study of applications
that adapt to locality and changes that occur to people and objects during time
[18]. Besides context-aware computing, this work also adopts the five semantic
dimensions defined by Abowd [19][20], which are used to specify and model
context information. Those dimensions characterize the relevance of information
(Who, Where, What, When, Why). In this way, to analyze user behavior, matrix
is defined which contains information based in context-aware computing. Such
information allows to understand user actions, locality, the period of interaction,
if some behavior is an habit (why) and the confidence restrictions effected by
user.

Godoy and Amandi [13] consider a technique to generate user profiles by
observing their interaction characteristics on the Web. This technique is inserted
in the algorithm Web Document Conceptual Clustering [21], which allows to
acquire profiles without having any previous knowledge about user interests. The
profile of user interests is organized in an hierarchical tree, where at the highest
level are the general interests and at the lowest, the most particular ones. Those
interests can be any information accessed by the user such as: sports, works, news
and games. The relevance degree of the user interests is measured by means of
term frequency, according to the document access rate.

Lee et al. [14] consider a new load balancing policy for Web servers named
PRORD (Proactive Request Distribution). PRORD preloads the most accessed

Extraction and Classification of User Behavior 495

web pages, based on the probability of future accesses, for this, the system an-
alyzes information about web server caches. Using such preloading scheme, the
web server anticipates pages with high access probability, decreasing the response
time and improving the efficiency.

Macedo et al. [15] propose a system, named WebMemex, which recommends
information to users by analyzing the navigation description of known users. The
WebMemex in conjunction with a proxy web server, which provides user history
requests to WebMemex. In this way, WebMemex captures information such as
IP addresses, user IDs, user active time in system and the URL accessed. Such
information is stored in a relational database for future analysis.

Pepyne et al. [16] propose a method to classify user profiles using queue the-
ory and logistic regression. This work explores system application in computer
network security. The objective is to identify profiles of specialized user groups,
such as bank tellers, which execute periodic computer tasks, from where it is
possible to detect frauds using anomaly analysis of user behaviors.

Schuler and Perez [17] apply data mining techniques to discover user pro-
files in telecommunication systems. Two techniques of data mining are used:
decision trees and neural networks. The rules generated by the decision tree
represent the general profile of default users. Having the defined tree, historical
data can be compared to any user to verify his/her relation to the determined
class. Authors have concluded that decision trees represent user pattern/profile
behavior, but present a great number of sub-groups becoming the comprehension
impracticable.

As previously studied, the majority of works uses classification methods that,
in some way, depends on the system or application goal. Such methods take
into consideration the semantics of the analyzed data, and therefore they cannot
easily be applied to other systems. Considering such problem, the work presented
in this paper is motivated to develop an extraction and classification model to
detect user behavior in any system or application.

3 The Model

This paper proposes a model to identify and classify user behavior patterns to
allow comparisons in different moments and understand their interactions in
computational systems. The model proposed in this paper is based on the study
and evaluation of user interaction datasets; classification using artificial neural
networks (ANNs); representation of user profiles using Markov chains; measure
the energy variation to represent user behaviors; analyze user behavior patterns,
comparing to other users and groups.

The first step of this work created probability distribution functions (PDFs)
to represent the user interactions. Consider the table 1 as an example of user
interaction which contains the data available in iClass. The data represent user
interactions to the system. Each interaction has a timestamp and the quantity
of points (geometric forms or writing) made by an user.

496 M.L. dos Santos, R.F. de Mello, and L.T. Yang

Table 1. Example of user in-
teraction in the iClass sys-
tem

Time Points Object
12:03 1500 geometric shapes
12:05 200 geometric shapes
12:07 400 writing
12:08 200 writing
12:10 400 writing
12:11 200 writing
12:14 900 geometric shapes
12:17 300 writing
12:19 400 geometric shapes
12:20 50 writing
12:22 400 writing
12:24 400 geometric shapes
12:25 200 writing
12:26 200 writing
12:28 1200 writing
12:31 900 geometric shapes
12:35 1600 geometric shapes
12:38 900 writing
12:39 200 writing
12:40 400 geometric shapes

Table 2. Representa-
tion of user interac-
tion in time intervals

Time Intervals Points
12:00 – 12:03 1500
12:03 – 12:05 200
12:05 – 12:07 400
12:07 – 12:08 200
12:08 – 12:10 400
12:10 – 12:11 200
12:11 – 12:14 900
12:14 – 12:17 300
12:17 – 12:19 400
12:19 – 12:20 50
12:20 – 12:22 400
12:22 – 12:24 400
12:24 – 12:25 200
12:25 – 12:26 200
12:26 – 12:28 1200
12:28 – 12:31 900
12:31 – 12:35 1600
12:35 – 12:38 900
12:38 – 12:39 200
12:39 – 12:40 400

Table 3. Example of the
probability distribution on the
user interaction

Interval Points Interval Points
00 – 01 500 20 – 21 200
01 – 02 500 21 – 22 200
02 – 03 500 22 – 23 200
03 – 04 100 23 – 24 200
04 – 05 100 24 – 25 200
05 – 06 200 25 – 26 200
06 – 07 200 26 – 27 600
07 – 08 200 27 – 28 600
08 – 09 200 28 – 29 300
09 – 10 200 29 – 30 300
10 – 11 200 30 – 31 300
11 – 12 300 31 – 32 400
12 – 13 300 32 – 33 400
13 – 14 300 33 – 34 400
14 – 15 100 34 – 35 400
15 – 16 100 35 – 36 300
16 – 17 100 36 – 37 300
17 – 18 200 37 – 38 300
18 – 19 200 38 – 39 200
19 – 20 50 39 – 40 100

In order to understand how the PDF should be useful, a better representation
of the table 1 is presented in the table 2. For this last table, the number of points
in time intervals can be observed. For instance: in the interval of 12 : 00 to 12 : 03
the user has produced 2000 points, this is, 2000 points in 3 minutes.

The data from the table 2 can be distributed in constant time intervals to
simplify the PDF generation. The table 3 presents interaction data distributed
in discrete time intervals of 1 minute, where the number of points p for interval
is given by p = np

i being np the quantity of points in the interval i. To better
illustrate the construction of the table 3, consider the time interval between
12 : 03 and 12 : 05 (table 2), which has 2010 points in 2 minutes, in this case
the time intervals must be divided in two periods of 1 minute: one from 12 : 03
to 12 : 04 and another from 12 : 04 to 12 : 05, with the number of points in each
new same-sized interval to 1005 (2010

2 = 1005) points per minute.
The PDF from the table 3 is presented in the figure 1. In this case, there is a

large user interaction variation to the system.
In the second stage, the data densities of the PDF were classified by an ANN.

Such classification was made submitting input vectors (table 3) in the form np
i

where np is the number of points and i is the time interval, for example: [28
1m ,

10
0.5m , ..., 50

3m]. In this stage the ANN has created groups (clusters) in accordance
with the inputs. When a pattern does not fit in an existing group, a new one
is created to receive it. The figure 2 represents the interaction sequence of the
ANN, illustrating the creation of groups.

In the third stage, having the groups, Markov Chains are built to represent
user profiles. The figure 3 presents an example of a Markov Chain, where the
circles represent states (groups) and the arcs indicate transitions in accordance
with their respective probabilities.

Extraction and Classification of User Behavior 497

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600

N
um

be
r

of
 o

cc
ur

re
nc

es

Points per minute

Fig. 1. Graphical representation of the probability distribution of user interaction

Fig. 2. ANN classifying patterns

As previously observed, the ANN creates a new group when a pattern does not
correspond to a group. The creation of a new group indicates the occurrence of an
unexpected system pattern. Groups, hardly ever visited, also depict unexpected
behavior. To detect such new features [22], the system energy metric (entropy)
is used.

498 M.L. dos Santos, R.F. de Mello, and L.T. Yang

Est_0

Est_2

0.06

Est_1

0.04

Est_6

0.099

Est_50.05

Est_4
0.001

Est_3
0.10

0.02

0.03

0.13

Est_70.12

0.14

Est_8
0.11

0.04

0.06

Fig. 3. Example of a Markov Chain representing a user profile in a time instant

The figure 4 illustrates as the energy behaves at every instant of a Markov
Chain. At the instant t0, as the probabilities to change from a state are equal,
there is almost no behavior variation, therefore the energy E0 is low. At the
instant t1, a system variation is caused by the creation of an unexpected state
Est2, which increases the variation in the probabilities of state change and,
consequently, the energy goes up to E1 = 0.92637354 (the energy variation is
equal to ΔE = 0.23322636).

Fig. 4. Example of energy measurements in the Markov Chain

In the fourth stage user behaviors are analyzed. The evaluation of behavior
differences are carried out comparing the group labeling obtained by the ANN,
joining to the Markov chain of the user at the instant t0 and t1. The labeling
is represented by vectors which summarize the characteristics of the classified
patterns in a certain group of the ANN. Those vectors are in the form r =
[r0, r1, ..., rn−1], where n is the number of input data and r is the relevance of
the input. To allow the comparisons among groups, it is necessary to normalize
vectors r ∈ [0, 1] dividing each element for the summing up of the elements
(rn−1

r0+r1+...+rn−1
).

The behavior of an user is compared in each instant, this is, the instant
t0 is compared (using the labeling vectors) to t1, t2, and so forth, to detect
behavior changes in user interactions. Different users can also have their behavior
compared. That comparison is usually made considering the behavior at the same
time instant tk.

Extraction and Classification of User Behavior 499

4 Experiments and Results

Experiments were conducted to evaluate the proposed model. In iClass, the infor-
mation about the user interaction is stored, in a XML file named “session.xml”.
In this file exists several tags which contain information about user interaction

Fig. 5. User playing the Sudoku game in the iClass system

 0

 50

 100

 150

 200

 250

 300

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

N
um

be
r

of
 P

oi
nt

s

TimeStamp

(a) Number of points in the time in-
terval

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

Fr
eq

ue
nc

y

Number of Points

(b) Frequency of the number of points

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Fr
eq

ue
nc

y

Number of Points / TimeStamp Interval

(c) Frequency of the number of points
per second

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000

Fr
eq

ue
nc

y

TimeStamp Interval / Number of Points

(d) Frequency of the elapsed time per
point

Fig. 6. Example of data distributions on the user interactions in the Sudoku game

500 M.L. dos Santos, R.F. de Mello, and L.T. Yang

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

eS
ta

m
p

/ N
um

be
r

of
 P

oi
nt

s

TimeStamp

Fig. 7. Distribution representing the elapsed time per point throughout the user inter-
action

(a) User 1 - Sudoku (b) User 2 - Sudoku

(c) User 1 - Maze (d) User 2 - Maze

Fig. 8. Two users interacting to the iClass System

such as: user name, page resolution, pen color, timestamp of stroke, number of
points per stroke and others.

A parser using the Java language was developed to extract information about
user interactions from the file “session.xml”. From these information (number of
points and timestamps of each stroke), probability distribution functions were
generated to analyze data.

Extraction and Classification of User Behavior 501

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

eS
ta

m
p

/ N
um

be
r

of
 P

oi
nt

s

TimeStamp

(a) User 1 - Sudoku

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
im

eS
ta

m
p

/ N
um

be
r

of
 P

oi
nt

s

TimeStamp

(b) User 2 - Sudoku

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

eS
ta

m
p

/ N
um

be
r

of
 P

oi
nt

s

TimeStamp

(c) User 1 - Maze

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

eS
ta

m
p

/ N
um

be
r

of
 P

oi
nt

s

TimeStamp

(d) User 2 - Maze

Fig. 9. Interaction data probability distribution of users in the iClass system

Initially, user interactions generated during sessions of the Sudoku2 game were
captured (figure 5). The game took place in the iClass system. From such data,
some probability distributions were created to characterize and understand user
behavior (figure 6).

The figure 6(a) presents a direct data distribution, this is, the data extracted
from the file “session.xml” without modifications. It is difficult to identify some
characteristics by using such figure, for instance, the elapsed time in each inter-
action (user knowledge about the process) and the time interval between two
interactions (thinking time). In the same way, the data presented in the figures
6(b), 6(c) and 6(d) do not directly represent user behavior, therefore the data
in these charts are grouped according frequencies, and in this way, information
as the thinking time and the user knowledge are mixed, making difficult their
identification.

The found solution was to represent the distribution demonstrated in the
figure 6(d) in a time discrete manner, in this way, the data on the elapsed time

2 http://en.wikipedia.org/wiki/Sodoku

502 M.L. dos Santos, R.F. de Mello, and L.T. Yang

0

99.011%

1
0.989%

0.081%

99.893%
20.013%

3

0.013%

3.125%

96.875%

2.5%

97.5%

(a) User 1 - Sudoku

0

99.962%
10.025%

2

0.013%

4.545%

95.455%

7.143%

92.857%

(b) User 2 -
Sudoku

0

99.937%

1
0.025%

2
0.025%

30.013%

0.088%

99.912%

0.025%

99.951%

0.025%

0.036%

99.964%

(c) User 1 - Maze

0

99.968% 10.016%

2

0.016%

0.188%

99.812%

100.0%

(d) User 2 -
Maze

Fig. 10. Markov chains at the last user interaction in the iClass system

in each user interaction is represented at the same time interval, making possible
the direct comparison between the chart and the user interaction. The figure 7
represents this new data distribution, where can be visualized the time intervals
in which the user interacts to the system (Sudoku game in such case). Each
unevenness presented in the charts depicts an user action in the game.

However, any distribution will present a deficit in the data representation, not
separating the interaction time from the time between interactions. This occurs
because the way the information is stored by iClass. The extracted information
from iClass is in the form: timestamp for the number of points drew by users. In
this way, to obtain the interaction time of one stroke, the timestamp of the next
has to be deducted from the current one. The stroke interaction time represents
the moment of user interaction, the idle time between interactions is common as
the user make an action and later spends a time until the next one initiates.

After having defined the data distribution to represent user behavior, the
experiments were conducted to evaluate the interaction of two different users.
Those users had interacted, by means of the iClass system, to the Sudoku game
and had solved a maze problem. The figure 8 represents the end of the interaction
carried out by User 1 and User 2.

Afterwards, each user interaction behavior is represented by the data distribu-
tion extracted from the file “session.xml”. The data distributions of interaction
of each user is demonstrated in the figure 9, where the behavior of the User 1

Extraction and Classification of User Behavior 503

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
ne

rg
y

TimeStamp

(a) User 1 - Sudoku

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000 6000 7000 8000

E
ne

rg
y

TimeStamp

(b) User 2 - Sudoku

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 2000 4000 6000 8000 10000 12000 14000 16000

E
ne

rg
y

TimeStamp

(c) User 1 - Maze

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 500 1000 1500 2000 2500 3000

E
ne

rg
y

TimeStamp

(d) User 2 - Maze

Fig. 11. Variation in the user pattern behavior in the iClass system

interacting to the Sudoku game and the maze is respectively represented by the
figure 9(a) and figure 9(c) and, the behavior of the User 2 is represented by the
figure 9(b) and 9(d), respectively.

The next steps, following the model in the section 3, is: to carry out the
data classification, building the Markov chains and later measuring the average
energy variation between the two chains (entropy). Using the neural network
SONDE [23], the data distributions represented in the figure 9 were classified.
As the main purpose of SONDE is to detect new features (novelties) by analyzing
energy variations in datasets, the Markov chains and the energy variation chart
were automatically generated. The figure 10 represents only the Markov chains
at the last user interaction in the Sodoku and in the Maze (remember each time
instant is represented by a Markov chain).

After generating the Markov chains, the user behavior variation is represented
by the energy variation between Markov Chains. This behavior variation is rep-
resented in the figure 11.

By analyzing the figure 11, User 1 keeps some characteristics in the two in-
teractions (Sudoku and Maze), what also occurs to User 2. In the figure 11(a),
some stable points in the user behavior (declivity) are observed, this character-
istic also is observed in the figure 11(c). A detailed observation of the User 2
allows to notice a common pattern among the interactions. In the figure 11(b),

504 M.L. dos Santos, R.F. de Mello, and L.T. Yang

the energy level is increasing, presenting steps, and the same occurs in the figure
11(d). By this, we confirm that User 2 contains a bigger dynamism in his/her
actions, not having pauses throughout interactions. User 1 also presents a level of
increasing energy, although, differently from User 2, the User 1 probably present
pauses during its interactions. Maybe such pauses are related to the thinking
time throughout interactions, in contrast of User 2 that thinks about the prob-
lem before starting deciding.

5 Conclusion

This paper proposes a model to extract data from user interactions to detect and
classify user behavior patterns. The model summarizes user interactions through
Markov Chains, and the user behavior profile is represented by a set of Markov
Chains. The energy variation (entropy) between Markov Chains represents the
user behavior variation along interactions.

Experiments were conducted to evaluate the proposed model in the iClass
system. The obtained results show that the model detects users behavior profiles
interacting in the iClass system. Even interacting in distinct problems, users may
present similar behavior characteristics between experiments. It is important to
notice that such results are preliminary and are not conclusive.

With the manipulation and analysis of user interaction data, we may establish
relations among different behaviors and profiles, being possible to relate an user
or group actions in classrooms to their test performances or still to identify an
user by analyzing interactions.

Using techniques of energy measurement (entropy) in a system, it is possible
to detect user behavior changes, relate them to unexpected events such as some
special fact occurred in classroom, personal or medical problems and others.

Besides establishing user behavior patterns, it is also possible to anticipate
user actions. This technique can assist in the artificial intelligence of games, Web
sites recognizing users from interactions.

6 Future Work

The results presented in this paper were obtained by experiments conducted
with two users. In order to give statistical relevance such experiments will be
executed in a larger population. Besides the experiments, techniques of validation
and comparison of user behavior patterns have been studied.

Acknowledgments

This paper is based upon work supported by CAPES, Brazil under grant no.
032506-6 and FAPESP, Brazil. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the CAPES or FAPESP.

Extraction and Classification of User Behavior 505

References

1. Cattelan, R.G., Andrade, A.R., Rocha, C.F.P., Pimentel, M.d.G.C.: iclass: um sis-
tema para captura e acesso de sessões em ambiente educacional. Revista Eletrônica
de Iniciação Cient́ıfica - REIC 3(1), 10–28 (2003)

2. Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical
Society 2nd Rev edn. (July 1, 1997), United States of America (1997)

3. Nogueira, F.: Cadeias de markov. (02, 2006),
http://www.engprod.ufjf.br/fernando/epd042/cadeiaMarkov.pdf

4. Kaski, S., Oja, E.: Kohonen Maps. Elsevier Science Inc., New York (1999)
5. Kohonen, T., Kaski, S., Lagus, K., Salojrvi, J., Honkela, J., Paatero, V., Saarela,

A.: Self organization of a massive document collection (2000)
6. Makhfi, P.: Competitive learning (2006),

http://www.makhfi.com/tutorial/clearn.htm
7. Carpenter, G.A., Grossberg, S.: The ART of adaptive pattern recognition by a

self-organizing neural network. Computer 21(3), 77–88 (1988)
8. Shannon, C.: A mathematical theory of communication. Bell System Technical

Journal 27, 379–423 and 623–656 (1948)
9. Santos, E.M.d.S., Albuquerque, M.P., Mello, A.d.R.G., Caner, E.S., Esquef, I.A.:

Fundamentos da teoria da informaçào. Technical report, Centro Brasileiro de
Pesquisas F́ısicas (Dezembro 2004)

10. Boltzmann, L.: Vorlesungen uber Gastheorie. Volume 1, 2. J. A. Barth Leipzig
(1896) English Translation by S.G. Brush: Lecture on Gas Theory, Cambridge
Univ. Press, Cambridge (1964)

11. Freeman, J.A., Skapura, D.M.: Neural networks: algorithms, applications, and pro-
gramming techniques. Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA (1991)

12. Brosso, M.I.L.: Autenticação Cont́ınua de Usuários em Redes de Computadores.
Tese de doutorado, Politécnica da Universidade de São Paulo, São Paulo, SP, Brasil
(2006)

13. Godoy, D., Amandi, A.: User profiling for web page filtering. IEEE Internet Com-
puting 9(4), 56–64 (2005)

14. Lee, H.K., Vageesan, G., Yum, K.H., Kim, E.J.: A proactive request distribution
(prord) using web log mining in a cluster-based web server. In: ICPP 2006: Pro-
ceedings of the 2006 International Conference on Parallel Processing, pp. 559–568.
IEEE Computer Society, Washington, DC, USA (2006)

15. Macedo, A.A., Truong, K.N., Camacho-Guerrero, J.A., da Graça Pimentel, M.:
Automatically sharing web experiences through a hyperdocument recommender
system. In: HYPERTEXT 2003: Proceedings of the fourteenth ACM conference
on Hypertext and hypermedia, pp. 48–56. ACM Press, New York (2003)

16. Pepyne, D.L., Hu, J., Gong, W.: User profiling for computer security. American
Control Conference, 2004. Proceedings of the 2004 2(6), 982–987 (2004)

17. Schuler, A.J.J., Perez, A.L.F.: Análise do perfil do usuário de serviços de telefonia
utilizando técnicas de mineração de dados. RESI - Revista Eletrônica de Sistemas
de Informação 7(1) (2006)

18. Schilit, B., Theimer, M.: Disseminating active map information to mobile hosts.
IEEE Network 8(5), 22–32 (1994)

19. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.)
HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

http://www.engprod.ufjf.br/fernando/epd042/ cadeiaMarkov.pdf
http://www.makhfi.com/tutorial/clearn.htm

506 M.L. dos Santos, R.F. de Mello, and L.T. Yang

20. Abowd, G.D., Mynatt, E.D.: Charting past, present, and future research in ubiq-
uitous computing. ACM Trans. Comput.-Hum. Interact. 7(1), 29–58 (2000)

21. Godoy, D., Amandi, A.: Modeling user interests by conceptual clustering. Inf.
Syst. 31(4), 247–265 (2006)

22. Markou, M., Singh, S.: Novelty detection: a review – part 2: neural network based
approaches. Signal Process. 83(12), 2499–2521 (2003)

23. Albertini, M.K., Mello, R.F.: A self-organizing neural network for detecting novel-
ties. In: ACM Symposium on Applied Computing (2007)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 507–516, 2007.
© IFIP International Federation for Information Processing 2007

A Floorplan-Based Power Network Analysis Methodology
for System-on-Chip Designs

Shih-Hsu Huang1, Chu-Liao Wang1, and Man-Lin Huang2

1 Department of Electronic Engineering
Chung Yuan Christian University

Chung Li, Taiwan, R.O.C.
{shhuang,g8976035}@cycu.edu.tw

2 Office of Information Technology
Feng-Chia University

Tai Chung, Taiwan, R.O.C.
mlhuang@fcu.edu.tw

Abstract. In order to enable the single-pass design methodology, the planning of
power distribution should be performed as early as possible. In this paper, we
will tackle this problem at the floorplan stage. First, at the block level, we will
present an effective method to model the behavior of local power network
structure of a reused block. Next, at the full-chip level, we will present a
floorplan-based power network analysis methodology for system-on-chip (SOC)
designs. The proposed methodology works well because it uses suitable models
to represent the local power networks of blocks according to the properties of
blocks. Experimental data shows that the new modeling technique can identify
the most critical drop voltage of a reused block and the floorplan-based analysis
methodology is useful for the planning of power distribution network of a SOC
design.

Keywords: Modeling, Voltage Drop, Power Consumption, and Reused Block.

1 Introduction

Power distribution is always very important in the design of VLSIs because power
network covers a large portion of chip area. So it is given the first priority in routing
process [1][2]. There are two basic problems in the design of power network. The first
is the undesirable wear-out of metal wiring caused by electromigration, and the second
is the narrowing margins causes by voltage drops. Increasing wire widths can solve
these problems. But it is too expensive to use the wiring resources freely.

In the deep submicron technology, the metal width tends to decrease with the length
increasing due to the complex system integration into single silicon. Therefore, the
resistance along the power metal line increases. Chips that are under-designed with a
smaller margin often fail on the test bench or later in the field. However, most of the
commercially available tools focus on the transistor-level and post-layout verification

508 S.-H. Huang, C.-L. Wang, and M.-L. Huang

of power distribution. If any problem related to electromigration or voltage drop is
revealed at this stage, it is very difficult or expensive to fix. In order to enable the
single-pass design methodology, the accurate planning of power distribution should be
performed as early as possible. In this paper, we will present a floorplan-based power
network analysis methodology for system-on-chip (SOC) designs.

At the floorplan stage, the chip area is divided into a set of non-overlapping physical
blocks by power trunks. Each physical block consists of many rows. Cells are placed on
the row so that the power is fed from the power rail. The two end points of a power rail
are the power trunks. Because of consistency between cell library and power rail, and
wiring resource economy, the line width of power rail may not be increased. In other
words, the local power network structure in a physical block is often fixed. However,
with the increase of chip size, power supply current for more than a hundred cells is to
be fed through this thin rail. The power trunks are necessarily used to improve the
reliability and quality of power distribution. Therefore, the design and analysis of
power network is important for SOC designs.

The main distinctions of our work are elaborated as the below:

• At the block level, we will propose an effective method to model the local power
network structure of a reused block, whose power consumption was already
measured by real instruments. As a result, when we integrate the reused block
into a SOC design an accurate equivalent resistive circuit can be used to describe
the behavior of local power network structure.

• At the full-chip level, we will propose an effective methodology to analyze the
power distribution of a SOC design. As a result, the designer can accurately
predict the electromigration or voltage drop problem at the floorplan stage. If any
reliability problem is found, the designer can make power network changes when
they are easiest and least costly to implement.

The rest of the paper is organized as the below. Section 2 briefly introduces the
problem and surveys the related works. In Section 3, we will present a new modeling
method, which is well suitable to model the behavior of local power network
structure of a reused block. Next, a floorplan-based full-chip power network analysis
methodology will be proposed in Section 4. Some experimental results will be
reported in Section 5. Finally, we will give some concluding remarks in Section 6.

2 Preliminaries

At the stage of floorplan, the power trunks form a global power network and divide the
full-chip into several blocks. Let’s use Figure 1 as an example. Figure 1 (a) is a
floorplan, whose blocks are divided by global power network. Figure 1 (b) illustrates an
equivalent circuit of its power distribution.

At the block level, where local hot spots are located, a finer grid will be generated to
model the local power network structure. The power grids may be defined as below.
Each physical block consists of many rows. On each row, the power rails of adjacent
cells are connected together. A straightforward method is that each cell in the row is
represented as a grid.

A Floorplan-Based Power Network Analysis Methodology for System-on-Chip Designs 509

(a) (b)

Fig. 1. (a) A floorplan. (b) An example of equivalent circuit of its power network.

Most previous works use the equivalent current source model [3][4] to describe the
local power network structure of a block at the floorplan stage. The assumptions of the
equivalent current source model are elaborated as below.

• All the switching activities within one block are lumped together.
• The current sources are uniformly distributed at the grids.

The equivalent current source model is useful for modeling blocks at floorplan view,
where placement and route have not been done. The basic technique of equivalent
current source model is described as the below. Suppose that the power consumption of
a block, which is usually reported by the dynamic gate-level power calculator, equals to
Pblock. Note that, in order to tackle the worst case, Pblock is usually the peak power
consumption. Then, for this block, the equivalent current source Iblock is equivalent to
Pblock/VDD. Assumes that this block consists of m rows and each row has n grids. Thus,
for each gird in this block, the equivalent current source Igrid is Iblock/(m*n). As a
result, for each grid in this block, the resistance Rgrid equals to VDD/Igrid. The Rp is
equivalent to Rs * row length / power rail width, where Rs is unit resistor. The method
to calculate Rring is similar to RP.

3 The Modeling Technique for Reused Blocks

In this section, we will present an effective modeling technique for the local power
network structure of a reused block, whose power consumption was already measured
by real instruments. Our motivation is shown in Section 3.1. Then, our method is given
in Section 3.2.

3.1 The Motivation

First, we borrow the material from [5] to describe the equivalent current source
modeling technique as below. In the equivalent current source modeling technique, the
value of equivalent current source is obtained without considering the resistances in the
power rails. As a result, when the metal resistances in the power rails are added into the
equivalent circuit, the power consumption will be varied. In other words, the power
consumption of the equivalent resistive circuit derived by this model will be different
from the original given power consumption.

510 S.-H. Huang, C.-L. Wang, and M.-L. Huang

Let’s use the unit placement row shown in Figure 2 as an example. A unit placement
row is a resistive network whose end points are power trunks. The unit placement row
in Figure 2 consists of the resistors RP1, RP2, RP3, RP4, RP5, RC1, RC2, RC3, and RC4. The
values of RP1, RP2, RP3, RP4, and RP5 are extracted from technology parameters. Assume
that Prow is the given power consumption of the unit placement row. Then, if using the
equivalent current source model, the values of RC1, RC2, RC3, and RC4 are obtained by
the following equation:

Rci = (4*VDD
2)/Prow , where i=1,2,3,4

Let PRP1, PRP2, PRP3, PRP4 and PRP5 be the power dissipation of resistors RP1, RP2, RP3,
RP4, and RP5 respectively. From [5], the power consumptions PRP1, PRP2, PRP3, PRP4 and
PRP5 can be calculated as follows.

PRP1 = (VS1 – VM1)2 / RP1
PRP2 = (VM1 – VM2)2 / RP2
PRP3 = (VM2 – VM3)2 / RP3
PRP4 = (VM3 – VM4)2 / RP4
PRP5 = (VM4 – VS2)2 / RP5

Fig. 2. An example of unit placement row

Let PRC1, PRC2, PRC3 and PRC4 be the power dissipation of resistors RC1, RC2, RC3, and
RC4 respectively. The power consumptions PRC1, PRC2, PRC3 and PRC4 can be calculated
as follows.

PRC1 = VM1
2 / RC1

PRC2 = VM2
2 / RC2

PRC3 = VM3
2 / RC3

PRC4 = VM4
2 /RC4

Therefore, the total power consumption Ptotal of this resistive network is given by the
following equation:

Ptotal= PRP1+ PRP2+PRP3+PRP4+PRP5+PRC1+PRC2+ PRC3+PRC4.

It is obvious that Ptotal is not the same as Prow, which is the original given power
consumption. In other words, although we use Prow to obtain the equivalent current
source, the power consumption of the derived resistive circuit is not equivalent to Prow.
However, the Prow may also often be over-estimated, because dynamic gate-level power
calculator does not tackle metal resistances. Therefore, although there is a difference

A Floorplan-Based Power Network Analysis Methodology for System-on-Chip Designs 511

between Prow and Ptotal, the equivalent current source model still works well in
specifying the power grid requirements for typical ASIC design flow.

However, due to the trend of SOC design methodology, a block may be reused from
a previous production chip. In such case, real instruments can measure the power
consumption of this reused block. Once a block is measured, we need to be able to reuse
the accurate measured result, rather than having to re-estimate for the block. Therefore,
it is desirable to have a power network modeling technique such that the Ptotal equals to
Prow. To achieve the goal, we need to have a different method to model the behavior of
local power network structure.

3.2 The Proposed Method

The problem we study is described as the below. Given a measured power consumption
of a reused block, find the value of equivalent grid resistance such that the power
consumption of the derived resistive circuit is identical. With the same assumption as
[3][4], we suppose that all grid resistances are the same. Let’s use Figure 2 as an
example. Suppose the reused block has m rows and the measured power consumption is
Pblock. Then, the Prow is Pblock/m. The values of RP1, RP2, RP3, RP4, and RP5 can be
extracted from technology parameters. Thus, our problem is to find the value of grid
resistance RC such that RC = RC1 = RC2 = RC3 = RC4 and Prow = Ptotal.

It is difficult to find the correct RC directly. Our method is to iteratively solve the
linear resistive network and calculate the Ptotal in each time of iteration. The initial value
of RC is the same as the equivalent current source model. In other words, initially, RC =
(n*VDD

2)/Prow, where n is the number of grids in a row.

Procedure Find_Grid_Resistance();
begin
RC = (n*VDD

2)/Prow;
solve the resistive network based on RC;
while (|Prow-Ptotal|>tolerance) do
 begin
 if (Prow>Ptotal)
 then decrease RC;
 else increase RC;
 solve the resistive network based on RC;
 end
end.

Fig. 3. The algorithm to find the grid resistance RC

Note that the Ptotal is calculated in each time when the linear resistive network is
solved. If Ptotal is smaller than Prow, RC is decreased by a small value in the next time. If
Ptotal is greater than Prow, RC is increased by a small value in the next time. The iterations
repeat until the difference between Prow and Ptotal are confined within a tolerance value.
As a result, the value of RC will be converged. The pseudo code of our method is given
in Figure 3.

512 S.-H. Huang, C.-L. Wang, and M.-L. Huang

4 The Full-Chip Analysis Methodology

A SOC design often contains several blocks. In this section, we will present a
floorplan-based full-chip power network analysis methodology, which is applicable to
the design flow of a SOC design.

4.1 Full-Chip Equivalent Resistive Circuit

The first step is to generate an equivalent resistive circuit to represent the full-chip
power distribution. The algorithm is depicted in Figure 3. For the need of further
analysis, the output is in SPICE format. The details of the algorithm are as below.

The algorithm translates all the power pads, power trunks, all the physical blocks
into corresponding equivalent circuits, respectively. Firstly, the power pads are tackled.
For each power pad, the supplied voltage value is set on its corresponding grid position.
Then, for each power trunk, it is translated into a series of resistance Rtrunk, where
Rtrunk is obtained as below:

(1) For a vertical power trunk, Rtrunk = Rs * cell height / power trunk width.
(2) For a horizontal power trunk, Rtrunk = Rs * cell width / power trunk width.

Next, the local power network of each physical block is translated into equivalent
resistive circuit according to the property of this block. For the blocks, whose power
consumptions are reported by dynamic gate-level power simulator, their local power
networks are generated into SPICE netlist using equivalent current source model. For the
blocks, whose power consumptions are measured by real instruments, their local power
networks are generated into SPICE netlist using the model presented in Section 3.2.

Procedure Generate_Full_Chip_Netlist();
begin
for each power pad do
 set the voltage value on the corresponding grid;
for each power trunk do
generate the corresponding resistive circuit;
for each physical block do

begin
 if it is a reused block

 then
 generate the corresponding resistive circuit using the model as shown in Section

3.2;
 else
 generate the corresponding resistive circuit using the equivalent current source

model;
end

end.

Fig. 4. The algorithm to generate an equivalent resistive circuit for the full-chip

A Floorplan-Based Power Network Analysis Methodology for System-on-Chip Designs 513

Finally, all the equivalent circuits, including power pads, power trunks, and physical
blocks, are combined together. As a result, a full-chip equivalent resistive circuit in
SPICE format is already generated.

4.2 The Analysis Procedures

After the full-chip equivalent resistive circuit is obtained, we can perform full-chip
power network analysis through SPICE simulation. Because of metal resistances, the
full-chip simulation has the following properties:

 The voltages on different grids of the global power network are different.
 The voltages on different grids of a block are different.
 For the same grid in a block, the voltage will be varied when the block is

integrated into a SOC design.

Even though a block is safe in the block level analysis, it still may have voltage drop
or electromigration problem in the full-chip analysis.

Early analysis enables us to make power network changes when they are easiest and
least costly to implement. Because of consistency between cell library and power rail,
the values of Rc and Rp in a block are often fixed. Therefore, if any voltage drop or
current density problem found in the full-chip power analysis, the designer need to
widen the power trunks or add more power trunks. Whenever the global power network
is modified, the voltages on power grids may be varied. The effects caused by the
modification of global power network are summarized as the below:

• The voltages on the grids of the global power network will be varied, because the
corresponding resistances (i.e., Rtrunk) are increased or decreased.

• The voltages on the grids of a row will be varied, if any one voltage at the end
points is varied.

If the power network is modified, a new equivalent resistive circuit is generated.
Then, the modified power network should be validated again through SPICE
simulation. The procedure repeats until no reliability problem found in the final power
network.

The analysis methodology can be further generalized. Suppose that a SOC design
has M execution modes. Thus, M equivalent resistive circuits need validation. The
procedures are elaborated as below. Assume that the SOC design contains N blocks,
including B1, B2, …, and BN. Let Pi(Bj) be the peak power consumption of block Bj at
execution mode i, where 1≤i≤M and 1≤j≤N. For each Pi(Bj), where 1≤i≤M and 1≤j≤N,
we can choose the suitable modeling technique to describe the local power network
structure. Next, for each execution mode i, we can obtain the corresponding full-chip
equivalent resistive circuit according to Pi(Bj), where 1≤j≤N. As a result, we will have
M full-chip equivalent resistive circuits. Note that all the M equivalent resistive circuits
should be validated through SPICE simulation. If any reliability problem is found, the
related power trunks in the global power network are modified. Based on the
modification, new M equivalent resistive circuits are generated. The procedures repeat
until no reliability problem can be found.

514 S.-H. Huang, C.-L. Wang, and M.-L. Huang

5 Experimental Results

We have developed the floorplan-based full-chip power network analysis algorithm by
using C programming language and integrated it with Star-Hspice on a Sun
UltraSPARC-10 workstation. In the following, we will report some experimental
results to show the effectiveness of the proposed analysis methodology. The first
experiment reports the experimental results on the new modeling technique and gives
the comparisons with other approaches [3][4][5]. The second experiment reports the
studies on the resolution of grids. In these experiments, four test cases, which resemble
the unit placement row in a real block, are used to test the effectiveness of the proposed
analysis methodology.

Table 1 tabulates the characteristics of these four test cases with the measured power
consumption, the voltage on the end points, and the row length. Without loss
generality, we assume the voltages on the two end points are the same. However, note
that, due to the metal resistances in power trunks, the voltages on the two end points of
a row are often different with each other.

Table 1. Summary of test cases

5.1 Studies on the New Modeling Technique

We compare the new modeling technique with previous works [3][4][5]. Table 2
tabulates the experimental results. The results include the comparison of (i) the derived
equivalent grid resistance RC (the unit is in ohm); (ii) the power consumption of the
derived equivalent resistive circuit; (iii) the minimum voltage found in the equivalent
resistive circuit (the unit is in volt); and (iv) the CPU time to analyze the test case (the
unit is in second).

As shown in Table 2, the equivalent resistive circuits derived from our approach
have the same power consumption with the original given power consumption (i.e., the
measured power shown in Table 1). On the other hand, the power consumptions of
equivalent resistive circuits derived by other approaches are less than the original given
power consumption. Moreover, because the metal resistances in the power rail are
taken into account to derive the equivalent circuit, experimental data also shows that
our approach can identify the most critical drop voltage.

The modeling technique of [5] is an extension of [3][4]. It repeats the procedures
presented in Section 2 until a converged equivalent current source is obtained. As a
result, the grid resistances obtained by [5] are different among all the grids in the row.
The grid resistance of [5] reported in Table 2 is the minimum value.

Test Case Measured Power Voltage at End Points Row Length
CKT1 8 mW 1.8 V 1500 μm
CKT2 4 mW 1.8 V 5000 μm
CKT3 25 mW 1.8 V 700 μm
CKT4 20 mW 1.8 V 250 μm

A Floorplan-Based Power Network Analysis Methodology for System-on-Chip Designs 515

Table 2. Experimental results on different modeling techniques

Test Case Method Derived RC Derived
Power (mW)

Minimum
Voltage
Found

CPU time
(second)

Ours 3751099 8.0 1.601 0.20
[3][4] 4049999 7.4 1.614 0.10

CKT1

[5] 4049999 7.3 1.616 1.77

Ours 7115399 4.0 1.474 0.26
[3][4] 8099999 3.5 1.508 0.12

CKT2

[5] 7940414 3.6 1.504 1.77

Ours 1157669 24.9 1.513 0.30
[3][4] 1295999 22.5 1.540 0.12

CKT3

[5] 1295906 22.5 1.540 1.74

Ours 1532480 19.9 1.654 0.24
[3][4] 1620000 18.9 1.661 0.12

CKT4

[5] 1620000 18.5 1.665 1.80

Table 3. Experimental results on different number of grids

Test Case The Number of
Grids

Derived
RP

Derived RC Minimum
Voltage

Position of
Minimum
Voltage

20000 0.018213 7502199 1.601 749.6
10000 0.036425 3751099 1.601 749.7

8000 0.045530 3000899 1.601 749.7

5000 0.072843 1875589 1.601 749.8

2000 0.182052 750299 1.601 749.6

CKT1

1000 0.363922 374999 1.601 749.2

20000 0.060711 14231308 1.473 2499.8

10000 0.121416 7115399 1.474 2498.7

8000 0.151767 5692299 1.473 2499.0

5000 0.242809 3557599 1.474 2499.5

2000 0.606839 1422969 1.474 2498.7

CKT2

1000 1.213073 711499 1.473 2497.5

20000 0.008500 2315299 1.513 349.9
10000 0.016998 1157669 1.513 349.8

8000 0.021247 926099 1.513 349.9

5000 0.033993 578899 1.513 349.9

2000 0.084958 231499 1.513 349.8

CKT3

1000 0.169830 115719 1.513 349.6

20000 0.024285 3064900 1.654 124.8

10000 0.048567 1532480 1.654 124.8

8000 0.060707 1225969 1.654 124.8

5000 0.097123 766300 1.654 124.9

2000 0.242736 306499 1.654 124.9

CKT4

1000 0.485229 153199 1.654 124.8

516 S.-H. Huang, C.-L. Wang, and M.-L. Huang

5.2 Studies on the Resolution of Grids

At the block level, where local hot spots are located, finer grids are generated to model
the local power network structure. The most comprehensive method is to define the
resolution of grids as fine as possible. However, the CPU time may increase with the
increase of the resolution of grids. Furthermore, the number of grids cannot be infinite.
In order to study the effects caused by the resolution of grids, we analyze the test cases
with different number of grids. Without loss of generality, the new modeling technique
is applied. Table 3 tabulates the results on the four test cases.

For each test case, given a number of girds, Table 3 reports the value of derived Rp,
the value of derived Rc, the minimum voltage found, and the position of the minimum
voltage, respectively. Obviously, with the increase of resolution of grids, the derived
Rp decreases and the derived Rc increases. However, experimental data shows that, in
the range of 1000 to 20000 grids, the values of minimum voltage are converged to the
same value. In other words, 1000 grids are enough to find the minimum voltage in these
test cases. Furthermore, note that 1000 is not the lower bound in these test cases.

Based on the observation as shown in Table 3, we know that the critical drop voltage
can be identified with a coarser resolution of grids. As a result, the CPU time of
full-chip simulation can be significantly reduced.

6 Conclusions

In this paper, we presented an effective modeling technique for the local power network
of a reused block. If compared with existing models, the main distinction of the proposed
approach is that the power rails are into account to derive the equivalent resistive circuit.
Experimental data shows that the proposed modeling technique can identify the critical
drop voltage in reused blocks. We have developed a floorplan-based full-chip power
distribution analysis system, which uses different models to represent the power networks
of blocks according to their properties. As a result, the designer can accurately predict the
electromigration or voltage drop problem at the floorplan stage and make power network
changes when they are easiest and least costly to implement. This power network analysis
system is well suitable for a SOC design.

References

1. Mitsuhashi, T., Kuh, E.S.: Power and Ground Network Topology Optimization for Cell-Based
VLSIs. In: The Proc. of 29th Design Automation Conference, pp. 524–527 (1992)

2. Huang, S.H., Wang, C.L.: An Effective Floorplan-Based Power Distribution Network
Design Methodology Under Reliability Constraints. In: Proc. of IEEE International
Symposium on Circuits and Systems, vol. 1, pp. 353–356 (2002)

3. Rabaey, J.M., Pedram, M.: Low Power Design Methodologies. Kluwer Academic
Publishers, Dordrecht (1996)

4. Yim, J.S., Bae, S.O., Kyung, C.M.: A Floorplan-Based Planning Methodology for Power
and Clock Distribution in ASICs. In: Proc. of Design Automation Conference, pp. 766–771
(1999)

5. Cho, D.S., Lee, K.H., Jang, G.J., Kim, T.S., Kong, J.T.: Efficient Modeling Techniques for
IR drop Analysis in ASIC Designs. In: Proc. of the 12th Annual IEEE International
ASIC/SOC Conference, pp. 64–68 (1999)

A Multi Variable Optimization Approach for the

Design of Integrated Dependable Real-Time
Embedded Systems�

Shariful Islam and Neeraj Suri

Department of CS
TU Darmstadt, Germany

{ripon,suri}@cs.tu-darmstadt.de

Abstract. Embedded systems increasingly encompass both dependabil-
ity and responsiveness requirements. While sophisticated techniques ex-
ist, on a discrete basis, for both dependability/fault-tolerance (FT) and
real-time (RT), the composite considerations for FT+RT are still
evolving. Obviously the different objectives needed for FT and RT make
composite optimization hard. In this paper, the proposed Multi Vari-
able Optimization (MVO) process develops integrated FT+RT consid-
erations. We introduce dependability as an initial optimization criteria
by confining error propagation probability, i.e., limiting the interactions.
Subsequently, quantification of interactions together with RT optimiza-
tion by minimizing scheduling length is developed. A simulated annealing
approach is utilized to find optimized solutions. We provide experimental
results for our approach, showing significant design improvements over
contemporary analytical initial feasibility solutions.

1 Introduction and Paper Objectives

Embedded real-time systems with implications on system dependability1 are
being employed in diverse applications such as flight, drive and process control.
More and more functionality is being integrated into such systems, invariably
leading to a heterogeneous environment consisting of applications of different
criticality (both safety critical (SC) and non-SC), each with associated respon-
siveness requirements. Each application introduces system level constraints such
as software (SW) complexity, cost, space, weight, power and multiple other re-
alization constraints making the overall system composition a complex resource
optimization task.

Thus, efficient system design strategies are needed to integrate these diverse
applications across limited hardware (HW) resources while considering the in-
terplay of fault-tolerance (FT) and real-time (RT) objectives. Mapping of mixed
criticality/responsiveness applications onto shared resources is a crucial step for

� This work has been partly supported by the EU IST FP6 DECOS.
1 The terms Dependability and FT will be used synonymously in the paper.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 517–530, 2007.
c© IFIP International Federation for Information Processing 2007

518 S. Islam and N. Suri

such a system design strategy. A mapping is defined as: (i) assignment of jobs2 to
suitable HW nodes such that platform resource constraints and dependability re-
quirements are met (resource allocation) and (ii) ordering job executions in time
(scheduling). This design step faces new challenges under resource constraints
and needs careful attention such that FT and RT requirements are not com-
promised. Moreover, design optimization involves simultaneous consideration of
several incompatible and often conflicting objectives.

Recently, bi-criteria objectives have attracted attention by researchers, e.g.,
in [1],[2,3]. The first two papers consider the trade-off between system relia-
bility and scheduling length, while the third considers minimization of energy
consumption using checkpointing to recover from faults. The complexity of the
design endeavor becomes apparent when considering the huge design space of
possible solutions on one hand, and the many competing design objectives on
the other [4]. Overall, better design methodologies are needed to handle such
complex problems.

We propose a generic optimization framework considering different design
variables3 both from Dependability/FT and RT perspectives. The approach is
called Multi Variable Optimization (MVO), which takes into account the sat-
isfaction of various constraints as well as optimization of multiple competing
variables. Since dependability is a primary design objective for safety-critical sys-
tems, the proposed framework puts emphasis on FT through replication of highly
critical jobs. Dependability is then enhanced by providing error-containment
mechanisms. If an error is present in a job, it is possible for this error to prop-
agate to other jobs and cause multiple failures4. In ultra-dependable systems
even a very small correlation of failures of the replicated units can have a sig-
nificant impact on the overall dependability [5]. Thus, highly interacting jobs
are assigned onto the same node, to prevent the spread of errors across HW
nodes, i.e., enhance dependability by error confinement [6]. We also minimize
the scheduling length while satisfying job precedence and deadline constraints
and minimize the utilization of the network.

The contributions of our work are: (i) development of a generic framework
which systematically guides the optimized system level design, (ii) quantification
of application interactions and techniques to constrain the propagation of errors,
(iii) combining interactions with scheduling length and bandwidth utilization
that enables us to solve the MVO problem and (iv) application of an existing
optimization algorithm within the approach, enabling a quantitative evaluation.
For a representative target study, our evaluation shows significant design im-
provements for the considered variables. From a RT perspective, minimizing the
scheduling length also gives the basis for maximizing the CPU utilization.

The paper is organized as follows. Section 2 discusses the related work. System
models and problem statement are introduced in Section 3. Section 4 presents

2 Applications are further decomposed into smaller executable units called jobs.
3 A single variable refers to optimization of a single objective.
4 The failure of a module (can be an application, a job or a node) due to the failure

of another module is called a cascading failure.

A Multi Variable Optimization Approach 519

the generic MVO framework and Section 5 provides the quantification of the
variables. For the evaluation of the approach, we employ simulated annealing
described in Section 6. The experimental evaluation and results are given in
Section 7. Section 8 concludes the paper.

2 Related Work

Usually, FT is applied to an existing scheduling principle such as rate-monotonic
or static off-line either by using task replication [7] or task re-execution [8],[9].
Satisfying RT constraints, in [10], the authors minimize the total completion and
communication times. Maximization of the probability of meeting job deadlines
is considered in [11]. A scheduling approach for distributed static systems is
presented in [12], where the authors minimize the jitter for periodic tasks using
simulated annealing. Satisfaction of multiple constraints (timing, dependability)
and optimization of a single variable (bandwidth utilization) is presented in [13].
All these approaches either consider dependability as constraint or optimize a
selected operational variable from a RT perspective.

Though optimizing one variable is straightforward, optimization of multiple
variables is considerably more difficult. Several mapping techniques exist but
few are concerned with optimizing dependability/FT and RT issues together.
In [14], the authors propose that the combination of active replication and re-
execution can provide an optimized design from the scheduling length point of
view. In [15], the authors discuss multiple objectives such as minimizing commu-
nication, load balancing and minimizing the maximum lateness. [6] specifically
addresses dependability (focuses on minimizing interaction) and presents heuris-
tics for conducting the mapping. However, the focus is to aid integration between
design stage SW objects. Overall, in design optimization, there is a dearth of
work that addresses dependability as an optimization criterion. Commonly, de-
pendability is considered directly as a constraint to be satisfied. Instead, we
consider dependability and RT, both as constraints and as optimization criteria.

3 System Model and Problem Statement

Our system design framework is based on the following models: the SW and
HW models, constraints model and the fault model. The SW model describes
the functional and extra-functional (dependability, responsiveness, etc.) require-
ments of jobs and the HW model is the physical execution platform for those
jobs. The fault model depicts the types of faults and their causes, whereas con-
straints restrict the possible solutions. The rest of this section details various
important aspects and characteristics of the different models.

SW Model: The SW model consists of applications of varied criticality. Appli-
cations are further decomposed into a set of jobs (j1, j2, ..., jn). A job represents
the smallest executable SW fragment, with basic communication capabilities for
exchanging information with other jobs. We consider a job to have specific prop-
erties as required inputs to the mapping process, namely: (i) job name - each job

520 S. Islam and N. Suri

has a unique name; (ii) timing requirements (earliest start time-EST , compu-
tation time-CT , deadline-D); (iii) volume of data for inter job communication
in terms of bytes; and (iv) dependability/FT requirements - the degree of repli-
cation dci necessary for the ith job to provide the required level of FT. dci is
specified by the system user.

HW Model: We assume a network topology allowing every HW node to com-
municate with all other nodes (n1, n2, ..., nk). A HW node is a self-contained
computational element (single- or multiprocessor) connected to the network (e.g.,
using a bus topology) through a communication controller. We assume that the
computing basis of all node processors is similar. HW nodes may also contain
additional resources, e.g., sensors, actuators etc. The communication controller
controls the exchange of messages with other nodes.

Constraints Model: Constraints define the conditions that limit the possible
mappings from a dependability, RT or resource perspective. A set of constraints
need to be satisfied for a mapping to be valid [16]. We consider the following
constraints: (i) binding constraints - jobs that need to be allocated onto specific
nodes due to the need of certain resources (e.g., sensors or actuators), (ii) FT
constraints - separation of replicas to different nodes, (iii) schedulability - main-
taining RT constraints and (iv) computing constraints - such as the amount of
memory available for jobs.

Fault Model: We consider both SW and HW faults, therefore a fault can
occur in any job, HW node or communication link. The consequence of a fault
is an error which can propagate from a source module to a target module via
a corrupted message or via a shared resource. In the case of communication
links, only transient faults are considered. A single fault, either a transient or
a crash [17] impacting a shared resource, is likely to affect several or all of the
jobs or replicas running on that node.

Problem Statement: The set of all possible mappings for a given set of jobs
and nodes is called the problem space (X), shown in Figure 1. A mapping is
either feasible or infeasible. A feasible mapping is a solution which satisfies all
constraints. If some constraint is not satisfied, the mapping is infeasible. A point
x in the problem space X represents a mapping of jobs onto nodes. The neigh-
borhood space N(x) ⊆ X of a point x is the set of all points that are reachable by
performing a move operation (e.g., relocating a job to a different node). We em-
ploy a transformation operator (Γ) to perform move operations (see Section 6.3
for details). The value of a point is a measure of the suitability of the mapping
represented by that point. The function f(x) is used to measure the value of a
point of the problem space. For an optimization problem, which minimizes the
value of variables (v), good mappings have low values. Hence, the task is to find
a mapping x∗ ∈ X with the lowest function value for multiple variables, i.e.,
f(x∗) ≤ f(x) ∀x ∈ X . x∗ is the best mapping from a global search space (X).

In this work, a feasible mapping is provided as an input to the algorithm
and feasibility is maintained throughout the quest by an external function call,
therefore the problem space remains in the feasible region X

′ ∈ X (set of all

A Multi Variable Optimization Approach 521

X

X-X’

x*

x

X’ N(x)

x

Γ

Fig. 1. Search space for the mapping

Mapping
(Allocation and

Scheduling)

Near-Optimal
mapping

SW model HW model

Constraints,variables

non-Feasible

Feasible
mapping

Prime driver:

Mapping
assessment

Optimization
applied ?

yes

no

Mapping
optimization

System
requirements and

specification

Job/node ordering

FT+RT

Fig. 2. System design optimization

admissible solutions), which reduces the search space considerably. We strive for
finding the mapping x∗ ∈ X

′
, where f(x∗) ≤ f(x) ∀x ∈ X

′
. We use an MVO

function (MV O(v)) to represent the mapping (see Section 6.1 for details).

4 The MVO Approach

The proposed MVO framework systematically guides the FT+RT driven map-
ping towards an optimized solution. In this section we discuss this generic design
framework on the basis of the models presented in the previous section. The
system design optimization flow and the corresponding steps are depicted in
Figure 2 and in Algorithm 1 respectively. The design process starts with charac-
terizing the SW and HW model. The properties of the model are extracted from
the system requirements and specification document. In Step 2 (Algorithm 1),
constraints are modeled, which need to be satisfied during the mapping. Design
variables are defined in Step 3, which are employed in the mapping optimization
phase shown in Figure 2. Variables are used for capturing the design criteria
and they strongly depend on the objectives of the system design and on the
considered system model [18].

Mapping algorithms need heuristics to achieve good performance. Of partic-
ular importance are job ordering and node ordering that decide which job to
assign next and what node to assign that job onto [16]. Job and node ordering
are described in Step 4. A crucial issue that arises at this design stage is the
mapping of jobs onto suitable nodes. An initial mapping is created in Step 5
where allocation and scheduling is performed off-line in the early design phase.
The result of this step is a feasible mapping. However, this mapping is likely to be
very inefficient from a system design perspective. The purpose of the rest of the
steps is to find a better mapping by using the proposed optimization framework.
A candidate mapping from the set of possible solutions is generated in Step 6.

522 S. Islam and N. Suri

Algorithm 1. Generic framework for system level design optimization

1: derive the system model
2: extract design constraints
3: define design variables
4: ordering of jobs and nodes
5: generate an initial current mapping - apply heuristics
6: generate candidate mapping - exploring neighborhoods
7: a) compare candidate mapping with the current mapping

b) go back to Step 6 until stoping criteria is met
8: define minimum requirements to select the mapping (the aspiration values)
9: assess the mapping and return the good mapping (a near-optimal one)

In order to select better designs, the candidate mapping is compared with the
current mapping in Step 7. If a better mapping is found, the current mapping
is updated. This step is iterative so that the comparison can be made with all
the possible solutions. A detailed description of Step 6 and Step 7 is also given
in Section 6.2. In Step 9, the mapping is assessed to ensure that it satisfies the
minimum system requirements defined in Step 8. Essentially, we are interested
in finding a near-optimal mapping meeting FT+RT design objectives.

5 Quantification of Design Variables

In this section we quantify the set of variables. This includes how to estimate
variables, and how to formulate them in terms of function minimization. The
primary objective is to enhance dependability by design, where our focus is to
minimize interactions, i.e., to confine the propagation of errors between nodes.
The second and third considerations are the scheduling length and the bandwidth
utilization respectively that are important in terms of resource utilization and
consequently lead to designs with lower cost. In the subsequent sections, we
provide details of the variables used to quantify these objectives.

5.1 Interactions

Interaction is the probability of error propagation from a source to a target.
This variable refers to how well the errors are contained within a single node.
Low interaction values between nodes implies good error containment. Assigning
highly interacting jobs on the same node reduces the error propagation proba-
bility across nodes. Below we describe two potential ways in which interactions
between a source and a target could take place.

Case 1: Errors occur in the source and propagate to the target via message
passing or shared resources. If a job is affected by an error of the node it is
running on, it might propagate errors to jobs on other nodes with which it
communicates or shares a resource. Such interactions risk the failure of multiple
nodes and are undesirable.

Case 2: Messages sent over the network can be lost or erroneous due to trans-
mission errors. Erroneous messages can propagate to different nodes and may
cause unexpected behavior.

A Multi Variable Optimization Approach 523

Estimating interactions: The interactions as shown in Figure 3 consists of
three phases, namely: (1) an error occurring in a module or in a communication
link, (2) propagation of the error to another module and (3) the propagating
error causing a cascaded error in the target module. In order to measure in-
teractions, let’s assume Pe is the probability of error propagation from source
to target considering no corruption over the network and Pl is the probability
of message corruption over the network. The probability of error propagation
from a source (s) to a target (t) is denoted by Ps,t and defined as follows: Ps,t =
p{error propagation|no corruption over the network}·p{no corruption over the
network} = Pe · (1 − Pl), where, Pe = Ps · Pt. The probability that s outputs
an error and sends it to the input of t is Ps and Pt is the probability that an
error occur in t due to the error received from s. Ps indicates how often s allows
errors to propagate and Pt indicates how vulnerable t is to errors propagating
from s. Considering both Ps,t and Pl, the interaction is calculated as follows:
Is,t = Ps,t + Pl.

Source
(s)

Target
(t)

p(message corruption)

Inputs

1

2

3

sP tP

tsI ,

lP

Fig. 3. Error propagation

Node Node

j1 j3

j2
.4

.3

1
2,1I

2
2,1I

=

=

2n

1n

Fig. 4. Combining interactions

Io
s,t is the overall interactions between the set of jobs assigned together on a

node and interacting jobs allocated on different nodes, which is expressed by the
following equation:

Io
s,t = 1 −

∏

ρ

(1 − Iρ
s,t) (1)

Where ρ is the number of interactions paths between two nodes. For example,
the overall interaction of node n1 to n2 as shown in Figure 4, will be Io

n1,n2
=

1− [(1−0.4) ·(1−0.3)] = 0.42. Interactions are assumed to be zero for jobs which
are assigned on the same node. However, it is not possible to assign all interacting
jobs onto a single node due to the constraints. Also replicas need to be placed
on different nodes which might have interactions with other jobs. Hence, there
will be jobs interacting across nodes. We strive to minimize these interactions as
much as possible for a mapping, such that dependability is enhanced by design.
Values for error occurrence probabilities can be obtained, for example, from field
data, by fault injection or from system specification [19]. The computation of
the system level interactions Î is expressed as follows, where k is the number of
nodes:

Î =
k∑

i,j=1

Io
i,j (2)

524 S. Islam and N. Suri

5.2 Scheduling Length

This variable represents the total completion and communication time for a
set of jobs on a node. As we use replication as the FT scheme, this results
in more jobs needed to be scheduled and this naturally incurs a overhead on
scheduling. The goal is to minimize overall scheduling length (Ŝl) on a node
satisfying precedence and deadline constraints. Minimizing scheduling length is
important from the viewpoint of the uses of a set of processors, since it leads to
maximization of the processor utilization. In every scheduling, gap may remain
between two consecutive jobs executing on the same node due to precedence
relations and communication cost. We define this gap as in-between slack (IBS).
Slack can be used for future upgrading of jobs and also for energy savings.

We have developed a schedulability analysis in our previous work [16] and we
employ that strategy in this work as well. The scheduling length for a candidate
mapping is calculated using the following equation:

Ŝl = ∀k max

⎡

⎣
n∑

i,j=1

(Mi,k · CTi,k + IBSi,j)

⎤

⎦ (3)

where, n is the number of jobs, CTi,k is the computation time of the ith job in
the kth node, IBSi,j = ESTj − LETi, where i is the job executed before j on
the same node, and Mi,k = 1, if ji is assigned to the kth node and 0 otherwise.
LETi is the latest ending time of job i.

5.3 Bandwidth Utilization

In an integrated system design, jobs of different criticality and from different ap-
plications may be assigned onto a single node and jobs from a single application
may be assigned onto different nodes. Therefore, good utilization of shared com-
munication links is necessary. Bandwidth utilization (B̂w) is the ratio between
the total bandwidth required by the system and the available bandwidth of the
network (BT) defined as follows:

B̂w =
k∑

i,j=1

bi,j/BT (4)

where k is the number of nodes and bi,j is the total bandwidth requirements in
terms of message size between nodes i and j. Minimizing this variable may allow
for the use of a slower but cheaper data communications bus [15].

6 The Algorithm - Employing MVO

In the prior sections, we described the MVO framework and the quantification of
considered variables. Next, we apply an existing optimization algorithm within
our framework. For this purpose we have chosen simulated annealing (SA) [20].

A Multi Variable Optimization Approach 525

SA is an algorithm, which converges to the global minima while solving an MVO
problem (MVO-SA). SA is a long established effective metaheuristic with an ex-
plicit schema for avoiding local minima [12],[13],[20],[21]. Alternative approaches
such as Genetic algorithm, Tabu search [21] were also investigated as options.
However, the global minima possibility with SA makes it attractive. The overall
optimization process is shown in Algorithm 2, which differs from usual single
objective SA. We have adapted SA for multiple objectives, which returns the
best values of variables together with the best mapping found so far.

6.1 The MVO Function

MV O(v) is a function, which returns a natural number that corresponds to the
overall quality of a given mapping. We construct the MV O(v) function as a
weighted sum of the variables, which is a widely used method for this class of
problem [18],[22]. The value of the function is determined by using the values of
variables Î , Ŝl,, B̂w and the trade-off factors ψi, ψs and ψb.

MV O(v) = ψi · Î + ψs · Ŝl + ψb · B̂w (5)

The individual values of the variables are represented in a matrix form: M [v] ≡
M [Î , Ŝl, B̂w]. After performing a move, the function is denoted as MV O(v

′
) and

the matrix as M [v
′
].

6.2 Application of SA

The MVO-SA algorithm requires the following inputs: (i) the set of jobs and
nodes including their properties to create the initial mapping, (ii) variables, the
MV O(v) function and the trade-off factors, (iii) the Γ operator to change the
mapping and (iv) SA parameters - initial temperature, the cooling schedule and
the cooling factor for lowering the temperature. The output of the algorithm
represents the optimized mapping of jobs onto nodes.

After setting the initial heating temperature Th (Algorithm 2), the initial fea-
sible mapping is created. The feasibility of the mapping is maintained through-
out the search by an external function call, i.e., the best feasible mapping is
sought. The values of all variables are set in the MVO function (Equation 5) and
MV O(v) is computed in Step 4. In order to generate the candidate mapping,
neighborhoods are explored in Step 6. We apply the transformation operator
(Γ) to explore neighborhoods. While applying this operator the feasibility of
the mapping is checked. In Step 9, the candidate mapping MV O(v′) is eval-
uated in order to compare it with the current best mapping. If the difference
δv = MV O(v′) − MV O(v) is less than zero (minimization) then we choose the
candidate mapping. If δv is greater or equal to zero, then the candidate mapping
is accepted with a certain probability, called the acceptance probability (ap). One
of the commonly used acceptance probability functions is ap = e−δv/Th [12],[13].

The technique used by SA to not get stuck at a local optima is to accept
some worse moves as the search progresses. For larger δv, i.e., when the candi-
date mapping is extremely undesirable, the probability of acceptance diminishes.

526 S. Islam and N. Suri

Algorithm 2. MVO algorithm - SA based

1: initialization T; heating temperature Th

2: generate an initial mapping

3: create the matrix M [v] ≡ M [Î , Ŝl, B̂w] for this mapping
4: evaluate the initial mapping MV O(v)
5: repeat
6: explore neighborhood of the current mapping using Γ
7: generate candidate mapping

8: create matrix M [v′] ≡ M [Î′, Ŝ′
l, B̂′

w]
9: evaluate candidate mapping MV O(v′) for the new matrix

10: calculate δv = MV O(v′) − MV O(v)
11: if δv < 0 then
12: M [v] = M [v′] and MV O(v) = MV O(v′)
13: else
14: calculate acceptance probability ap = e−δv/Th and

generate r = random[0, 1]
15: if ap ≥ r then
16: M [v] = M [v′] and MV O(v) = MV O(v′)
17: else
18: restore the current mapping, i.e., keep M [v] and MV O(v).
19: end if
20: end if
21: reduce the temperature Th by using a cooling schedule Th−1 = cf · Th.
22: until some stopping criterion is met

23: return the best matrix M[v] and corresponding mapping MV O(v)

The initial temperature (T) is set to a sufficiently high value to accept the first
few candidate mappings. However, the ap decreases as Th decreases. If an ac-
ceptance criteria is met, the candidate mapping is chosen, otherwise the current
mapping is restored and the process is continued. Th is reduced according to the
cooling scheduling Th−1 = cf · Th, which is the most commonly used in the lit-
erature [12],[22], where cf is the cooling factor. We perform several iterations at
the same Th (so called Metropolis Monte Carlo attempts [20]) to cover a larger
search space. The algorithm returns the best mapping found so far when the
temperature is reduced to a certain value.

6.3 The Transformation Operator Γ

As mentioned before, the operator Γ performs the changes/moves to the mapping
in order to generate a candidate mapping. Specifically, Γ generates the move to
perform the local search, i.e., to explore the neighborhood. Three commonly used
moves [22] are discussed below: (a) relocate a job to a different node, (b) swap
the nodes between two jobs and (c) interchange the allocated jobs between
two nodes. A move is accepted when it satisfies all the constraints defined in
Section 3. After a successful move, the candidate mapping is evaluated in Step 9
(Algorithm 2).

7 Evaluation of the MVO Framework

In this section we first present the experimental setting. Based on this we evaluate
the effectiveness of the MVO approach and discuss the results. Results show

A Multi Variable Optimization Approach 527

significant improvements in terms of interactions, scheduling length, bandwidth
utilization, CPU utilization and FT overhead.

7.1 Experimental Settings

For the evaluation of our approach, we use randomly generated mixed-criticality
sets of 40, 60 and 80 jobs denoted as J40, J60 and J80 respectively. All jobs,
along with their replicas, are to be assigned in an optimized way onto the avail-
able nodes. All job properties are uniformly distributed within the following
ranges: Replication factor ∈ {2, 3}, Interaction ∈ [.04, .52], EST ∈ [0, 50] ms,
CT ∈ [2, 17] ms, D ∈ [15, 200] ms, Memory size ∈ [4, 10] MB, Message size
∈ [30, 120] bytes. Sensors and actuators are attached to arbitrary nodes. The
message transmission delay time (size of the exchanged messages divided by
transmission speed of the link) between communicating jobs executing on differ-
ent nodes are subtracted from the deadlines. The HW model comprises 8 nodes,
which are connected to a communication link with a speed of 150kbps. The mem-
ory capacities of nodes were arbitrarily chosen as 100, 150 and 250 MB; nodes
n2 and n3 have sensors and n5 and n7 have actuators attached to them.

As used in literature [20],[22] and after investigating different runs of our
algorithm with various configurations, we tune the SA parameters as follows:
the value of the initial temperature (T) was set to 50000, the cooling factor was
set to 0.98, and the used trade-off factors were ψi = 1500, ψs = 20 and ψb = 500
respectively. In order to generate the candidate mapping we have performed two
types of moves (random reallocation and swapping - 50% each of Monte Carlo
iteration) at the same temperature to cover a larger search space. The third type
of move is not relevant in our case study. Experiments showed that applying both
types of moves together gives a better solution than only using a single type of
move.

7.2 Experimental Results

Performance Evaluation: We first observe the convergence of MVO-SA.
Figure 5 shows that after a certain number of iterations with decreasing tem-
perature the MVO function reaches a minimum. At higher temperatures, more
states have been visited by the operator Γ to cover the search space. Given the
proper selection of the parameters and the problem size, SA gives the global so-
lution by construction [20],[21]. Nevertheless, we performed several experiments
to evaluate if the MVO algorithm converges to a single point. Even though the
algorithm is started with different feasible mappings (Feas1, Feas2 as shown
in Figure 5), MVO-SA converges towards a solution every time. However, the
convergence points may differ negligibly, as shown in Figure 5 in case of J60. A
good performance test of a mapping algorithm is to take a solvable problem and
add resources [13], the algorithm should return a mapping no worse than the
result of the original problem. We added two more nodes to the configuration of
J40 and the resulted mapping displayed better performance. The convergence
is shown in Figure 5 marked as J40 (10 nodes). To show the effectiveness of

528 S. Islam and N. Suri

 1000

 2000

 3000

 4000

 5000

 6000

 0 50000 100000 150000 200000
Iterations (as T decreases)

J60 Feas2

J60 Feas1
J40 Feas2

J40 Feas1 J40(10 nodes)

J40-Feas1
J40-Feas2
J60-Feas1
J60-Feas2
J40(10 nodes)

V
al

ue
 o

f M
V

O
 fu

nc
tio

n

Fig. 5. Performance evaluation of MVO-SA

0

0.1

0.2

0.3

0.4

0.5

0.6
Î lŜ wB̂

40J 60J 80J

Q
u

a
n

ti
ta

ti
v

e
 g

a
in

MVO(v)

Fig. 6. Mapping MPF

starting the optimization with a feasible mapping, we also ran the algorithm
starting from an infeasible mapping. Though this can converge to an improved
solution, it is slower than starting from a feasible solution (time for the creation
of feasible mapping is included).

Quantitative Gain: We are interested in evaluating the quantitative gain com-
pared to a contemporary initial solution. As this gain depends on the value of
the initial mapping, we performed experiments using different initial feasible
mappings. Figure 6 depicts the mapping performance profile (MPF) for J40,
J60 and J80 in terms of Î , Ŝl, B̂w and MV O(v). MPF is shown as relative
gain with respect to the initial mapping. We observe that the gain is higher
in case of Î, which ensures FT driven design. In our case studies, on aver-
age, our approach found 35% better solutions (composite FT+RT gain), which
leads to significantly better designs for dependable real-time embedded systems.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

J40 J60 J80

Processor ID

U
ti

li
za

ti
on

 f
ac

to
r

(U
F

)

Fig. 7. CPU utilization

CPU Utilization and FT Over-
head: Figure 7 shows the compu-
tation utilization by different node’s
processors for jobs set J40, J60 and
J80, which is about equally dis-
tributed among CPUs, i.e., a proper
load balancing is maintained by the
approach. It is calculated by UF =∑ n

i=1(Mi,k·CTi,k)
Ŝl

. We observe the FT
overhead both for initial and opti-
mized mapping in terms of scheduling
length. We varied the replication fac-
tor (Replication factor = # jobs after
replication/# jobs) from 1 to 3. On
average, the quantitative gain is 34.33%. Obviously, scheduling length has in-
creased due to increasing the replication factor. Therefore, a design trade-off

A Multi Variable Optimization Approach 529

between RT properties and the level of FT is necessary. The quantitative gain
shows that the overhead is reduced significantly by the optimized mapping, which
provides an FT design with reduced scheduling length.

8 Conclusions

We have presented a generic Multi Variable Optimization (MVO) framework for
designing embedded systems. The experimental results show the effectiveness of
the approach and a significant improvement of the FT+RT system design com-
pared to a straightforward solution where optimizations have not been applied.
Particularly, we emphasize the following preeminent benefits of our approach:
(i) FT is provided and then it is enhanced by restricting the possible nodes
from correlated faults, (ii) RT requirements are met and the scheduling length
is minimized, which increases the overall system performance and (iii) band-
width utilization is reduced, which allows the use of a slower but cheaper bus.
The generic framework also allows more variables to be considered, e.g., power.

References

1. Assayad, I., Girault, A., Kalla, H.: A Bi-Criteria Scheduling Heuristic for Dis-
tributed Embedded Systems under Reliability and Real-Time Constraints. In:
DSN, pp. 347–356 (2004)

2. Dogan, A., Özgüner, F.: Biobjective Scheduling Algorithms for Execution Time-
Reliability Trade-off in Heterogeneous Computing Systems. Comput. J. 48(3), 300–
314 (2005)

3. Melhem, R., Mosse, D., Elnozahy, E.: The Interplay of Power Management and
Fault Recovery in Real-Time Systems. IEEE Trans. Comput. 53(2), 217–231 (2004)

4. Eisenring, M., Thiele, L., Zitzler, E.: Conflicting Criteria in Embedded System
Design. IEEE Design and Test 17(2), 51–59 (2000)

5. Bouyssounouse, B., Sifakis, J.: Embedded Systems Design: The ARTIST Roadmap
for Research and Development. Springer, Heidelberg (2005)

6. Suri, N., Ghosh, S., Marlowe, T.: A Framework for Dependability Driven Software
Integration. In: ICDCS, pp. 406–415 (1998)

7. Oh, Y., Son, S.H.: Enhancing Fault-Tolerance in Rate-Monotonic Scheduling. Real-
Time Syst. 7(3), 315–329 (1994)

8. Ghosh, S., Melhem, R., Mossé, D.: Enhancing real-time schedules to tolerate tran-
sient faults. In: RTSS, pp. 120–129 (1995)

9. Kandasamy, N., Hayes, J.P., Murray, B.T.: Tolerating Transient Faults in Statically
Scheduled Safety-Critical Embedded Systems. In: SRDS, pp. 212–221 (1999)

10. Lo, V.M.: Heuristic Algorithms for Task Assignment in Distributed Systems. IEEE
Trans. Comput. 37(11), 1384–1397 (1988)

11. Hou, C.-J., Shin, K.G.: Allocation of Periodic Task Modules with Precedence
and Deadline Constraints in Distributed Real-Time Systems. IEEE Trans. Com-
put. 46(12), 1338–1356 (1997)

12. Natale, M.D., Stankovic, J.A.: Scheduling Distributed Real-Time Tasks with Min-
imum Jitter. IEEE Trans. Comput. 49(4), 303–316 (2000)

530 S. Islam and N. Suri

13. Tindell, K., Burns, A., Wellings, A.: Allocating Hard Real-Time Tasks: An NP-
Hard Problem Made Easy. Real-Time Syst. 4(2), 145–165 (1992)

14. Izosimov, V., Pop, P., Eles, P., Peng, Z.: Design Optimization of Time-and Cost-
Constrained Fault-Tolerant Distributed Embedded Systems. In: DATE, pp. 864–
869 (2005)

15. Ekelin, C., Jonsson, J.: Evaluation of Search Heuristics for Embedded System
Scheduling Problems. In: Constraitnt Programming, pp. 640–654 (2001)

16. Islam, S., Lindström, R., Suri, N.: Dependability Driven Integration of Mixed Crit-
icality SW Components. In: ISORC, pp. 485–495 (2006)

17. Laprie, J-C., Randell, B.: Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Trans. Dependable Secur. Comput. 1(1), 11–33 (2004)

18. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value
Tradeoffs. Cambridge University Press, Cambridge (1993)

19. Jhumka, A., Hiller, M., Suri, N.: Assessing Inter-Modular Error Propagation in
Distributed Software. In: SRDS, pp. 152–161 (2001)

20. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
J. of Science 220(4598), 671–680

21. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

22. Silva, J.L.: Metaheuristic and Multiobjective Approaches for Space Allocation.
University of Nottingham, UK, PhD thesis (2003)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 531–540, 2007.
© IFIP International Federation for Information Processing 2007

SystemC-Based Design Space Exploration of a 3D
Graphics Acceleration SoC for Consumer Electronics

Tse-Chen Yeh, Tsung-Yu Ho, Hung-Yu Chen, and Ing-Jer Huang

Department of Computer Science and Engineering, National Sun Yat-sen University,
Kaohsiung, 804, Taiwan

{tcyeh,tyho,hychen}@esl.cse.nsysu.edu.tw,
ijhuang@cse.nsysu.edu.tw

Abstract. In order to solve the system performance bottleneck of a 3D graphics
acceleration SoC, we exploit design space exploration on performance evalu-
ation and benchmark characteristics using SystemC. We find out the bottleneck
according to the simulation results of 9 hardware/software configurations and
find out the tradeoffs between different configurations. The performance issues
of SoC have been explored under the low-cost constraints, such as cache size
effect, hardware accelerations and memory traffic. In conclusions, we provide
the performance/cost tradeoffs and 3D graphics benchmark features for
designing a 3D graphics SoC.

Keywords: design space exploration, SystemC modeling, 3D graphics SoC,
transaction-level modeling.

1 Introduction

Consumer electronics are cost-sensitive, such as digital television (DTV), and
customers demanded higher performance with lower price. To develop a system-on-a-
chip (SoC) as discussed above needs the hardware/software configurations to meet the
performance under the cost constraint. In order to find the tradeoffs between
performance and cost, design space exploration using SystemC has been evaluate the
system performance in [1].

The fast hardware/software configuration can be achieved by using CoWareTM
Platform Architect, which provides the hardware/software integration and simulation
platform using SystemC [2]. Firstly, software written by C/C++ can be translated
effortlessly into SystemC hardware model because SystemC is a C++ class library.
Secondly, CoWareTM Platform Architect provides IP library and cycle-accurate
transactional bus simulator (TBS) for IP reuse which can shorten the design flow from
re-design the IP models and raise the simulation results up to the bus cycle accurate
[3].

In this paper, we focus on 3D graphics hardware acceleration SoC for DTV
system. The design flow starts from pure software simulation on the target platform,
and then the software will be accelerated by additional hardware or architecture
refinement according to performance bottlenecks we have found out. After
acceleration, the new bottleneck will be revealed. Thus we continue to simulate new

532 T.-C. Yeh et al.

accelerated platform then overcome new bottlenecks repeatedly until the required
performance has been approximated.

The organization of this paper is as follows. In Section 2, we describe the simple 3D
graphics pipeline, 3D graphics acceleration SoC platform and platform building
methodology. The hardware/software configurations are presented in Section 3. And
design space exploration will be implemented in Section 4. Finally, we conclude the
overall analysis and performance/cost tradeoffs for 3D graphics acceleration SoC Design.

2 Preliminary

3D graphics has been developed maturely on workstation and personal PCs from
1990. These high performance solutions are not suitable for the embedded systems or
consumer electronics because they also paid high cost and high power consumption.
Although the 3D graphics workloads have been investigated by static and dynamic
forms [9, 10] and one is on the mobile device [11], the system performance still has
been profiled on instruction-level evaluation.

Due to the proposed architecture of 3D graphics SoC will be applied on DTV
applications, the differences will be introduced in the following section opposed to the
conventional 3D graphics processing.

2.1 3D Graphics Rendering Pipeline

To obtain the software functionality, we exploit a tile-based simple 3D graphics
pipeline (shown in Fig. 1) written by C/C++. The tile-based rasterization can reduce
amount of memory accesses and is suited to the embedded system. In the simple
pipeline, the geometry processing includes the viewing transformation, lighting and
perspective transformation. After geometry computation, the triangle information will
be passed to the tile divide function which handles the tile setup information. The
raster processing begins at the scan conversion, shades fragment without texture, and
the final results will be written into frame buffer for display after passing Z-test. In
this paper, the texturing will not be modeled for performance evaluation.

Viewing
Transform

Lighting
Perspective
Transform

Tile
Divide

Scan
Conversion

Shading Frame
buffer

Vertex
information

Z-Test

Geometry Processing

Raster Processing

Fig. 1. Simple 3D graphics pipeline for performance analysis

2.2 3D Graphics Acceleration SoC

The basic combinations of a system includes core processor, system bus and system
memory. In order to accelerate 3D graphics processing, a 3D graphics engine has to

 SystemC-Based Design Space Exploration of a 3D Graphics Acceleration SoC 533

handle the geometry and rasterization acceleration. Furthermore, the processing
results should be display via a display engine (DE) which has responsibility to move
processed data from frame buffer in memory to the display device. Finally, the direct
memory access (DMA) will be appended for more efficient memory access
consideration. All the hardware components connect the system bus via bus interface
(BI).

Fig. 2 shows the final platform of 3D graphics acceleration SoC. We choose
ARM926EJ-S for the system processor core and AMBA 2.0 AHB bus to be the
system bus. Taking low cost into account, we select the single port SDRAM to be the
system memory which contains vertex information, temporary data, frame buffer and
Z buffer. To fit the DTV applications, the frame buffer and Z buffer are located with
640x480 screen size.

To approximate the realistic system memory traffic, the bus contentions from DE
should be taken into consideration. The DE is a bridge between frame buffer and
DTV display, and get the frame buffer data with read burst transfer periodically.
According to the DTV frame rate, the data consuming frequency is 25 MHz which
occupied 100 MB/sec of system bandwidth under 200 MHz system clock frequency.

In terms of 3D graphics engine in Fig. 2, the functions in 3D graphics pipeline
have been translated into hardware model. Because of the complexity of geometric
computation, we divide the geometry module into 3 pipeline stages and each stage
runs 16 cycles [5]. For design a low cost raster module we choose the tile-based
implementation to reduce area cost. Thus we first have to design a tile divider (TD)
that receives the triangle data output from geometry module to generate tile list [6].

ARM926EJ-S

I$ D$

BI

External Memory
(SDRAM)

Geometry
Module

Raster
Module

BI

Display
Engine

AHB

External to
Display

SystemC HW model

WO-DMA

Pure software environment
with SDRAM latency

MEM
Controller

Tile
Divider

3D Graphics Engine

Fig. 2. System functional block of 3D graphics acceleration SoC

2.3 Platform Building

CoWareTM Platform Architect integrates the IP library and hardware models into
system platform for simulation. Both of the processor and AHB bus IP are provided
by the IP library. The processor IP contains an ARM instruction set simulator (ISS)
for software execution. And AMBA library use a cycle-accurate TBS and a set of
Transaction-Level Modeling (TLM) API for IP integration [7]. To declare ports type
pre-defined in AMB bus library, hardware can read from or write to other components
connected to the same bus by API function calls. All of the bus arbitrations and
read/write latency are managed by TBS.

534 T.-C. Yeh et al.

For the cycle-accurate simulation, we model hardware modules at transaction level
(TL) with timing information [4]. The power of TLM is to separate hardware
operations into computation and communication. The computation means the function
of hardware, and the communication presents the read/write operations of hardware.
Because we use SystemC as modeling language, the functions of simple 3D graphics
pipeline can be migrated into computation part of our hardware model without any
modification. With regard to communication, the primitive SystemC ports of our
hardware modules will be replaced by AHB ports for platform integration.

We use dot line to enclose the simulation environment for pure software in Fig. 2.
And the rest blocks enclosed by dash line are the hardware modules modeled by
SystemC. Through the SystemC modeling at transaction level, we can evaluate the
system performance at early design stage and the simulation time of TLM is faster
than the Register-Transfer Level (RTL) simulation.

3 System Configurations

In this section, the 3D graphics benchmarks and hardware/software configurations
will be described. Total 9 hardware/software configurations will be introduced for our
design space exploration, 4 of these configurations are used to evaluate software
acceleration, and others are used to explore different hardware solutions.

3.1 Simulation Environment

We choose three benchmarks for 3D graphics rendering shown in Fig. 3, and features
of these benchmarks are listed in Table 1. Helicopter benchmark has more geometric
computations than raster processing in proportion compared with Teapot benchmark.
And the Elephant benchmark has the most complexity on whether geometric or raster
processing. All of the simulation statistics will be collected by TBS for the
performance analysis.

 (a) Teapot (b) Helicopter (c) Elephant

Fig. 3. 3D graphics benchmarks for design space exploration

Table 1. Features of three 3D graphics benchmarks

 Teapot Helicopter Elephant
Total vertices number 12,288 15,414 87,840

Processed tiles 135 64 141

 SystemC-Based Design Space Exploration of a 3D Graphics Acceleration SoC 535

3.2 Hardware/Software Configurations

Table 2 gives the detail hardware/software configurations for design space explor-
ation. In this table, “pSW” means 3D graphics pipeline execution without any
hardware acceleration. And “ADS” enclosed by parentheses indicate the simulation
use ARMulator, i.e. ARM ISS of ARM Developer Suite, without SDRAM model and
DE contentions. And “$” suffix refers to software performance improved by adding
instruction/data (I/D) cache. “PA” is the abbreviation of Platform Architect, which
means the software execute with SDRAM model.

Table 2. Hardware/software configurations for design space exploration

hardware/software Configurations

Function
Bus

Interface
Configuration

Name

Clear Buffer Geometry Raster
Transfer

Mode

SDRAM
latency Cache Display

Engine
Geometry

FIFO

pSW (ADS) SW SW SW N/A N/A N/A N/A N/A
pSW (ADS $) SW SW SW N/A N/A ON N/A N/A
pSWD (PA) SW SW SW N/A ON N/A ON N/A
pSWD (PA $) SW SW SW N/A ON ON ON N/A
GED_s SW HW HW Single ON N/A ON N/A
GED_b SW HW HW Burst ON N/A ON N/A
GDGED_b GDMA HW HW Burst ON N/A ON N/A
WDGED_b WDMA HW HW Burst ON N/A ON N/A
WDGED_Fb WDMA HW HW Burst ON N/A ON ON

The prefix “GE” of fifth and sixth configurations indicate the 3D graphics pipeline

accelerated by 3D Graphics Engine shown in Fig. 2, and the appending character “s”
and “b” means hardware read/write in single transfer or burst transfer mode
individually. For bus cycle-accurate simulation, we insert execution cycles into
hardware models which refer to the synthesizable RTL design [4-5]. Furthermore, the
suffix “D” indicates the DE will occupy 15% bus bandwidth.

“Clear Buffer” is not the function of 3D graphics pipeline, but is necessary which
reset values in frame buffer and Z buffer before rendering the next frame. The last
three configurations with prefix “GD” or “WD” mean the different DMAs used to
improve the performance of “Clear Buffer”. We use “GD” to indicate a generic DMA
which can read/write memory, and use “WD” to represent a write-only DMA which
only write a fixed value from the internal register to reset memory, thus the specific
DMA can reduce memory traffic by decreasing lots of read operations from memory.

“Geometry FIFO” will be used for the comparisons of performance improvement
on geometry module with or without a ping-pong buffer. In the “Function” column,
the “HW” indicates the configuration use hardware implementation and “SW”
indicates software implementation. In “Transfer Mode” column, the “Single” means
the single transfer mode of AMBA bus, and the “Burst” means the burst transfer
mode of AMBA bus.

4 Design Space Explorations

In the section, we exploit these hardware/software configurations introduced in
previous section on design space explorations. Bus and memory overhead will be

536 T.-C. Yeh et al.

explored in section 4.1, 3D graphics engine will be appended in section 4.2, and the
efficiency of different transfer mode of AHB bus will be discussed in section 4.3. The
new bottlenecks will revealed by our explorations in section 4.4. In addition, an
imagined geometry FIFO buffer will be modeled for advanced performance/cost
tradeoff in section 4.5. Finally, the benchmark characteristics will be extracted for
advanced survey on system performance of 3D graphics in section 4.6.

4.1 Cache Size Optimization Without Hardware Acceleration

The design space exploration starts from software evaluation without any hardware
acceleration. And we apply cache to achieve more efficient performance on pure
software executions. Fig. 4 shows the execution cycles variations of cache size from
128 bits to 16k bits are estimated in “ADS”, in contrast to “PA” started from 4k bits
due to processor IP limitation. We adapt I/D cache of 4kb/4kb for performance
optimization. Either “pSW (ADS$4)” or “pSW (PA$4)” configurations can gain at
least 36.7% performance improvement shown in Table 3. The ideal bus assumes the
bus without transaction latency, and the subtraction of execution cycles of “ADS” and
“PA” configurations is the bus and SDRAM overhead in pure software solutions.

0

100

200

300

400

500

600

No
cache

128bits 256bits 512bits 1kb 2kb 4kb 8kb 16kb

Cache Size

E
xe

cu
tio

n
C

yc
le

s

(m
ill

io
n)

 .

Minimum cache size of
ARM926 IP @ PA

Pure software using SDRAM
on AMBA bus
Pure software using SRAM
on ideal bus

Bus & SDRAM
overhead

Performance degradation
cause cache size is too small

Fig. 4. Performance improvement by cache size variation of Teapot benchmark

Table 3. Cache size optimization on software execution

pSW (ADS)

(cycles)
pSW (ADS$4)

(cycles)
improvement

(ADS)
psW (PA)
(cycles)

pSW (PA$4)
(cycles)

improvement
(PA)

Clear Buffer 2,935,822 2,167,247 26.2% 9,003,353 5,778,533 35.8%

Geometry 133,002,461 66,931,465 40.1% 396,033,200 209,441,410 47.1%

Raster 139,867,002 97,181,194 30.5% 460,224,000 284,340,000 38.2%

Total 412,376,118 260,850,843 36.7% 865,260,553 499,559,943 42.3%

4.2 Performance of Hardware Acceleration

Due to the “pSW” results, the geometry and raster processing are the bottlenecks on
software execution, because the best case of drawing Helicopter benchmark with I/D
cache need 1.216 second for one frame at 200MHz system clock frequency shown in
Table 4. The DTV applications only can tolerant the frame rate down to 5~6 frame per
second under the lowest resolution. To overcome these bottlenecks, we exploit
hardware acceleration on geometry and rasterization parts. To compare “pSW” with
cache optimization with “GE” configurations, the system performance can be improved

 SystemC-Based Design Space Exploration of a 3D Graphics Acceleration SoC 537

Table 4. Comparisons of execution time at 200MHz system clock frequency

 Teapot Helicopter Elephant
pSW (PA$4) 2.498 sec 1.216 sec 9.078 sec

GED_s 0.070 sec 0.067 sec 0.108 sec
GED_b 0.063 sec 0.053 sec 0.070 sec

approximate 99% ((Execution cycle of software – Execution cycle of hardware) /
Execution cycle of software) by hardware acceleration.

4.3 Efficiency of Bus Transfer Mode

Due to the cost consideration, we use the SDRAM to be the system memory. Amount
of memory read/write accesses occur significant memory latency. The AMBA AHB
provides burst mode transfer which can overlap these SDRAM CAS and row change
latency [8], but may degrade few bus traffic if too many burst transfers need to
compete.

We use “GE_s” and “GE_b” configurations to find out the benefit by using burst
transfer. Notice that benefit will not reveal if we use low-latency SRAM to be system
memory. The burst transfer benefits are shown in Table 5, and the results show
approximate 33.1% improvement in Teapot benchmark, approximate 47.4% and
49.7% improvement at least in Helicopter and Elephant benchmarks.

Table 5. Single transfer vs. Burst transfer

 Teapot Helicopter Elephant
Geometry Speedup 36% 52% 49.7%

Raster Speedup 33.1% 47.4% 54.7%

4.4 Performance Bottleneck on Clear Buffer

After the hardware acceleration, the hidden problems have been enhanced. “Clear
Buffer” occupies 86.9% execution time of the total system performance compared
with the software solution only 1.0% and becomes the new performance bottleneck
shown in Fig. 5.

Clear Buffer
(1.0%)

Pure SW H/W acceleration

Geometry
(45.7%)Rasterization

(53.1%)
Execution time

Reduction
(98.54%)

Clear Buffer
(86.9%)

Geometry
(3.4%) Rasterization

(9.7%)

Fig. 5. New bottleneck on Clear Buffer after hardware acceleration

538 T.-C. Yeh et al.

Because the “ClearBuffer” contains the reset operations to the whole frame buffer
in memory, we append a generic DMA (GDMA) or write-only DMA (WO-DMA)
mentioned in Section 3 to automatically clear frame buffer and Z buffer. Thus large
mount of memory traffic between processor and memory can be reduced. Table 6
shows the performance improvement by comparing the execution cycles of “GED_b”
with “GDGED_b” and “WDGED_b” configurations. The WO-DMA will be adapted
for this system configuration, because the performance has improved 89.4% at least
on “Clear Buffer” execution.

Table 6. Performance improvement on Clear Buffer

 Teapot Helicopter Elephant
Generic DMA 50.5% 41.77% 41.40%

Write-only DMA 90.76% 89.69% 89.20%

4.5 Performance of Geometry Processing

In order to accelerate the geometry processing, we design a ping-pong buffer to
prefetch the vertex information that can prevent the waiting time if bus is too busy to
provide the necessary data. “WDGD_Fb” configuration refers to appending the ping-
pong buffer.

Table 7. Performance/cost tradeoffs of different hardware/software configurations

Performance improvement hardware/software configuration
Teapot Helicopter Elephant

hardware cost
(gate count)

Software only 0% 0% 0% N/A
I/D cache 42.60% 72.51% 35.70% 8kb SRAM

GE 98.54% 98.81% 99.51% 542.8k
GE + WO-DMA 99.69% 99.74% 99.45% 542.8k + 6.2k

GE + WO-DMA+ Ping-pong buffer 99.80% 99.75% 99.44% 542.8k + 6.2k + 32B SRAM

100000

1000000

10000000

100000000

1000000000

10000000000

psW(PA) pSW(PA$4) GED_s GED_b GDGED_b WDGED_b WDGED_Fb FCBDGD_b

E
xe

cu
ti

on
 C

yc
le

s

.

Teapot

Helicopter

Elephant

Fig. 6. Performance improvement of different hardware/software configurations

To extract the benefit of ping-pong buffer for geometry processing, we use the
“WDGD_b” and “WDGD_Fb” configurations into comparisons. The performance has
been improved at least 13.8% on geometry processing by appending 8x4 bytes

 SystemC-Based Design Space Exploration of a 3D Graphics Acceleration SoC 539

ping-pong buffer. Finally, the performance/cost tradeoffs are listed in Table 7, and the
hardware costs are estimated by synthesis in [5, 6]. And the performance variations of
different configurations are shown in Fig. 6. Also notice Fig. 6 uses logarithm scale
on Y axis and start from 100k cycles.

4.6 Characteristics of 3D Graphics Benchmarks

3D graphics workloads have been investigated in [9-11] at instruction-level. After
evaluating the system performance of 9 hardware/software configurations, the
characteristics of benchmarks can be extracted from 7 configurations because the ISS
of ADS can not simulate too large benchmarks, such as Helicopter or Elephant.

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

ps
W(
PA
)

pS
W(
PA
$4
)

GE
D_
s

GE
D_
b

GD
GE
D_
b

W
DG
ED
_b

W
DG
ED
_F
b

(K triangle/s)

Teapot

Helicopter

Elephant

0.0

2000.0

4000.0

6000.0

8000.0

10000.0

12000.0

14000.0

16000.0

18000.0

psW
(PA
)

pS
W
(PA

$4
)

GE
D_
s

GE
D_
b

GD
GE
D_
b

W
DG
ED
_b

W
DG
ED
_F
b

(K pixels/s)

Teapot

Helicopter

Elephant

(a) Geometry characteristics (b) Rasterization characteristics

Fig. 7. Benchmark characteristics of 3D graphics acceleration

The characteristics of 3D graphics can be divided into geometry and rasterization
parts. The triangle rate or vertex rate give the index of geometry performance, and the
pixel fill rate give the index to rasterization performance. The benchmark
characteristics are shown in Fig. 7. Although the slops of these benchmarks are
similar, the amplitudes of variation are not the same. In geometry processing, the
Elephant benchmark in Fig. 7(a) gives the significant amplitude because it contains
the largest the vertex number of object compared with Teapot and Helicopter
benchmarks. On the other side, Teapot benchmark in Fig. 7(b) gives the highest
processing area per triangle, thus it can get the largest performance improvement on
the rasterization processing. In summary, we use hardware/software configurations
not only for design space exploration, but also for extracting the benchmark
characteristics.

5 Conclusions

The market of consumer electronics always changes by following consumers’
requirements. In this paper, we use the design space exploration for performance
evaluation and the performance/cost tradeoffs by exploiting 9 hardware/software
configurations. And we also characterize the benchmark features for advanced survey

540 T.-C. Yeh et al.

on 3D graphics processing. The performance evaluation and benchmark characteristics
can give many benefits and references for system designers to determine their system
architecture and hardware/software configurations.

Notice that memory traffic is still the performance bottleneck of a low-cost SoC
which applied on 3D graphics rendering. And texture mapping, memory allocation,
comparisons of alternative architecture modeling, power/performance analysis, and
multi-layer bus architecture for 3D graphics acceleration SoC will become open
issues in our future works.

References

1. Jang, H.O., Kang, M., Lee, M.J., Chae, K., Lee, K., Shim, K.: High-level System
Modeling and Architecture Exploration with SystemC on a Network SoC: S3C2510 Case
Study. DATE 1, 538–543 (2004)

2. Platform Architect Datasheet. CoWare, http://www.coware.com/PDF/products/Platform
Architect.pdf

3. Model Library Datasheet. CoWare, http://www.coware.com/PDF/products/ModelLibrary.pdf
4. Black, D.C., Donovan, J.: SystemC: From The Ground Up. Springer Science+Business

Media (2004)
5. Hsiao, S.F., Huang, T.Y., Tieng, T.C.: Design and Verification of a Platform-Based Low-

Cost 3D Graphics Geometry Engine Using Area-Reduced Arithmetic Function Units. In:
17th VLSI Design/CAD, pp. 8–11 (2006)

6. Chang, T.N., Tsai, C.H., Tsai, M.C., Lin, H.L.: Design of a Low-cost 3-D Graphic
Rendering Accelerator. In: 17th VLSI Design/CAD, pp. 533–536 (2006)

7. AMBA TLM API. CoWare, http://www.coware.com/
8. Synchronous DRAM. Micron, http://wwwmicron.com/sdram
9. Chiueh, T.-C., Lin, W.-J.: Characterization of Static 3D Graphics Workloads. ACM

SIGGRAPH/EUROGRAPHICS (1997)
10. Mitra, T., Chiueh, T.-C.: Dynamic 3D Graphics Workload Characterization and the

Architectural Implications. In: 32nd AISM, pp. 62–71(1999)
11. Mochocki, B.C., Lahiri, K., Cadambi, S., Hu, X.S.: Signature-Based Workload Estimation

for Mobile 3D Graphics. In: 43rd DAC, pp. 592–597 (2006)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 541–552, 2007.
© IFIP International Federation for Information Processing 2007

Optimal Allocation of I/O Device Parameters in Hardware
and Software Codesign Methodology

Kuan Jen Lin, Shih Hao Huang, and Shih Wen Chen

Dept. of Electronic Engineering, Fu Jen Catholic University,
242 Taipei County, Taiwan

kjlin@mail.fju.edu.tw, {a9250627,a9150628}@st2.fju.edu.tw

Abstract. For a programmable I/O device controller, the allocation of device
parameters on I/O registers affects the code size and execution time of its
associated I/O device driver. In traditional design flow, the development of
device drivers can not begin until the allocation is fixed. This paper presents a
new design methodology that allows a designer to seek an allocation that reduces
the software or hardware cost concurrently with developing device drivers. The
software cost means the code size or execution time and the hardware cost the
number of I/O registers. The exact allocation with the minimum cost under
constraints is formulated as zero-one integer linear programming problem.
Heuristic algorithms based on iterative refinement are also proposed. The
proposed design methodology was implemented in C language. Compared with
current industrial designs, the approach can obtain design alternatives that reduce
both software and hardware costs. Furthermore, the experimental results also
investigate design spaces for various application features. It turns out that the
HW/SW codesign approach is favorable in development of embedded systems.

Keywords: Hardware/Software Codesign, I/O interface, Device Driver,
Programmable controller.

1 Introduction

A programmable I/O controller is used to manage a peripheral physical I/O device. A
device driver is a software layer that lies between an operation system and the I/O
controller. It can configure the operation modes of the device, observe its statuses, and
transfer the data via accessing registers in the I/O controller. Figure 1 shows such a
hardware and software interface. Usually, a register contains several fields (each
occupying several consecutive bits), each of which represents an operation mode, a
status or a datum. Each field is referred as a device parameter [3] (or device variable as
defined in [8]). For example, the length of stop bits is a device parameter of a UART
controller. To configure a data frame for a UART transfer, besides of the stop bits, one
should also set parity mode, word length and baud rate. These parameters associated
with a common purpose form a parameter group. To minimize the number of registers
and the number of register accesses, hardware designers often allocate device
parameters in the same group into the same register. However, this may increase the
number of I/O accesses and bit-operations (such as shift instruction and logic

542 K.J. Lin, S.H. Huang, and S.W. Chen

instruction) when a driver wants to manipulate individual parameters. Let us see
examples in the Fig. 2, that shows various allocations for two parameters A and B.
 Fig. 3 shows C codes of several access functions in the device driver (or HAL),
including set_B(), get_A(), set_A_B() (modifying A and B simultaneously) and
get_A_B(), for allocation (2). Fig. 4 shows C codes of the same access functions for
allocation (1). As shown in these codes, the allocation of device parameters on I/O
registers affects the code size and execution time of its associated I/O device driver. As
reported in [8], these low-level codes have been found to represent up to 30% of a
device driver. Their size and performance inevitably become important issues for I/O
intensive embedded systems.

Device driver (or HAL)

Codes for accessing and manipulating
device parameters

Operating system

Registers Device
parametersProgrammable device controller

Physical devices

Fig. 1. Interface hardware and software for an I/O device

In traditional design flow, the development of device drivers can not begin until the
device parameter allocation is fixed. In the proposed HW/SW codesign flow, a
software programmer can write the device driver using pre-defined parameter-access
functions such as set_B(). However, the real C codes of these access functions depend
on the physical allocation of parameters. This paper presents a novel design
methodology that allows a designer to seek an allocation that reduces the codes of
parameter-access functions or the number of I/O registers when developing device
drivers. The exact allocation with the minimum cost under constraints is formulated as
a zero-one integer linear programming problem. The HW/SW codesign approach is
favorable in development of embedded systems. The formulations of an allocation with
minimum software or hardware costs are derived. Heuristic algorithms based on
iterative refinement are proposed to explore the optimization. The proposed design
methodology were implemented in C language and evaluated with a set of real devices.
Compared with current industrial designs, we can obtain design alternatives that reduce
both software and hardware costs. Furthermore, the results also indicate design spaces
for various application features.

To the best of our knowledge, the paper [5] should be the first work to investigate
how the parameter allocation can affect the performance of drivers and to try finding an
optimal allocation. However, it does not address hardware optimization. Furthermore,
it does not allow parameters belonging to different groups to share a register. Other
related works handling the synthesis of device drivers or interface codesign all assume

 Optimal Allocation of I/O Device Parameters in Hardware and Software 543

(3)
B AD

32bits 7~015~12 11~8
Not used addr

11~832bits(2) 7~0
ABaddr Not used

7~0

Not used A
32bits

(1)

addr1 B
3~0

Not used

32bits
addr2

Fig. 2. Three different allocations for a device-parameter group {A, B}, where in case (3) the
parameter D belongs to another group

void set_B(int val) {
 int temp;
 temp = io_read (addr) ;

temp = temp & 0xfffff0ff;
temp = temp | (val << 8) ;
io_write(temp, addr);

}//Cost=2C1+2C2

void set_A_B(int val1, int val2) {
 int temp;
 temp= val1;

temp = temp | (val2 << 8);
io_write (temp, addr) ;

}// Cost= C1+2C2

void get_B(int *val) {
 int tmp;

temp = io_read(addr);
*val = (temp>>8) & 0x0f ;

}//Cost=C1+C2

void get_A_B(int *val1, int *val2) {
 int temp;

temp = io_read(addr);
*val1 = temp & 0xff ;
*val2 = (temp>>8) & 0x0f ;

}//Cost=C1+2C2

Fig. 3. The C codes set_B (), set_A_B(), get_B() and get_A_B() for device parameters A and B
which are allocated in the same register, i.e. allocation (2) in Fig. 2

void set_B(int val) {
 io_write (val, addr2) ;
}//Cost=C1

void set_A_B(int val1, val2) {
io_write (val1, addr1) ;
io_write (val2, addr2) ;

}//Cost=2C1

void get_B(int *val) {
 *val=io_read (addr2) ;
}//Cost=C1

void get_A_B(int *val1, int *val2) {
*val1 = io_read(addr1);
*val2 = io_read (addr2) ;

}//Cost=2C1

Fig. 4. The C codes set_B (), set_A_B(), get_B() and get_A_B() for device parameters A and B
which are allocated in different registers, i.e. allocation (1) in Fig. 2

the allocation of device parameters are pre-fixed. F. Merillon et al. [8] address the
automatic synthesis of such low-level codes from a higher level specification, called as
Devil language. Recent works [1, 9, 10] extend the language’s descriptive capability

544 K.J. Lin, S.H. Huang, and S.W. Chen

and try to automatically synthesize more dedicated parts of a device driver. P. Chou et
al. [2] propose an interface HW/SW cosynthesis work, which synthesizes driver codes
as well as glue hardware logic to connect I/O controllers. G. Gognoit et al. proposed
communication synthesis and HW/SW integration for Embedded System Design in [4].

The next section defines the software and hardware cost models. Section 3
formulates the exact solution of a parameter allocation with minimum costs. The whole
design methodology and tools are presented in Section 4. Experimental results are
shown in Section 5. The final section draws conclusions.

2 Cost Models

The proposed system allows users to trade off the HW cost for an I/O controller and the
SW cost for its associated device driver. The HW and SW cost modes are defined in
this section. Based on the observations on the C codes in Fig. 3 and Fig. 4, we
summarize the software costs for different accesses and allocations in Table 1. A
parameter can be allocated in three types of registers: (1) single: the register contains
the parameter only; (2) shared: the register contains more than one parameter and all
parameters in it belong to the same group; (3) group-shared: the register contains more
than one parameter and the parameters in it are from different groups. The allocation
(3) in Fig. 2 is such an example. The I/O access functions include reading (writing) an
individual parameter and reading (writing) K parameters of the same group
simultaneously. Most access functions for shard register and group-shared register are
the same, except writing data to some parameters of a group, in that accessing a
group-shared register needs one more I/O read access for retaining the values of
parameters belonging to other groups.

Table 1. Software cost of various I/O access for different allocations of device parameters

 Allocations
Accesses

Single
register

Shared
register

Group-shared
register

Read an individual C1 C1+ C2 C1+ C2

Write an individual C1 2 C1+ 2C2 2 C1+ 2C2

Read K parameters of a
group

KC1 C1+ KC2 C1+ KC2

Write K parameters of a
group

KC1 C1+ KC2 2C1+(K+1)C2

 C1: Execution time (or instruction length) of an I/O access instruction
 C2: Execution time (or instruction length) of a bit-manipulation instruction

The total software cost under our consideration also depends on the execution
numbers of these I/O accesses. These numbers are application-specific. The number of
times a driver reads (writes) an individual parameter Xi in a period is given as read
frequency, fi

r (write frequency, fi
w). The number of times a driver reads (writes) the

 Optimal Allocation of I/O Device Parameters in Hardware and Software 545

whole group is given as group-read frequency fg
r, (group-write frequency, fg

w). Given
these access profiles, the software cost can be determined by the allocation of device
parameters. In this work, the software cost can be code size or execution time. If code
size is the main concern of software cost, the execution number means the number of
parameter-access functions used as in-line functions.

Register index Variables allocated in this register
Register 1 12.... XX

…. ….
Register p1−pp mm XX

Register p+1 12.... ++ pp mm XX

…. ….
Register p+q1−++ qpqp mmmm XX

Register p+q+1 1++ qp mmX

…. ….
Register n－mp－mq nX

Fig. 5. The physical allocation of Φ(Vg, mp, mq, p, q)

The following defines an allocation for a parameter group, Vg = { X1, X2,…, Xn }:

Definition 1 (Allocation Φ(Vg, mp, mq, p, q)): For a device parameter group, Vg = { X1,
X2,…, Xn }, an allocation Φ(Vg, mp, mq, p, q) denotes that there are mp parameters of Vg
allocated in p shared registers and mq parameters of Vg allocated in q group-shared
registers, and the remaining |Vg|−mp－mq, parameters are allocated in single registers.
Without loss of the generality, let

pmXXX ...21 be in the shared registers,

qppp mmmm XXX +++ ...21 be in the group-shared registers, and nmm XX
qp

...1++ be in

single registers.

Figure 5 illustrates the physical layout for Φ(Vg, mp, mq, p, q). Given access profiles, we
can calculate the software cost as follows:

Definition 2 (Software Cost Function Cs(Φ)): Given fg
r, fg

w, fi
r and fi

 w, i= 1,…, n, for
a device parameter group Vg = { X1, X2,…, Xn }, the software cost Cs(Φ) of an allocation
Φ(Vg, mp, mq, p, q) equals

))2(()(

)22)(...())(....(

))((

)22)(...())(....(

))((

)........(

22121

21212121

21

21212121

1

111

CmCCqfCmqCf

CCfffCCfff

CmpCff

CCfffCCfff

Cmmnff

CffffC

q
w
gq

r
g

w
mm

w
m

w
m

r
mm

r
m

r
m

p
w
g

r
g

w
m

wwr
m

rr

qp
w
g

r
g

w
n

w
mm

r
n

r
mms

qpppqppp

pp

qpqp

+++++

+++++++++

+++

+++++++++

−−++

+++++=

++++++

++++

546 K.J. Lin, S.H. Huang, and S.W. Chen

The first two rows in the above equation calculate the costs in the first column of
Table 2. The third and fourth rows calculate the costs in the second column. The final
two rows calculate the costs in the third column. Generally, the proposed system
handles each parameter group separately since the register sharing between different
groups always increases software cost. The following shows the software cost function
for the case that a group does not share any register with other groups.

Definition 3 (Cs(Φ) for Φ(Vg, m, 0, p, 0)): Given fg (=fg
r+ fg

w), fi
r and fi

 w, i= 1,…, n,
for a device parameter group Vg = { X1, X2,…, Xn }, the software cost Cs(Φ) for an
allocation Φ(Vg, m, 0, p, 0) equals

)(

)(

)22)(...())(....(

)........(

21

1

21212121

111

mCpCf

Cmnf

CCfffCCfff

Cffff

g

g

w
m

wwr
m

rr

w
n

w
m

r
n

r
m

++

−+
+++++++++

+++++ ++

The hardware cost is defined as the number of registers used to allocate device
parameters, as described in the following definitions.

Definition 4 (Hardware Cost Function Ch(Φ)): For a device parameter group Vg = {
X1, X2,…, Xn }, the hardware cost Ch(Φ) of an allocation Φ(Vg, mp, mq, p, q)
equals qp mmnqp +−++ .

Definition 5 (Ch(Φ) for Φ(Vg, m, 0, p, 0)): For a device parameter group Vg = { X1,
X2,…, Xn }, the hardware cost Ch(Φ) of an allocation Φ(Vg, m, 0, p,0) equals mnp −+ .

3 Formulation of Exact Minimization

This work seeks an allocation with the minimal SW or HW cost. The exact solution
assuming no group-shared register being used is formulated. The software cost can be
formulated as a problem of zero-one integer linear programming by using binary
decision variables with two indices : Y={yi,j; i=1, 2,…, n; j=1, 2,…, λ}, where n is the
number of parameters, and λ is the upper bound of the register used. The yi,j = 1 (0)
means that the device parameter Xi is (is not) allocated in the register j. First, the
number of shared registers, p, is assumed to be fixed. In other words, at most λ−p single
registers are used. General cases are discussed later. Let Bi be the bit-length of device
parameter Xi, and RL the width of register. The registers numbered 1, 2,…, p denote
shared registers. The problem now can be stated as follows:

Minimize software:

()()[] () ji

n

i
g

w
i

r
i

pj

n

i
jigji

w
i

r
i

p

i

p

j
g YfffCYCfYffCCCf ,

1
1

11
,2,21

11
1 2 ∑∑∑∑∑

=+====
+++++++

λ

Subject to:

 Optimal Allocation of I/O Device Parameters in Hardware and Software 547

1,..................,1,1)(
1

,
1

,2
1

,1 === ∑∑∑
===

λλλ

j
jn

j
j

j
j YYYa

∑∑∑
===

≥≥≥
n

i
pi

n

i
i

n

i
i YYYb

1
,

1
2,

1
1, 2,.................,2,2)(

1,.................,1,1)(
11

2,
1

1, ≤≤≤ ∑∑∑
=

+
=

+
=

+

n

i
i

n

i
pi

n

i
pi YYYc λ

RLXBRLXBRLXBd
n

i
ii

n

i
ii

n

i
ii ≤≤≤ ∑∑∑

=== 1
,

1
1,

1
1, ,......,,)(λ

Condition (a) means that any parameter must be allocated in exactly one register.
Condition (b) means that the number of parameters allocated in a shared register must
be at least 2. Condition (c) means that the number of parameters allocated in a single
register must not be greater than 1 (but could be zero). Condition (d) means that the sum
of the bit lengths of parameters in a register must not be larger than the length of a
register.

In the hardware side, the exact cost minimization under no constraint is just a bin
packing problem [7]. Under a software constraint, the exact minimization can also be
formulated as a zero-one ILP problem. We still need the decision variable Y.
Furthermore, we define a binary decision variable Zj, j={1, 2,…, λ}, where λ=n-p, is the
maximum number of registers probably used. The z,j = 1 (0) means that the jth register is
(is not) used. Let SC be the given software-cost constraint. The symbols Bi, Xi, and RL
are used as for software minimization formulation. The problem now can be stated as
follows:

Minimize hardware: ∑∑
+==

+
λ

11 pj
j

p

j
j ZZ

Subject to:

)(),(),(cba (the same as ones for the software part)

λλ ZRLXBZRLXBZRLXBe
n

i
ii

n

i
ii

n

i
ii ⋅≤⋅≤⋅≤ ∑∑∑

=== 1
,1

1
1,1

1
1, ,.,,)(

()()[] () SCYfffCYCfYffCCCff ji

n

i
g

w
i

r
i

pj

n

i
jigji

w
i

r
i

p

i

p

j
g ≤+++++++ ∑∑∑∑∑

=+====
,

1
1

11
,2,21

11
1 2)(

λ

The former three conditions are the same as those for software minimization.
Condition (e) constrains the total bit length of parameters in a register. Condition (f) is
the software constraint. Based on the above formulations, an ILP-solver can be used to
obtain an exact minimization if p shared registers are used. To obtain a global exact
minimization, the ILP-solver must be run n/2 times with p = 1, 2,….n/2, and the best
result then chosen.

548 K.J. Lin, S.H. Huang, and S.W. Chen

Device parameters specification

Derive minimal costs without SW/HW constraints

Set Constraints

Allocation and
SW/HW cost

Software
Synthesis

Hardware
Synthesis

: tools

HW-cost
optimization

SW-cost
optimization

Fig. 6. An HW/SW codesign flow for I/O device controllers

4 Design Methodology

The flow of the proposed design methodology is shown in Fig. 6. The device-
parameters specification, defines the bit length of each device parameter, the members
of each parameter group and access profiles fg

r, fg
r, fi

r and fi
 w. The bit length of a

parameter and groups’ members are fixed, while the access profiles are determined by a
dedicated application. Given the device-parameter specification, the system first
derives two allocations on the assumption that the software (hardware) constraint is
unlimited when minimizing the hardware (software) cost. One has a minimal software
cost and the other minimal hardware cost. They are two extreme solutions of the design
space. Then a user can give a hardware constraint (or a software constraint) and obtain
an allocation having a minimal software cost (or hardware). The inner loop allows a
user to iteratively refine the solution to meet a certain purpose. The acceptable
allocation for all device parameters can then be fed into a software synthesis tool [6, 8],
which generates the low level codes of parameter-access functions. Furthermore, the
allocation will be used by a hardware synthesis tool to generate I/O registers.

In both HW and SW optimizations, we first handle each device parameter group
separately. Then we allow parameters in different groups to share registers if the
following situations occur: (1) if no solution exists to meet the hardware constraint and
(2) the hardware cost can be further reduced while still meeting the software constraint.

Although an ILP solver can derive the solution with exact minimum cost, it is
time-consuming for handling large cases. Heuristic approaches are presented here. The
heuristic algorithm starts from an initial allocation with the smallest number of
registers, which corresponds to an exact solution of a bin-packing problem. Then, the
allocation is iteratively refined to obtain a lower cost until the constraint is violated or
no further improvement can be obtained. The strategy is applied to both software and

 Optimal Allocation of I/O Device Parameters in Hardware and Software 549

hardware optimization. Each refinement process relies on proven lemmas, which have
been presented in [5]. To show these lemmas, a new notation is defined as follows:

Definition 6 Φ’(Vg, V’, m-k, 0, p-s, 0): An allocation Φ’(Vg, V’, m-k, 0, p-s, 0) is
derived from Φ(Vg, m, 0, p, 0) by reallocating a set of parameters V’, V’={Xj | j∈1,…, m
} and |V’|= k, to single registers. The remaining parameters are repacked into p−s
shared registers, where k ≥ 1, s ≥ 0 and k ≥ s.

The lemmas exploited in our approach are described in the followings, whose proofs
can be directly derived by subtracting Cs(Φ) from Cs(Φ’).

Lemma 1: Given fg, fi
r and fi

 w , i= 1,…,n, for a device parameter group Vg = { X1,
X2,…, Xn } and an allocation Φ(Vg, m, 0, p, 0), if Φ’(Vg, V’ , m−1,0, p−1,0)) exists, then
Cs(Φ’) is smaller than Cs(Φ).

Lemma 2: Given fg, fi
r and fi

 w , i= 1,…, n, for a device parameter group Vg = { X1,
X2,…, Xn } and an allocation Φ(Vg, m, 0, p, 0), Cs(Φ’(Vg, {Xj}, m−1, 0, p, 0)) < Cs(Φ(Vg,

m, 0, p, 0)) if and only if
g

w
j

r
j f

CC

fCCfC
>

−
++

21

212)2(.

The SW-optimization algorithm can be found in [5]. The HW-optimization part is
shown in Fig. 7. An initial allocation with the minimum number of registers is derived
by an exact bin-packing procedure, which uses a branch-and-bound approach as
proposed by Martello and Toth [7]. Starting from the initial allocation, the solution is
iteratively refined. If the software cost of the initial allocation is larger than the given
software constraint (SC), the algorithm runs bin_packing_maximize_single(), which
tries to derive a better allocation according to Lemma 1. Then, if the constraint is still
not met, the Lemma 2 is applied.

MinmizeHCostUnderSC (VarList, fg , f
r List, f wList, SC) {

//SC : Software Constraint

// Let
g

w
j

r
j

f
CC

fCCfC
jQ >

−
++

=
21

212)2(
)(

//Aloc: An allocation of device variables
// Aloc-> ShVarlist: The variables packed in shared registers
// Aloc->RN : The number of registers used in the allocation
bin_packing(Varlist, & Aloc); //initial
if (SCost(Aloc) > SC)
bin_packing_maxmize_single(Varlist, &Aloc);
while (SCost(Aloc) > SC) {
if Q(j) is the largest in Aloc->ShVarlist and Q(j) >1

move the Var_ j in Aloc->ShVarlist to a single register,
 if no such j exists, return no-solution;
 }
 return Aloc;
}

Fig. 7. The proposed algorithm for HW-Cost minimization under an SW constraint

550 K.J. Lin, S.H. Huang, and S.W. Chen

The solution obtained by the algorithm in Fig. 7 can be further reduced by using
group-shared registers. However, as shown in Table 1, the use of group-shared registers
increases the software cost if fg

w > 0 for some group to be allocated in the group-shared
register. Hence, the proposed algorithm firstly sorts groups according to the fg

w. Then,
two registers used by two different groups which have smaller fg

w are selected to be
merged. The merging is tried repeatedly until the software constraint is violated. Fig. 8
shows the procedure.

UseGroup-SharedRegisters() {
//Assume there is K different device-parameter groups. Without loss of

generality, let groups GP1 , GP2,…, GPk, be the increasing list of fg
w.

// T = GP1
for i=2 to K {

 try to merge any pair of registers (x, y) to be a register, where x∈ T, y∈ GPi, and
both are a shared or group-shared register ;

calculate SW-cost;
if the software constraint is violated, discard the merging and return;
T = T ∪ GPi ;
}
}

Fig. 8. An algorithm to further improve HW-cost by using group-shared registers

5 Experimental Results

The proposed design methodology was implemented in C. Experimental results were
obtained for several industrial devices. These devices are originally used to show driver
synthesis in [8], and specified in Devil language. Their specifications define the bit
length of each device parameter and the members of a group according to industrial IC
documents. The access profiles (i.e. fg

r, fg
w, fi

rand fi
 w) are given by ourselves. The value

of the SW cost depends on the given values of fg
r, fg

w, fi
r and fi

 w. To illustrate the
influence of access profiles, two cases were evaluated: (a) fg

r+ fg
w >> fi

r + fi
 w and (b)

fg
r+ fg

w << fi
r + fi

 w. For simplicity, in both cases, we let all groups have the same values
for fg

r and fg
w. And all parameters have the same values for fi

r and fi
 w.

Table 2 shows the experimental results. The “industrial” column shows the hardware
and software costs of the allocation in original Devil specifications [8]. The two costs
are used as the hardware and software constraints. Under the two constraints, software
and hardware optimizations were derived by the proposed heuristics. The column SOP
and HOP indicate the results assuming no group-shared register being used. The results
show that an allocation with minimal software (hardware) cost is not necessarily to use
maximal hardware (software cost). Comparing the experimental results with industrial
designs, the proposed approach can obtain design alternatives that reduce both software
and hardware costs. The “GHOP” column shows the HW costs which are derived by
applying UseGroup-SharedRegisters() procedure. In several cases, the HW-cost can be
further reduced. As for the program time, the results for all examples can be obtained
within 30 seconds on a 2.4 GHz P4-based PC.

 Optimal Allocation of I/O Device Parameters in Hardware and Software 551

Table 2. Experimental results

fg
r =fg

w=10; i, f ri=f w
i=1 fg

r =fg
w=1; i, f ri=f w

i=10

Industrial SOP HOP GHOP Industrial SOP HOP GHOP
DevicesG/N(S)2

HW cost (SW cost)1 HW cost (SW cost)

BusMr 1/8(8) 2 (496) 2 (342) 2 (342) 2 (342) 5 (802) 5 (678) 5 (790) 5 (790)

IDE 3/38(22) 11 (2506) 5 (1490) 5 (1516) 3 (2116) 11 (4468) 11 (4206) 9 (4380) 7 (4416)

X11 5/47(23) 13 (3534) 11 (2094) 11 (2146) 11 (2146) 13 (6234) 13 (5916) 11 (6214) 11 (2146)

8290 7/107(26) 48 (11344) 17 (4242) 17 (4249) 15 (5874) 48 (10678) 48 (9698) 37 (10384) 35 (10440)

83905 7/103(32) 45 (13398) 17 (4214) 17 (4244) 14 (4404) 45 (11022) 45 (9920) 46 (10196) 43 (10212)

Total 122 (31278) 52 (12382) 52 (12497) 43 (14540) 122 (33204) 122(31818) 108(31964) 96(27214)

Compared to the

industrial

1 (1) 0.43 (0..40) 0.43 (0.40) 0.35 (0.46) 1 (1) 1 (0.96) 0.89 (0.96) 0.79 (0.82)

1. `The SW-cost is calculated by assuming C1=3 and C2=1.
2. G/N(S) : # of group / # of all parameters (# of parameters in the maximal group).
3. Industrial: The cost of the original allocation in the Devil specification.
4. SOP: SW minimization using the industrial HW cost as the constraint.
5. HOP: HW minimization using the industrial SW cost as the constraint.
6. GHOP: HW minimization by allowing different groups to share a register.

SW-cost

Fig. 9. SW-optimizations under various HW constraints (IDE example)

To investigate the design spaces for various application features, we derived the
allocations with the minimal SW cost under various HW constraints. Figure 9 shows
such an investigation using IDE as an example. The three curves show the results for
three different frequency ratios of fg

r+fg
w to fi

r+fi
 w. Some observations are obtained. In

case of fg/fi=10, the solution with the minimal SW-cost generally is also the one with
the minimal HW-cost. In case of fg/fi=0.1, the SW-cost is almost inversely proportional

552 K.J. Lin, S.H. Huang, and S.W. Chen

to the HW-cost. In case of fg/fi=2, the result shows that even more hardware can be
used, the SW-cost is not further reduced.

6 Conclusion

We have proposed a HW/SW codesign methodology that allows a designer to seek a
parameter allocation that reduces the software or hardware cost during the development
of a programmable I/O controller and its associated device driver. The approach is
favorable in development of embedded systems. The exact allocation problems under
constraints are formulated as zero-one integer linear programming problems. Heuristic
algorithms based on iterative refinement are also proposed. The proposed design
methodology was implemented in C language. Compared with current industrial
designs, the system can obtain design alternatives that reduce both software and
hardware costs. Furthermore, the results also indicate design spaces for various
application features.

Acknowledgements. The authors would like to thank Taiwan NSC for financially
supporting this research under Contract No. NSC 94-2215-E-030-007.

References

1. Conway, C.L., Edwards, S.A.: NDL: A Domain -Specific Language for Device Drivers. In:
Proceeding of ACM LCTES, pp. 30–36 (2004)

2. Chou, P., Ortega, B.R., Borriello, G.: Interface Co -synthesis Techniques for Embedded
Systems. In: Proceedings of IEEE/ACM ICCAD, pp. 280–287 (1995)

3. Givargis, T., Vahid, F.: Parameterized System Design. In: IEEE/ACM International
Workshop on Hardware/Software Codesign, CODES, pp. 98–102 (2000)

4. Gognoit, G., Auguin, M., Bianco, L.: Communication synthesis and HW/SW integration for
Embedded System Design. In: Proceeding of 6th international workshop on HW/SW
codesing, pp. 49–53 (1998)

5. Lin, K.J., Huang, S.S., Chen, S.W.: A hardware/ software codesign approach for
programmable IO devices. In: Proceedings of the 15th ACM Great Lakes Symposium on
VLSI, pp. 323–327 (2005)

6. Lin, K.J., Chen, J.L.: An Extension of C Preprocessor Directives for Device Programming.
In: International Computer Symposium, Taiwan, pp. 1279–1284 (2004)

7. Martello, S., Toth, P.: Knapsack problems. Wiley, Chichester (1990)
8. Mérillon, F., Muller, G.: Dealing with hardware in embedded software: A general

framework based on the Devil language. In: Proceedings of the ACM SIGPLAN Workshop
on Languages, Compilers and Tools for Embedded Systems, pp. 121–127 (2001)

9. Wang, S., Malik, S., Bergamaschi, R.A.: Modeling and Integration of Peripheral Devices in
Embedded Systems. In: DATE, pp. 136–141 (2003)

10. Zhang, Q.L., Zhu, M.Y., Chen, S.Y.: Automatic Generation of Device Drivers. ACM
SIGPLAN Notices, 60–69 (2003)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 553–564, 2007.
IFIP International Federation for Information Processing 2007

A Semantic P2P Framework for Building Context-Aware
Applications in Multiple Smart Spaces

Tao Gu1, Hung Keng Pung2, and Daqing Zhang1

1 Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore
2 National University of Singapore, 3 Science Drive 2, Singapore

tgu@i2r.a-star.edu.sg, punghk@comp.nus.edu.sg,
daqing@i2r.a-star.edu.sg

Abstract. Context information has emerged as an important resource to enable
autonomy and flexibility of ubiquitous applications. The widespread use of
context information necessitates an efficient lookup service in a wide-area
network over multiple smart spaces. In this paper, we propose a context lookup
framework based on a semantic peer-to-peer network to support the building of
context-aware applications in multiple smart spaces. Collaborative context-
aware applications that utilize different context information in multiple smart
spaces can be easily built by invoking a pull or push service provided by our
framework. We describe the design of our system, demonstrate the develop-
ment process of context-aware applications, and report the measurements obtai-
ned from our prototype.

Keywords: Context lookup, semantic peer-to-peer network, context-aware
applications, multiple smart spaces.

1 Introduction

The recent convergence of ubiquitous computing and context-aware computing has
seen a considerable rise in interest in various context-aware applications. These
applications exploit various aspects of the contextual environment to offer services,
present information, tailor application behavior and trigger adaptation, based to the
changing context.

Context information gathered from various sensor systems is the basis for
enmeshing ubiquitous computing into our daily lives and exhibiting the autonomy of
applications. Storing and acquiring such information in a single smart space can be
easily handled by a centralized database server. The server can provide fast response
to a lookup query. However, handling large-scale context information over multiple
smart spaces requires an appropriate context lookup architecture. Distributing
database servers to multiple smart spaces in a wide-area network does provide a
scalable and reliable solution. However, this approach requires a significant
investment on servers, the bandwidth costs of storing and updating context
information, and administration restrictions.

Emerging Peer-to-Peer (P2P) approaches have been proposed to overcome some of
these obstacles, and providing potential solutions for a large-scale distributed lookup

554 T. Gu, H.K. Pung, and D. Zhang

system. This paper proposes a semantic P2P framework to support storing and
acquiring context information in multiple smart spaces. In this framework, context
data is stored in a context producer where it was generated. Each context producer is
only responsible for managing its local context data that may be acquired from the
sensors attached. For an efficient context lookup, we design and implement a
semantic P2P overlay network in which context data is organized and retrieved
according to their semantics. In this network, context producers are arranged in such
a way that those with semantically similar data are grouped together so that a
context query can be routed efficiently. Many existing or potential collaborative
context-aware applications can use our framework, especially those collaborative
context-aware applications over multiple smart spaces. For examples, Family
Intercom [5] – an advanced communication application between multiple smart
homes, is able to identify the caller and the recipient and mediate the initiation of the
audio conversation. In health care applications, a tele-monitoring application tracks a
patient wherever he/she goes or a tele-medical record application can provide
anywhere availability of personal medical history.

The rest of the paper is organized as follows. We describe the system architecture
and its details in Section 2. We then present collaborative context-aware applications
in Section 3, and report the results obtained from our prototype in Section 4. We
discuss related work in Section 5. Finally, we conclude the work in Section 6.

2 System Architecture

2.1 Overview

Our framework consists of many individual nodes called ContextPeers, which act as
context producers. Users and context-aware applications act as context consumers to
obtain context data by submitting their queries to ContextPeers and receive the
results. ContextPeers are self-organized into a semantic P2P network [6] for
supporting P2P search. ContextPeers exploits semantic P2P overlay as the underlying
network layer and extends it with RDF-based context storage, context queries and
context subscription.

Fig. 1. The architecture of ContextPeers

 A Semantic P2P Framework for Building Context-Aware Applications 555

As shown in Fig. 1, each ContextPeer consists of five components: the semantic
P2P network layer, the sensor wrappers, the local context storage, the RDQL [10]
based query engine and the context subscription. The sensor wrappers capture various
sensor data from physical or virtual sensors, and convert raw (i.e., direct sensor
output) format into an RDF-based data model (i.e., in the form of RDF triples) and
store the triples into the local context storage. The RDQL-based query engine parses
and resolves context queries from users or applications. The context subscription
registers subscription requests and notifies context consumers when context changes
occur. The semantic network layer is responsible for network construction and
maintenance, and query routing. Application developers utilize a set of APIs provided
by our framework to access the functionalities of ContextPeers and build context-
aware applications. The class diagram containing the major classes in a ContextPeer
is shown in Fig. 2.

Fig. 2. Class diagram of a ContextPeer

2.2 Data Model

In our system, we use an RDF-based context model to represent context data. RDF
provides a universal platform for representing resources and asserting relations
between resources in a machine-readable and machine-understandable way. Each
RDF statement is represented as a triple of the form <subject, predicate, object>. We
adopt a hierarchical context ontology model defined in [6] which consists of a shared
upper ontology and a set of domain-specific ontologies. The upper ontology defines
common concepts, and it is shared among all ContextPeers. Each ContextPeer can

556 T. Gu, H.K. Pung, and D. Zhang

define its own concepts in its low-layer ontologies which extend the leaf concepts in
the upper ontology. Different ContextPeers may store different sets of low-layer
ontologies based on their applications' needs. This design approach offers application
developers the flexibility to define domain knowledge which is specific to their
applications.

2.3 Sensor Wrapper

A ContextPeer acquires context information from the various sensors attached to. We
create an appropriate wrapper for each type of sensors. This approach can avoid
explicit binding of the application to a particular underlying context sources
technology. Wrappers capture sensor data, and convert them into RDF-based context
data. A ContextPeer selects a set of wrappers based on its contextual interests,
subscribes to the wrappers and gets updated.

We use the SensorWrapper class to construct a wrapper. A SensorWrapper
object instance is associated with a set of ContextTriple objects specifying the
provided context and an UpdateHandler object implementing actions for context
update. For example, an RFID-based location sensor wrapper is able to convert sensor
data <RoomID RFID-John>, where RoomID represents the ID of a bedroom and
RFID-John represents the RFID sensor attached to a person – John, to the RDF
statement <John locatedIn Bedroom>, representing that John is currently
located in the bedroom.

2.4 Local Context Storage

Each ContextPeer maintains a local repository for storing context data. The repository
stores context data ontologies, static context data and sensed context data. Static
context data refers to context data that does not change frequently, such as the spatial
information of buildings (e.g., John's bedroom is located in John's house). Sensed
context data refers to data obtained from sensors (e.g., John is located in his
bedroom). Such data is typically dynamic and changes frequently.

The ContextManager class built on Jena’s Models [8] is responsible for managing
the repository. It provides methods to add or remove context data and answer context
query, and also provides a set of operations to combine ontologies or context data.
Since sensed context data changes frequently, the ContextManager class attaches a
ModelChangedListener to the sensed context data Model to monitor these changes.
This is especially important for responding to incoming subscribed queries.

2.5 Data Mapping

Upon creation, a ContextPeer needs to decide which cluster to join in the semantic
P2P overlay network. This is done by using an ontology-based semantic mapping
technique to map a ContextPeer’s local data to semantic cluster(s) as defined in the
context ontology, and count the number of triples corresponding to each semantic
cluster. This technique traces the hierarchy of OWL [7] classes and maps their
predicates to the associated classes. We create two structures – ClusterHierarchy and

 A Semantic P2P Framework for Building Context-Aware Applications 557

ClusterMap. We first map each triple to an OWL class using ClusterMap, and then
map the triple to an appropriate semantic cluster using ClusterHierarchy. Let SCnsub ,
SCnpred , SCnobj where n = 1, 2, . . . denote the semantic clusters extracted from the
subject, predicate and object of a triple respectively (Note: unknown subjects/objects
or variables are mapped to all). If the predicate of a triple is of type ObjectProperty,
we obtain the semantic clusters using (SC1pred∪ SC2pred ∪ ... SCnpred) ∩ (SC1obj∪
SC2obj ∪ ... SCnobj). If the predicate of a triple is of type DatatypeProperty, we obtain
the semantic clusters using (SC1sub∪ SC2sub ∪ ... SCnsub) ∩ (SC1pred∪ SC2pred ∪ ...
SCnpred). The semantic cluster with the highest triple counts (called the major
semantic cluster) is selected for the ContextPeer to join. To achieve this, each
ContextPeer creates and maintains a HashMap and iterates through all the triples in its
model. Upon successful execution, the method returns a vector containing all the
semantic cluster IDs corresponding to all its local context data. The first element in
this vector indicates the ID of the major semantic cluster.

2.6 Query Routing

We follow the principle of a small world network model [9] and extend it with
clustering operations to build the semantic network. After obtaining the semantics of
its local data, nodes are organized in such a way that those have semantically similar
data are grouped together in a semantic cluster. As a node’s data may correspond to
multiple semantic clusters, a node joins its major semantic cluster and publishes the
indices of its data (i.e., reference pointer) to its minor semantic clusters.

Routing Table Construction: Each node builds its routing table by creating a set of
local contacts in its own cluster, a short-range contact in each of its neighboring
clusters, and a small number of randomly chosen long-range contacts. Each newly
joining node builds its routing table in the same way resulting in all the clusters being
linked linearly in a ring fashion. As illustrated in Fig. 3, Node 1 builds two local
contacts (Node 2 and 3) in SC1, two short-range contacts (Node 4 and 5) in SC0 and
SC2 respectively, a long-range contacts (Node 6) in SC5, and publishes its indices to a
random node (Node 7) in SC3.

Fig. 3. Constrcution of the Semantic Network

558 T. Gu, H.K. Pung, and D. Zhang

Grouping context providers with similar data according to their major semantic
clusters has the effect of minimizing the cost of node joining, leaving, and data
changes. A node will stay in its major semantic cluster as long as the majority of data
does not change. However, a large number of nodes in a semantic cluster may result
in a scalability issue. We design the follow clustering operations to enable the
network to scale to a large number of nodes.

Clustering Operations: When the number of nodes in a semantic cluster exceeds a
certain size, cluster splitting occurs. Let M represent the maximum cluster size. If the
size of a cluster exceeds M, the cluster is split into two. Each node maintains a
CurrentLoad which measures its current load in terms of the number of triples and
data indices it stores. When node x joins the network, it sends a join request message
to an existing node, say y. If y falls into the same semantic cluster that x wishes to
join, x joins the cluster by connecting to y if its cluster size is below M; otherwise y
will direct the request to a node, say z, in the semantic cluster that x wishes to join,
and x will connect to z if its cluster size does not exceed M. If the cluster size exceeds
M, node y or z (called an initial node) will initiate the splitting process. The initial
node first obtains a list of all the nodes in this cluster which is sorted according to
their CurrentLoads. Then it assigns these nodes in the list to the two sub-clusters
alternatively. After splitting, we obtain two clusters with relatively equal load. The
initial node is also responsible for generating a new cluster ID for each of the two
sub-clusters. To obtain a new cluster ID, each node maintains a bit split pointer which
indicates the next bit to be split in the n-bit binary string. Initially, the bit split pointer
points to the most significant bit of the n-bit string. When cluster splitting occurs, the
bit pointed by the bit split pointer is split into 0 and 1 and move the pointer forwards
to the next bit in the n-bit string. The same mechanism follows for the insertion of a
new semantic cluster. A semantic cluster can be split into a maximum number of 2n
clusters. After splitting, a node updates its cluster ID, the bit split pointer as well as its
local contacts and short-range contacts.

When the number of nodes in a cluster falls below a threshold, cluster merging
occurs. When node x leaves the network, it first checks whether its cluster size has
fallen below a threshold Mmin. If the current size is above Mmin, x simply leaves the
network by transferring its indices to a randomly selected node in its cluster.
Otherwise, this cluster needs to be merged into one of its neighboring clusters within
the same semantic cluster. The leaving node triggers cluster merging which is an
inversed process of cluster splitting.

Query Routing: The query routing process involves two steps: inter-cluster routing
and intra-cluster routing. Upon receiving a query, node x first obtains the destination
Semantic Cluster ID (denoted as D). This is done following the same mapping
process as described in Section 2.5. Then node x will check whether D falls into its
own semantic cluster by comparing D against the most significant m-bits of its
ClusterID. If that is the case, x will flood the query to all the local contacts and also
forward the query to its short-range contacts in its adjacent clusters corresponding to
D. The forwarding processes are recursively carried out until all the clusters
corresponding to D have been covered and all nodes in each of the clusters are
reached.

 A Semantic P2P Framework for Building Context-Aware Applications 559

If D falls into neither node x's own cluster nor its adjacent semantic cluster, x will
rely on its long-range contacts to route the query across clusters. To initiate a search, x
obtains D based on a query and checks which cluster range (partitioned by x's long-
range contacts) D falls into. Then node x forwards the query to the closer semantic
cluster through its long-range contact. If D is closer to SCx, node x will forward the
query across its adjacent cluster towards D.

2.7 Subscription

Other than a context query which pulls context data from the network, context
consumers can issue a subscribed query to subscribe context data and be notified
when data changes occur.

Upon receiving a subscription request, a ContextPeer attempts to match it against
the context data in its base model. If the request's predicate is of type
DatatypeProperty, the ContextPeer determines if its base model contains statements
with the same subject-predicate pair as the request. Similarly, if the predicate is an
ObjectProperty, the ContextPeer determines if its base model contains statements
with the same predicate-object pair as the request.

Whenever a change occurs with respect to the subscription request, the
ModelChangedListener informs the ContextManager of the RDF statement that has
been added or removed. Subsequently, the ContextManager scans through all
IncomingSubscriptions and identifies those that are affected by the change. This is
done in the following manner: Let the added or removed RDF statement be
<subjectc, predicatec, objectc>. Let the RDF triple pattern of a
particular IncomingSubscription's criteria be <subjectsr, predicatesr,
objectsr>. Define the Boolean variable isAffectedc as:
isAffectedc = (subjectc == subjectsr) ^ (predicatec ==

predicatesr) ^ (objectc == objectsr)
where ^ denotes the logical AND operation. A variable can take the value of any
arbitrary constant and is thus equal to any constant value. An IncomingSubscription is
affected by a change c if isAffectedc is true. For each affected
IncomingSubscription, the ContextManager sends QueryHit messages to all its
subscribers to supply them with the updated context data.

3 Application Development

We have fully implemented our framework in Java SDK 1.4.1, and also developed
two context-aware applications: Tele-monitoring alert and Tele-medical record.

The Tele-monitoring alert application monitors a patient’s health parameters and
informs the relevant parties when abnormal signs are observed. The application
scenario is illustrated in Fig. 4. Alan just had his heart bypass operation and is now
discharged from his hospital and recuperating at home. The doctor gives him a
wearable health monitoring device to track his pulse rate, temperature or the blood
pressure of the wearer. The Health Monitor runs on ContextPeer with the connections
to physical sensors. The HealthCare Assistant application runs in Alan’s portable
device (i.e., PDA). It tracks the health status of Alan by subscribing to the sensor

560 T. Gu, H.K. Pung, and D. Zhang

information provided by Health Monitor. When abnormal situation occurs, for
example, HealthCare Assistant detects a drop in blood pressure and a decrease in
pulse rate which it deduces could be a case of imminent heart failure, it immediately
alert the Hospital Services Assistant in Alan’s private hospital or a nearby emergency
center. A health status report can also be transferred to the Hospital Services Assistant
for the doctor to have more information to diagnose Alan’s condition. The HealthCare
Assistant will send a SMS to alert a caretaker of the situation.

Fig. 4. Scenario illustration of the Tele-monitoring alert application

The Tele-medical record application allows for easy transfer of medical records
from one hospital to another hospital facilitating the doctor’s treatment of a patient. In
the above scenario, upon reaching a nearby hospital or an emergency center, Alan’s
HealthCare Assistant automatically sends his personal information (i.e., name, age,
gender, medicine allergies, etc) to a local Hospital Services Assistant. The Hospital
Services Assistant checks and realizes Alan is in his first time visiting and hence the
hospital does not have Alan’s medical record. Thus the Hospital Services Assistant
sends a request to Alan’s HealthCare Assistant to request for his medical record. The
HealthCare Assistant next sends a query to Alan’s private hospital’s Hospital Services
Assistant to retrieve his latest medical record. After receiving the record, the
HealthCare Assistant filter out any privacy information, e.g., his drug addiction ten
years back, and forward the medical record to the local hospital’s Hospital Services
Assistant.

4 Prototype Measurements

We have deployed a prototype system to demonstrate the working principle of
ContextPeers and assess practical issues. In this section, we report the measurement
results obtained from our prototype testbed.

We set up the prototype testbed in a wide-area network. Most of the ContextPeers
run on Pentium 800MHz desktop PCs with 256MB memory. We create a set of
context ontologies and context data for each ContextPeer. Each ContextPeer stores

 A Semantic P2P Framework for Building Context-Aware Applications 561

the upper context ontology and one or more domain-specific context ontologies.
Before the evaluation starts, we need to place context ontologies and context data at
each ContextPeer. The evaluation starts by connecting each ContextPeer to the
network. The network is constructed when ContextPeers randomly join the network.
A ContextPeer obtains the IP of an existing ContextPeer from the bootstrap server.
We test the bootstrap process by connecting all the ContextPeers to the network in
different joining sequences; hence, the structure of the network obtained may differ
from one to another.

4.1 Bootstrapping

When a ContextPeer starts, it first goes through the semantic clustering mapping
process to identify which semantic cluster to join. The mapping process is done by
iterating each of the RDF data triples and identifying its corresponding semantic
cluster. Then the ContextPeer chooses the major semantic cluster to join. On average,
the program initialization process takes about 4.26 seconds, and the mapping process
for each RDF data triple takes about 0.251 ms. The initialization process involves
reading and merging the ontology files stored locally and generating internal data
structures for mapping. It is done only once when a ContextPeer starts and is only
repeated if there is a change in these ontologies. Upon joining the network, each node
creates and maintains a set of peers in its routing table. The joining process involves
initiating the Join message, connecting to those nodes in the JoinReply message
received and registering its reference if needed. The results for different steps in the
bootstrap process are summarized in Table 1.

Table 1. The results for the bootstrapping process

Processes Average Time Taken

Program Initialization 4.26 s

Semantic Clustering Mapping 0.251 ms/RDF triple

Joining Process 2.56 s

4.2 Dynamic Characteristic

We evaluate the dynamic characteristic of the network in our prototype by forcing
ContextPeers to join and leave different semantic clusters randomly. Cluster
splitting/merging may occur when the cluster size is greater/lower than the default
size. For testing the dynamic characteristic of the network, we introduce a parameter:
Time-to-Stability (TS). We define the steady state of ContextPeer as the state in which
a ContextPeer maintains live connections to the peers in its routing table. The steady
state of a ContextPeer may collapse if one of the following events occurs:

 Its short-range contacts or long-range contacts leave the network or some of
these peers change their major semantic clusters (due to their local data change).

 Its reference peer(s) leave the network or their major semantic clusters change.

562 T. Gu, H.K. Pung, and D. Zhang

Queries routing may be affected when ContextPeers are not in the steady state. The
TS parameter is measured from the time when the steady state of a ContextPeer
collapses until it reaches the steady state again. We measure the TS of the affected
ContextPeers for different test cases and the results are summarized in Table 2 (note
that no backup links are used in these cases).

Table 2. Results on TS

Test Cases (without backup links) Average TS

Case 1: The short range contacts or
long range contacts leaves the network
or changes its major cluster or cluster
splitting/merging occurs

271 ms per connection

Case 2: Reference hosting nodes
leave/change

87 ms per reference

In a highly dynamic network, peers leave and join frequently; this may result in
relapse rate very high. A high relapse rate may affect query routing in the network. To
prevent this, we use a backup link for each type of connections. Once the steady state
collapses, a ContextPeer can switch to the backup link immediately for the affected
connection. With this backup scheme, we can minimize the disruption to query
routing in the highly dynamic network where peers frequently leave and join.

4.3 Response Time Analysis

In this experiment, we analyze the important factors that affect the query response.
We randomly select context queries, and measure the average response time. The
query response time can be broken down into three portions: query mapping, query
processing and communication. Query mapping is the time taken by a ContextPeer to
map a query to the appropriate semantic cluster(s). Query processing is the time taken

0

10

20

30

40

50

query mapping query processing communications

qu
er

y
re

sp
on

se
 t

im
e

(m
s)

Fig. 5. Response time for context queries

 A Semantic P2P Framework for Building Context-Aware Applications 563

by a ContextPeer to process a query. Query processing involves performing a local
lookup against the base model. Communication represents the time taken for queries
and their responses to travel over the network. It is the sum of the time taken to send a
query from a consumer to a ContextPeer and the time taken to send the query's
response from the ContextPeer back to the consumer. The results are shown in Fig. 5.
As we can see from the above results, the processing time for query mapping can be
ignored; the costs of query processing and communication are the major factors.

4.4 Query Processing Capability

This experiment evaluates the capability of a ContextPeer to process simultaneous
queries. In the experiment, a context consumer continuously sends a varying number
of queries to the network by randomly picking them from a large query pool. Fig. 6
plots average query processing time against number of simultaneous queries. The
graph displays a linear relationship; and shows that the capabilities of a ContextPeer
scale well to number of context queries.

1

10

100

1000

10000

100000

2 4 8 16 32 64 128 256 512 1024 2048

Number of Simultaneous Queries

Q
u

er
y

P
ro

ce
ss

in
g

 T
im

e
(m

s)

Fig. 6. Query processing capability

5 Related Work

The Context Toolkit [1] provides a software framework and a number of reusable
components to support rapid prototyping of sensor-based context-aware applications.
However, its context delivery assumes the priori knowledge about the presence of a
widget or a context broker. Chen, et al. [2] proposed a platform, named Solar, to
support data fusion services and context dissemination to context-aware applications.
Solar provides a policy driven data dissemination service based on a multicast tree.
However, building a multicast tree for context dissemination may incur large
overhead in the presence of node changes. Hong, et al. [3] proposed the Confab
infrastructure, which includes a flexible and distributed data store to make it easy to
model, store and disseminate context data; and a context specification language for
declaratively stating and processing context needs. While our context lookup
framework shares the similar idea of distributed context storage of Confab in which
the context data is kept close to where it was generated and where it is likely to be
used, our emphasis is on how to provide a scalable semantic lookup service using an

564 T. Gu, H.K. Pung, and D. Zhang

overlay network in multiple smart spaces. Gaia [11] is an infrastructure supporting the
construction of applications for smart spaces. It consists of a set of core services and a
framework for building distributed context-aware applications. Different from the
context service in Gaia, we focus on providing a semantic lookup service which
context information can be shared in a semantic manner. Knoll, et al. [12] proposed a
P2P architecture for context-based system based on Pastry [4]. They modified the
Pastry algorithm to optimize the data distribution towards geographic locality. In our
framework, data distribution is based on where the context data was generated, and
nodes are self-organized into the network according to their semantics.

6 Conclusion

This paper presents the design of a semantic P2P framework for context lookup in
multiple smart spaces. The framework offers a de-centralized way for acquiring
context data from sensors, storing data and resolving context queries.

References

1. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Anchor article of a
spe1cial issue on Context-Aware Computing. Human-Computer Interaction (HCI)
Journal 16(2-4), 97–166 (2001)

2. Chen, G.: Solar: Building a Context Fusion Network for Pervasive Computing. Ph.D.
Dissertation. Department of Computer Science, Dartmouth College (August 2004)

3. Hong, J.I., Landay, J.A.: An Infrastructure Approach to Context-Aware Computing.
Human-Computer Interaction 16 (2001)

4. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed Object Location for Routing for
Large-scale Peer-to-peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, Springer, Heidelberg (2001)

5. Nagel, K., et al.: The Family Intercom: Developing a Context-Aware Audio Communication
System. In: Abowd, G.D., Brumitt, B., Shafer, S. (eds.) Ubicomp 2001: Ubiquitous Com-
puting. LNCS, vol. 2201, pp. 176–183. Springer, Heidelberg (2001)

6. Gu, T., Pung, H.K., Zhang, D.: Information Retrieval in Schema-based P2P Systems using
One-dimensional Semantic Space. Elsevier Journal of Computer Networks, Special Issue
on Innovations in Web Infrastructure (2007)

7. Smith, M., Welty, C., McGuinness, D.: Web Ontology Lanugauge (OWL) Giude (August
2003)

8. Jena 2 - A Semantic Web Framework, http://www.hpl.hp.com/semweb/jena2.htm
9. Kleinberg, J.: The Small-World Phenomenon: an Algorithm Perspective. In: Proceedings

of the 32nd ACM Symposium on Theory of Computing (2000)
10. RDQL, http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
11. Ranganathan, A., Campbell, R.H.: A Middleware for Context-Aware Agents in Ubiquitous

Computing Environments. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS,
vol. 2672, Springer, Heidelberg (2003)

12. Knoll, M., Weis, T.: A P2P-Framework for Context-based Information. In: 1st International
Workshop on Requirements and Solutions for Pervasive Software Infrastructures at Pervasive
2006, Dublin, Ireland (May 2006)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 565–576, 2007.
© IFIP International Federation for Information Processing 2007

Usage-Aware Search in Peer-to-Peer Systems

Irene Sygkouna and Miltiades Anagnostou

School of Electrical and Computer Engineering, National Technical University of Athens,
9, Heroon Polytechneiou Str., 15773, Zografou, Athens, Greece

{isygk,miltos}@telecom.ntua.gr

Abstract. We study solutions to a source discovery problem defined in the
framework of providing time-critical context-aware services over a Peer-to-Peer
communication paradigm. The proposed mechanisms, which take place in
ubiquitous computing environments, exploit the locality of reference properties
exhibited by context usage patterns, with efficient means provided by Active
Networks. Simulation results show that the new methods reduce network traffic
while they maintain the good search time of flood broadcasting methods.

Keywords: Ubiquitous computing, Context-aware services, Peer-to-Peer
search, Locality of reference properties, Active Networks.

1 Introduction

Ubiquitous computing paradigm offers users the opportunity to truly perform their
operations anywhere and anytime. Many practitioners envision a future empowered
with context-aware computation and communication infrastructure that allow users to
access data and receive service at any place and any time. A context-aware system
can be seen as a human assistant given user’s context to be responsible to make
decisions in a proactive fashion, anticipating user needs while not disturbing the user,
except for an emergency [1]. The exploitation of complete context-awareness in state-
of-the-art services requires taking advantage of all types of context available to them.
Thus, context-aware services (CASs) need a flow of information from and about their
environment, in order to be able to adapt to it [2]. Elaborating on the efficient
provisioning of CASs, the current work is based on a framework in which a CAS
generates context requests and addresses them to the nearest broker. Brokers act as
mediatory players between CASs and context sources. The need to support CASs that
are highly robust and can scale well with the number of nodes and information
sources points to Peer-to-Peer (P2P) architecture [3] as a more promising approach
than most centralized solutions offer. Each peer Context Broker (CB) can make
information available for distribution and depends on each other for getting
information, forwarding requests, etc.

The system faces the challenge to ensure efficient and scalable distribution of
context information. Among the most popular approaches applied to improve
performance are replication, caching, and intelligent routing. In our framework, the
first two are considered less appropriate due to the volatile nature of context
information, and thus we are concerned with routing techniques applied every time a

566 I. Sygkouna and M. Anagnostou

request arises and a real-time search has to take place. In its purest form, the P2P
model uses message forwarding mechanisms to search for information since there is
no centralized server with a global view of all the peers in the network or the
information they provide. The respective algorithms are typically implemented in the
form of an application-level protocol. However, most existing techniques result in
opposite extremes of bandwidth and response time. In this paper, we propose a set of
usage-aware mechanisms that exploit the locality of reference properties exhibited by
context usage patterns. The context demand profile is monitored by the distributed
peer nodes, which exchange their knowledge with efficient means provided by Active
Networks. The results show that the proposed mechanisms reduce the network traffic
while they maintain the good search time of flood broadcasting methods.

Section 2 presents a literature overview on decentralized search algorithms and
section 3 describes the problem we deal with. Section 4 provides first the definition of
the locality properties, and then describes the role of Active Networks in searching
along with the proposed search mechanisms. Simulation results are presented in
section 5 and section 6 concludes the paper.

2 Literature Overview

Resource Discovery constitutes a fundamental problem in large-scale distributed
systems, and even though finding resources in a network of computers is a problem
probably as old as distributed computing itself, different system requirements and
conditions of current large-scale applications have led to a flurry of different
approaches to the problem. Thus, the problem of searching for information in P2P
networks can be treated in different ways, ranging from centralized indexing schemes,
such as Napster [4], to decentralized mechanisms that navigate the underlying
network without knowledge of its global structure.

Decentralized search algorithms have been studied both for unstructured and
structured systems. In the former case, there is not any precise control over the
network topology or data placement. A client seeking information searches across
scattered collections stored at numerous member nodes by forwarding queries to
one’s neighbors until the target is found. Moreover, both search by identifier and by
content is supported. Gnutella [5] uses flood routing to broadcast queries, generating a
large amount of unnecessary traffic. There have been continuous efforts to improve
the naïve search algorithm based on flooding. The authors of [6] proposed Random
Walk, which forwards a query to a randomly chosen neighbor at each step and
Expanding Ring, which performs successive floods with increasing time-to-live
(TTL), until the target is found. It was shown through extensive experiments that a
32-walker Random Walk reduces the amount of network traffic by two orders of
magnitude at the expense of slight decrease in search speed and generally outperforms
Expanding Ring as well. Similar strategies, including Expanding Ring and a variation
of Random Walks were examined in [7, 8].

In [9], hybrid search schemes that combine Flooding and Random Walks were
proposed, which rectify the performance of Flooding in the case of a sparse network
with a few vertices of large degrees. Moreover, it was shown that Random Walk with
Local Flooding, which performs shallow floodings on each step of the random walk,
is more preferable than simple random walk on regular graphs since it achieves

 Usage-Aware Search in Peer-to-Peer Systems 567

savings in response time, while the savings are much sharper if the graph has
supernodes. In [10] a probabilistic message dissemination method was developed. By
altering the probability of routing search request messages, it varies the probability
that the search is successful. Contrary to the above works that propose alternatives to
Flooding based mainly on specific properties of the network topology, in the current
paper we expect to reduce network traffic without retarding search, by taking into
account the locality of reference properties that are likely to be exhibited by the
monitored context usage patterns.

In structured systems, objects are placed not at random nodes but at specified
locations that will make subsequent queries easier to satisfy. Such systems (e.g. [11,
12, 13, 14, 15]) implement Distributed Hash Tables (DHTs), and search is performed
by looking up the DHTs. In more recent works, techniques based on DHTs have been
proposed for multiple-keyword search [16] and full-text search [17, 18]. They differ
from our approach since we are interested in finding sources that are managed by
peers, which have complete autonomy over their location.

3 Problem Description

We consider a set of Context Brokers forming an overlay network. Each Broker
manages a set of local information sources registered to it via a registration protocol
and thus it maintains the necessary interfaces for interacting with its local sources.
Peers can use an enquiry protocol to query other peers in order to discover sources.
Once a Broker receives a search request coming from either another peer or a local
consumer (e.g. a CAS), it first looks up the request in its local information. If a
matching source is not found, the Broker forwards the request to different peers until
the target source is located. Precluding dependence from central control, the aim is to
design efficient mechanisms for discovering and retrieving data. Due to the volatile
nature of context, we deal only with dynamic information sources and thus, there is
no caching support for actual data.

Each peer maintains a local directory, the Local Sources Directory (LSD), with
entries to the sources it manages. Note that sources cannot be replicated. Each peer
maintains additionally the Remote Sources Directory (RSD), which caches directory
entries for sources maintained by other peers. An entry in the RSD is a pair
(source_info, loc), where source_info provides a description of the information
produced by a source and loc is the network address of the peer that is presumed to
manage the given source.

Each peer n has a local neighborhood, denoted by N(n) and defined as the set of
peers that are close (e.g., at one hop distance or within the same local area network) to
that peer. Finally, global network topology is unknown and a peer only contacts peers
in its neighborhood, as well as peers indicated in its RSD.

4 Solution

Based on the distributed computing environment provided by Active Networks, we
propose specific algorithmic solutions built on top of the P2P communication
paradigm, that aim to enhance the system’s efficiency and scalability for the provision

568 I. Sygkouna and M. Anagnostou

of time-critical CASs. The relevant algorithms avoid the inefficiency of flood
broadcasting methods, and a source exhibiting a locality of reference property can be
easily located by applying an appropriate limited flooding algorithm, according to the
type of locality.

4.1 Locality of Reference Properties

We define the following notation and terminology: Given a set of nodes (Nn ∈) and
a set of objects (Oo ∈), we denote by)n,o(r a request (Rr ∈), where o (Oo ∈)

is the requested object and n (Nn ∈) the node the given request originated from,
henceforth called initiatory-node of the request. Moreover, we will use the term
home-node of an object to refer to the node that hosts the source of the given object.
Note that in the following text, the words “source” and “object” are used
interchangeably.

Temporal Locality. It implies that an object frequently accessed in the past, namely a
popular object, is likely to be accessed in the future [19]. We define the popularity f
of an object o as:

∑
∈

=
Nn

o
no Rf . (1)

where N is the set of nodes, and o
nR the set of requests for object o initiated from

node Nn ∈ , namely: { }n'n,o'oR)'n,'o(rR o
n ==∈∀= .

Observing the context usage patterns in our real test scenarios conducted under the
IST project Context [20] we concluded that temporal locality was evident since a few
objects were most popular and thus were repeatedly requested from the majority of
peers. Such objects usually refer to some elementary types of information that
constitute basic components of many complex types and are thus repeatedly
requested. For example, a source that provides pure location information of mobile
users for a wide geographical area is most likely to be accessed repeatedly, since
location information is a basic component of many complex and more specialized
types of information.

Geographical Locality. It accounts for the location of the nodes from which a
repeated request originates and implies that an object accessed by a client is likely to
be accessed again in the future by “nearby” clients [19]. We first define the set

N)l,n(N o ⊆ , which consists of the nodes included in a geographical area centered

at Nno ∈ and extended at distance l, as:

{ }l)n,n(distNn)l,n(N o <∈∀= 0 . (2)

where dist(n, n0) represents the path length between nodes n, no. An object o exhibits
geographical locality with radius L, if a significant number of repeated requests

 Usage-Aware Search in Peer-to-Peer Systems 569

originate from the same geographical area, which is extended around the home-node
of o, namely:

geo
Nn o

o
n

T
f

))L),o(H(N,n(xR
>

⋅
∑
∈

 . (3)

where fo represents the popularity of o, H(o) its home-node, o
nR the set of repeated

requests initiated from node Nn ∈ , Tgeo a certain threshold and x(n,N) equals to 1 (0)
if).Nn(Nn ∉∈

Geographical locality is most likely to be exhibited by context usage patterns, since
CASs are usually developed and designated to be provided at specific areas, usually
near the sources of information they utilize. For instance, in a university campus, a
source that provides academic-related context information is meaningful for and thus
used from relevant services offered in the campus, which constitutes a case of
geographical locality.

Spatial Locality. It is looking for dependencies among the requested objects and
implies that objects neighbouring an object frequently accessed in the past are likely
to be accessed in the future. Defining a traversal stride to be a sequence of requests
where the time between successive requests is less that StrideTimeout seconds [19],
an object o exhibits spatial locality, if there exists a traversal stride so starting with
object o, such that:

spat
o

s
T

f

f
o > . (4)

where fo is the popularity of object o,
osf the popularity of the traversal stride so and

Tspat a given threshold.

Spatial locality of reference is likely to be found in a context access pattern due to
the modular design based on which context objects are constructed. In particular, a
context object may be composed of other simpler objects in a cascaded way, requiring
a cascaded assignment of values to each object in turn.

4.2 Active Networks Distributed Computing

Active network developers envisage transforming IP packets into encapsulated
fragments of executable code that traverse the network and execute in limited
environments at intermediate nodes. P2P networking, on the other hand, was devised
as a lightweight, primitive, networking concept that achieves adequate results at
minimum cost without sophisticated network protocols. We could thus easily think of
active capsules that carry P2P queries to locate particular information, or code for
determining traffic and usage patterns for individual sources at each node and
dynamically make decisions on redistributing information across the P2P network [3].

570 I. Sygkouna and M. Anagnostou

Because P2P queries are lightweight, the mobile code would pose a minimal
computational burden and impose minimal network overhead, leading to a highly
efficient self-sustaining and self-maintaining P2P system. In this framework, passive
monitoring of context usage patterns is supported, which substantially reduces traffic
by piggybacking the relative information on existing active packets traversing the
network, as opposed to active monitoring, in which the measurements are done by
sending additional control messages [21].

4.3 Usage-Aware Search Mechanisms

The proposed mechanisms are based on a limited version of the flooding algorithm
that takes advantage of the locality of reference properties exhibited by the monitored
context usage patterns. We assume that appropriate Tables maintained by all the peers
provide information on the objects exhibiting locality properties: T-Table for temporal
locality, G-Table for geographical locality and S-Table for spatial locality. When a
peer initiates a request, it first searches the local copies of the Tables to find potential
matching sources. In case of a hit, it applies an appropriate limited flooding
algorithm, depending on the type of property. Otherwise, it resorts to pure Flooding.
In each case, once the requested object is found, the response message follows the
reverse path to reach the initiatory-node and a new entry is created in the RSD of the
initiatory-node. Note that the Tables are consulted once for each request, namely at
the initiatory-node of the request, whereas the RSDs at each visited peer.

The rationale behind the proposed approach is based on two observations: first,
only a small percentage of all the available objects are likely to exhibit a locality of
reference property. Second, most requests refer to such objects. Therefore, we expect
that the majority of requests can be satisfied by looking up the Tables and applying
limited flooding, whereas the locality information requires limited storage space and
thus can be retrieved quickly with small overhead.

Range-limited Flooding. It proposes to limit the range of flooding to an extent
determined by the popularity of the object requested and in a way to save as much
bandwidth as possible without increasing the time to locate the appropriate source.
Thus, the more popular the object, the lower the number of neighbours K to which the
request should be forwarded in each step, since popularity provides a clue about the
number of previous repeated requests for the object, which should have thus located
the corresponding source. Supposing that peer i receives a request)n,o(r , K is given

by:

i
o

d
f

K ⋅∝ 1
 . (5)

where fo is the popularity of o and di the degree of i.
We assume that the T-Table hosts popularity information of the most popular objects.

An entry (o, fo) indicates the popularity fo of an object o, as measured by its home-node,
which keeps logs of the requests it has serviced. An object o is registered with T-Table
only if its popularity is greater than a given threshold a, while an update operation is
performed only if a noticeable change, which is determined by a given percentage

 Usage-Aware Search in Peer-to-Peer Systems 571

threshold b, is recorded by its home-node. In case a peer decides to perform a register or
an update operation, the respective information will be encapsulated in a following
request message initiated from that peer. In this case, the respective active packet has to
load a modified code that executes both the query and the register/update operation in
each visited peer, and thus updates all the copies of T-Table.

Depth-limited Flooding. It is proposed as an alternative that aims to save bandwidth
by limiting the depth (TTL) of flooding. The success of this algorithm when searching
for an object is based on a strong indication that the given object is most likely to be
located following a limited number of hops. Therefore, if an object proves to exhibit
geographical locality of reference with radius L, it is likely that the same object will
be requested from nearby nodes in the future. These nearby nodes could limit the
depth of flooding in following repeated requests initiated from them to the value D=L,
with the expectation that either the source itself will be located nearby or the location
of the source will be found cached in the RSD of a nearby node.

The existence of geographical locality of reference for a given object is verified by
its home-node. Each peer maintains information related to its broader neighborhood,
namely the nodes located in close geographic proximity, and periodically examines
the request history of each source it owns, so as to correlate the initiatory nodes of the
relevant requests. It thus registers every object that proves to exhibit geographical
locality, based on inequality (3), with the G-Table maintained by each node in its
broader neighborhood. A register/delete operation is performed by encapsulating the
respective information in a following request message initiated from this peer.

Prefetch-limited Flooding. It exploits the idea of prefetching within flooding,
namely search for more than one object within a single flooding, in anticipation of
future requests. In particular, when a node initiates a request for an object that proves
to exhibit spatial locality of reference, it piggybacks its request with a set of queries
for the dependent objects that it speculates will be requested by the client in the near
future, in order to resolve all of them during the same flooding search.

Contrary to the other properties that are server-detected, a thorough analysis of the
clients’ access patterns is required in order to identify the spatial locality of reference
that may exist among the various objects. Assuming that each peer keeps logs of the
requests it has initiated, it is capable of testing for the existence of the property locally
for every object that is frequently requested, based on the inequality (4). Note that
each entry (o, so) of the S-Table indicates the object o that exhibits spatial locality and
the respective stride so. Every peer that frequently initiates requests for an object
registered in the S-Table is responsible for verifying that this object indeed exhibits
spatial locality. In the opposite case, it should initiate a delete operation in order to
remove the object from all the S-Tables. The register/delete operation is performed
with the same piggybacking mechanism.

5 Simulation Results

We have implemented an event-based multithreaded simulation in Java to test our
algorithms. As a reference for comparison we use the pure Flooding, which achieves

572 I. Sygkouna and M. Anagnostou

the best search time at the cost of intensive network use, and the Random Walk with
Local Flooding of TTL=1, which was proposed recently as an alternative to the pure
Random Walk that improves its search time. Henceforth, the latter one will be called
Random Walk for the sake of brevity. We assume constant peer participation, no
failures, and that the sources do not migrate during the simulation. The simulated
requests are simple and there is exactly one matching source to a request. Moreover,
we assume that the RSD size is infinite. The initial topology of the overlay network,
as formed by the neighbors’ connections, is modeled as a random graph that is
generated based on the Waxman model [22]. We follow the analytic workload
generation method, which starts with models for various workload characteristics i.e.,
the locality of reference properties in our case, and then generates outputs that adhere
to these models [23]. Since each property is proposed to be exploited in a different
way, we generate distinct synthetic traces for each property in order to experiment
exclusively with the potential benefits achieved in each case. Zip’s law [24] is used to
model the distribution of context requests and the default TTL value is set to the
graph diameter. As a metric for the time to locate a source we use the average path-
length per request (defined as the ratio of the total number of hops incurred across all
requests to the total number of requests), while the bandwidth consumption is well
captured by the average number of messages per request (defined as the ratio of the
total number of messages sent across all requests to the number of all requests).

5.1 Test Case 1: Temporal Locality

The network size equals to 200 nodes and each peer node controls one source, for a
total of 200 sources. Each peer monitors the popularity of the local sources and
updates the T-Tables accordingly. For simplicity we assume that the T-Tables are
updated at constant periods, namely every time the overlay has executed 100 new
requests, for a total of 1000 requests. Fig.1 and Fig.2 depict the evolution of the
average path-length and the average number of messages per request, over time,
under Range-limited Flooding (R-F), Flooding (F) and Random Walk (RW), for two
different values of the Zipf parameter a, namely α=0.7 and α=0.95, respectively. The
time evolution is given in terms of consecutive time periods, each corresponding to
the execution of 100 requests.

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s

p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s

p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s

p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

Fig. 1. Performance of R-F versus F and RW, for α=0.7

 Usage-Aware Search in Peer-to-Peer Systems 573

Clearly, the average path-length per request decreases over time and R-F achieves
to follow F very closely. Similarly, the average number of messages per request
decreases with time, but in this case R-F clearly outperforms F, achieving lower
bandwidth waste. Moreover, the bandwidth savings achieved by R-F becomes more
intense with time. Comparing R-F with RW, it becomes obvious that the latter one
achieves high bandwidth savings, but at the cost of a noticeable increase in the
average path-length per request. It is also remarkable that the performance of RW
improves with time. In particular, the bandwidth savings it achieves with regard to R-
F increases from 53% to 78%, whereas the path-length savings of R-F with regard to
RW decreases from 89% to 73%.

Moreover, the value of a affects the bandwidth savings achieved by R-F with
reference to F. In particular, usage patterns with a higher skew in popularity
distribution seem to take greater advantage of the savings achieved by R-F (Fig.2). On
the other hand, the percentage of bandwidth savings and path-length waste achieved
by RW with regard to R-F seem not to be affected from the value of α.

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e

p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e

p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

Time Period

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s

p
e
r

re
q

u
e
s
t

Flooding

Range-limited Flooding

Random Walk

Fig. 2. Performance of R-F versus F and RW, for α=0.95

5.2 Test Case 2: Geographical Locality

We first consider an overlay graph of 500 nodes and density equal to 0.035. Each peer
maintains 10 sources. We experiment with synthetic traces of 400 requests produced
according to Zipf distribution (with a=0.7), that exhibit geographical locality at
different degrees. The degree, namely the fraction of the requests executed in the
whole trace that exhibit geographical locality, has been set to 0.2, 0.4, 0.6, and 0.8,
with 0.48%, 1.28%, 2.72% and 4.32% of the most popular objects exhibiting the
property, respectively. We evaluate the performance of pure Flooding (F), Random
Walk (RW) and Depth-limited Flooding (D-F), assuming that the last one has set the
radius of geographical locality to 3 and then we repeat the experiment on a graph of
density 0.07. The results are depicted in Fig.3 and Fig.4, respectively.

As the degree of geographical locality increases, the average path-length drops and
D-F achieves to maintain the path-length at the same level with F. On the other hand,
while the average number of messages per request remains almost constant under F as
the degree increases, D-F achieves growing savings. Comparing the performance of
RW to the one of D-F, we observe that the bandwidth savings achieved by the former
with regard to the latter is on the order of 50%, whereas the path-length savings of the

574 I. Sygkouna and M. Anagnostou

graph density=0.035

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Depth-limited Flooding

Random Walk

graph density=0.035

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.2 0.4 0.6 0.8 1
Degree

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

m
e

s
s

a
g

e
s

p
e

r
re

q
u

e
s

t

Flooding

Depth-limited Flooding

Random Walk

graph density=0.035

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Depth-limited Flooding

Random Walk

graph density=0.035

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.2 0.4 0.6 0.8 1
Degree

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

m
e

s
s

a
g

e
s

p
e

r
re

q
u

e
s

t

Flooding

Depth-limited Flooding

Random Walk

Fig. 3. Performance of D-F versus F and RW for graph density equal to 0.035

latter with regard to the former is 90%. Moreover, both values are not affected by the
variation of the degree of geographical locality.

As far as the graph density is concerned, the sparser the graph, the more profitable
the application of D-F compared to F would be. On the other hand, the performance
of D-F compared to RW seems not to be affected by the graph density.

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
v

e
ra

g
e

 p
a

th
le

n
g

th
 p

e
r

re
q

u
e

s
t

Flooding

Depth-limited Flooding

Random Walk

0

5000

10000

15000

20000

25000

30000

35000

0 0.2 0.4 0.6 0.8 1
Degree

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s

p
e
r

re
q

u
e
s
t

Flooding

Depth-limited Flooding

Random Walk

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
v

e
ra

g
e

 p
a

th
le

n
g

th
 p

e
r

re
q

u
e

s
t

Flooding

Depth-limited Flooding

Random Walk

1

10

100

0 0.2 0.4 0.6 0.8 1
Degree

A
v

e
ra

g
e

 p
a

th
le

n
g

th
 p

e
r

re
q

u
e

s
t

Flooding

Depth-limited Flooding

Random Walk

0

5000

10000

15000

20000

25000

30000

35000

0 0.2 0.4 0.6 0.8 1
Degree

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s

p
e
r

re
q

u
e
s
t

Flooding

Depth-limited Flooding

Random Walk

0

5000

10000

15000

20000

25000

30000

35000

0 0.2 0.4 0.6 0.8 1
Degree

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s

p
e
r

re
q

u
e
s
t

Flooding

Depth-limited Flooding

Random Walk

Fig. 4. Performance of D-F versus F and RW for graph density equal to 0.07

5.3 Test Case 3: Spatial Locality

The goal of the third experiment is to quantify the cost of Prefetch-oriented Flooding
(P-F) in terms of the degree of spatial locality exhibited by a trace. The network graph
consists of 200 nodes, each maintaining 1 source. We generated 4 different synthetic
traces according to Zipf distribution (a=0.7), each consisting of 1000 requests. The
degree of spatial locality in each of them is adjusted to 0.2, 0.4, 0.6 and 0.8,
respectively, with 2.5%, 10%, 26% and 54.5% of the most popular objects exhibiting
the property, respectively. The traversal strides consist of 2 objects. Measuring the
same metrics, the graphs that result are depicted in Fig.5.

Clearly, while F is not affected notably by the degree variation, P-F achieves
significant savings in terms of the average path-length and the number of messages
per request, which become more evident as the degree increases.

 Usage-Aware Search in Peer-to-Peer Systems 575

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

Degree

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Prefetch-oriented Flooding

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1

Degree

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s
 p

e
r

re
q

u
e
s
t

Flooding

Prefetch-oriented Flooding

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

Degree

A
v
e
ra

g
e
 p

a
th

le
n

g
th

 p
e
r

re
q

u
e
s
t

Flooding

Prefetch-oriented Flooding

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1

Degree

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g

e
s
 p

e
r

re
q

u
e
s
t

Flooding

Prefetch-oriented Flooding

Fig. 5. Performance of P-F versus F

6 Conclusions

While the majority of mechanisms proposed in literature are based on network
topology properties, the current work shows the potential of exploiting usage-
awareness toward improving search efficiency. The simulation results show that the
new mechanisms maintain the good search time of Flooding, while they achieve to
reduce the bandwidth consumption that tends to cripple such systems. Moreover, the
degree of bandwidth savings is tightly connected to the degree of the locality of
reference properties exhibited. In the proposed framework, the overhead imposed by
usage-awareness is kept low because the locality-Tables are of small-size, with light
registries, and no additional traffic is needed to maintain them. We thus believe that
the current work could be considered as a first step toward proposing even more
powerful mechanisms that combine both approaches. It therefore contributes to a
growing development toward economic activity in decentralized search mechanisms.

References

1. Satyanarayanan, M.: Challenges in Implementing a Context-Aware System. Editorial
Introduction in IEEE Pervasive Computing 2 (2002)

2. Xynogalas, S., Chantzara, M., Sygkouna, I., Vrontis, S., Roussaki, I., Anagnostou, M.:
Context Management for the Provision of Adaptive Services to Roaming Users. IEEE
Wireless Communications 11(2), 40–47 (2004)

3. Parameswaran, M., Susarla, A., Whinston, A.B.: P2P Networking: An Information-
Sharing Alternative. Computer 34(7), 31–38 (2001)

4. Napster, http://www.napster.com
5. Kan, G.: Gnutella. In: Oram, A. (eds.) Peer-to-Peer: Harnessing the Power of Disruptive

Technologies. O’Reilly (2001)
6. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstructured

Peer-to-peer Networks. In: International Conference on Supercomputing, pp. 84–95. ACM
Press, New York (2002)

7. Yang, B., Garcia-Molina, H.: Efficient Search in Peer-to-peer Networks. In: IEEE ICDCS,
IEEE Press, Vienna, Austria (2002)

8. Gkantsidis, C., Mihail, M., Saberi, A.: Random Walks in Peer-to-peer Networks. In:
Infocom 2004, pp. 120–130. IEEE Press, Hong Kong, China (2004)

576 I. Sygkouna and M. Anagnostou

9. Gkantsidis, C., Mihail, M., Saberi, A.: Hybrid Search Schemes for Unstructured Peer-to-
Peer Networks. In: Infocom 2005, pp. 1526–1537. IEEE Press, Miami, Florida (2005)

10. Menascé, D.A., Kanchanapalli, L.: Probabilistic Scalable P2P Resource Location Services.
ACM Sigmetrics Performance Evaluation Rev. 30(2), 48–58 (2002)

11. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg (2001)

12. Stoica, I., Morris, R., Karger, D., Kaashoek, M.E., Balakrishnan, H.: Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In: ACM Sigcomm, San Deigo
(2001)

13. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content
Addressable Network. In: ACM Sigcomm 2001, San Deigo, CA (2001)

14. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed, Object Location and Routing for
Large-scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

15. [15] Zhao, Y., Kubiatowicz, J.D., Joseph, A.: Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. Technical report, UCB/CSD-01-1141, Berkeley (2000)

16. Reynolds, P., Vahdat, A.: Efficient Peer-to-peer Keyword Searching. In: Endler, M.,
Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 21–40. Springer, Heidelberg
(2003)

17. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-Peer Information Retrieval Using Self-organizing
Semantic Overlay Networks. In: ACM SIGCOMM 2003, Germany, pp. 175–186 (2003)

18. Tang, C., Dwarkadas, S.: Hybrid Global-local Indexing for Efficient Peer-to-peer
Information Retrieval. In: Symposium on Networked Systems Design and Implementation
(NSDI), pp. 211–224, San Francisco, California (2004)

19. Bestavros, A.: Speculative Data Dissemination and Service to Reduce Server Load,
Network Traffic and Service Time for Distributed Information Systems. In: International
Conference on Data Engineering, New Orleans, Louisiana, pp. 180–187 (1996)

20. IST-2001-38142-CONTEXT http://context.upc.es
21. Caripe, W., Cybenko, G., Moizumi, K., Gray, R.: Network Awareness and Mobile Agent

Systems. IEEE Communications Magazine 36(7), 44–49 (1998)
22. Waxman, B.M.: Routing of Multipoint Connections. IEEE Journal on Selected Areas in

Communications 6(9), 1617–1622 (1988)
23. Barford, P., Crovella, M.: Generating Representative Web Workloads for Network and

Server Performance Evaluation. In: ACM SIGMETRICS 1998, Madison, pp. 151–160
(1998)

24. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web Caching and Zipf-like
Distributions: Evidence and Implications. In: INFOCOM,, New York, pp. 126–134 (1999)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 577–586, 2007.
© IFIP International Federation for Information Processing 2007

A Service Query Dissemination Algorithm for
Accommodating Sophisticated QoS Requirements in

a Service Discovery System

Liang Zhang and Beihong Jin

Institute of Software, Chinese Academy of Sciences,
Hai Dian, Beijing, PRC

{zhangliang1216,jbh}@otcaix.iscas.ac.cn

Abstract. For many service discovery protocols, user service queries need to be
disseminated to some service directories within the system for discovering
matched services. The scope of dissemination identifies the scope of service
discovery. How to determine the service discovery scope needs to be discussed.
In this paper, we present a service query dissemination algorithm in our devel-
oping service discovery system, Service CatalogNet. In this system, users can
pose different QoS requirements upon their service queries in order to manually
control the scope of service discovery. The service query dissemination algo-
rithm will dynamically transform the QoS requirements into a set of directories
as well as the routing paths to them. The performance analysis shows a sound
result of our algorithm.

Keywords: QoS, multicast, service discovery, mobile computing, NP-
complete.

1 Introduction

Recent trends in mobile and ubiquitous computing have created new requirements for
automatic configuration of network devices. Furthermore, the exploding deployment
of network devices in diverse environment has increased the need to simplify the
network administration for different kinds of networks. In response to these require-
ments, a variety of new protocols have been proposed, which attempt to provide au-
tomatic discovery and configuration of network devices and services. These protocols
are called service discovery protocols [1].

The majority service discovery protocols rely on a special component called ser-
vice directory, or directory in short, for maintaining service information. Users post
service queries to a directory for services they need. To enhance scalability and ro-
bustness, the whole set of service information within a system is normally distributed
to a set of directories across the system. In this circumstance, user service queries are
first sent to a specific directory called access directory and then dynamically for-
warded to a set of other directories for service discovery. The challenge is how to
select an appropriate subset of directories within the system as well as the routing
paths to them. Within the entire spectrum of directory selection, there are two extreme

578 L. Zhang and B. Jin

strategies: full-directory strategy, where the user desires the service query to be proc-
essed at all the directories within the system, and no-directory strategy, where the
system restricts the service query only at the access directory for minimizing the
transmission cost. Both the user requirement of maximizing the processing directories
and the system requirement of minimizing the transmission cost are referred to as
QoS requirements. Our problem can be defined as dynamically determining the direc-
tories and routing paths for disseminating service queries with the consideration of an
ordered list of user and system QoS requirements according to the priority. For exam-
ple, a service query will be disseminated through the minimum spanning tree covering
all the directories within the system in order to fulfill both the above mentioned QoS
requirements with the user QoS requirement taking the higher priority than the system
QoS requirement.

In this paper, we present a service query dissemination algorithm in our developing
service discovery system, Service CatalogNet. In this system, users can pose different
QoS requirements upon their service queries in order to manually control the scope of
service discovery. The service query dissemination algorithm will dynamically trans-
form the QoS requirements into a set of directories as well as the routing paths to
them. The rest of the paper is organized as follows. Section 2 presents a classification
scheme for QoS requirements. Section 3 formally models the problem and proposes a
solution to it. Section 4 conducts the performance analysis. The final section con-
cludes the paper.

2 QoS Requirement Classification

Before proposing the general algorithm for accommodating QoS requirements in
Section 3, let us first study the characteristics of QoS requirements. All QoS require-
ments have to be expressed in some measurable QoS metrics. There are two types of
QoS metrics: link state metrics and server state metrics, which measure the state in-
formation of links and servers, respectively.

The link state QoS requirements can be categorized in three dimensions as shown
in Fig. 1. For the first dimension, the link state metrics can be divided into subtypes,
within which additive, multiplicative and concave are the most common ones [2]. Let
ls(ni, nj) denote the link state between the two servers ni and nj. For any routing path
rp = (n1, n2, …, nk–1, nk), the link state metric ls is

• additive, if F(ls(rp)) = F(ls(n1, n2)) + … + F(ls(nk–1, nk)); or
• multiplicative, if F(ls(rp)) = F(ls(n1, n2)) × …× F(ls(nk–1, nk)); or
• concave, if F(ls(rp)) = min{F(ls(n1, n2)), …, F(ls(nk–1, nk))},

where F is a function over link states. For example, transmission delay is an additive
QoS metric because the transmission delay of a routing path is the summation of
those of the constituent links (Here F(x) = x); link-failure rate is a multiplicative QoS
metric because the compliment of the link-failure rate of a routing path is the multi-
plication of the compliment of those of the constituent links (Here F(x) = 1 – x); net-
work bandwidth is a concave QoS metric because the network bandwidth of a routing
path is the minimum of those of the constituent links (Here F(x) = x). Besides, a gen-
eral link state metric can be expressed by the following equation.

 A Service Query Dissemination Algorithm for Accommodating Sophisticated QoS 579

F(ls(rp)) = Func(F(ls(n1, n2)), …, F(ls(nk–1, nk))),
where Func represents a special function.

For the second dimension, a classification is made between whether the QoS re-
quirement is to find the best routing path or any routing path bounded by a certain
value. For example, “transmission delay is minimum” aims to find the routing path
with the minimum transmission delay and we call this type of QoS requirements QoS
optimization requirements. Another example, “transmission delay < 30 seconds” aims
to find the routing path with the transmission delay smaller than 30 seconds and we
call this type of QoS requirements QoS constrained requirements.

For the third dimension, a QoS requirement may only pose constraint to the routing
path to each receiver; or it may not concern any individual routing path, but desires
the overall routing paths to all the receivers to possess a certain characteristic. For
example, “transmission cost < 10” specifies the transmission cost to each receiver
should be smaller than 10, while “the summation of transmission cost < 100” guaran-
tees the cumulated transmission cost to all the receivers should be smaller than 100.
Another example of group QoS requirement is “the variance of transmission delay < 1
second” meaning that the maximum difference of transmission delay to all the receiv-
ers should be smaller than 1 second, which is particular important to applications like
VoIP Conference. Of course, it is possible for other general group QoS requirements.

Fig. 1. Link state QoS requirement classification

Similar to the link state QoS requirements, the server state QoS requirements can
also be categorized in three dimensions as shown in Fig. 2. The first dimension de-
picts different server state metrics. The second dimension differentiates optimization
and constrained requirements. The third dimension considers either each individual
server state or the overall server states of all the servers.

With the above classification scheme defined, any QoS requirement can be mod-
eled in the following format

QoS Requirement = [Extent] + QoS Metric + Target,

580 L. Zhang and B. Jin

where the omission of the optional Extent part represents an individual QoS require-
ment. With the scheme, we can easily identify different types of QoS requirements
with each type representing a specific problem with a certain solution:

• Individual link state QoS requirements are similar to the shortest path tree problem
and can be solved by applying the Dijkstra’s algorithm either directly or with slight
modification.

• Group link state QoS requirements are similar to the minimum spanning tree prob-
lem and can be solved by applying the Prim’s algorithm either directly or with
slight modification.

• Individual server state QoS requirements are simple and can be solved by directly
picking the correct servers.

• Group server state QoS requirements are also simple and can be solved by picking
the correct sets of servers.

Fig. 2. Server state QoS requirement classification

Although it is easy for a single QoS requirement, it may become extremely chal-
lenge to solve even two QoS requirements. [3] points out there are three possible
combination of two QoS requirements that will result in NP-complete complexity.
Our algorithm aims at providing a general solution for solving a sequence of QoS
requirements with polynomial complexity.

3 A General Algorithm

Let us first model our problem formally. Like all the other problems, our problem has
input and output. There are five input parameters in our problem (V, va, S, L, Q),
where V represents all the DSs within the system, va stands for the access directory, S
keeps the global server state information, L records the global link state information
and Q maintains the list of QoS requirements. Notice that we do not introduce an E
parameter for all the links within the system as many other papers do. This is because

 A Service Query Dissemination Algorithm for Accommodating Sophisticated QoS 581

our system adopts a mesh topology that every DS knows all the other DSs, i.e., E is
implicitly defined by V. The output of our problem is (V’, P’), which respectively
means the set of DSs within the service discovery scope as well as the routing paths to
them. With the output, the access directory can easily perform source routing for
disseminating the service query.

The input parameter Q needs a bit more explanation. Each QoS requirement in Q is
associated with a priority. The higher the priority is, the topper a QoS requirement
appears in Q, and the earlier it is processed by the general algorithm. There are three
types of QoS requirements with different purposes in Q: user QoS requirements, sys-
tem QoS requirements and default QoS requirements. The service requestor only
issues user QoS requirements to manually control the service discovery scope. How-
ever, it is usually unwise to leave clients take full control of the system behavior.
Certain administrative control is necessary to protect the system from exhausting the
resources. For example, the administrator may restrict all the service discovery within
1 kilometer. We name these QoS requirements system QoS requirements. The user
QoS requirements have higher priority than the system QoS requirements. To ensure
the uniqueness of the output, it is sometimes necessary to append default QoS re-
quirements at the end of Q. For example, the general algorithm suggests two options
of DSs and routing paths after processing the user QoS requirements and the system
QoS requirements. Then a default “the summation of transmission cost is minimum”
QoS requirement may break the tie and leave a unique output. The default QoS re-
quirements must belong to the optimization type. They are added one by one at run-
time in a predefined order until the output is unique. The default QoS requirements
have the least priority.

Fig. 3. The logical server

The last thing necessary for mention before presenting the general algorithm is that
although the access directory by itself is a DS, we consider there is a separate logical
server as shown in Fig. 3 receiving the service query and performing the calculation,
and treat the access directory the same as other DSs. That implies the possibility that
even the access directory is not included for the dissemination. When the access di-
rectory does be included, a logical message is sent to it and executed the same way as
a physical message being sent to another DS. We denote the logical server vl.

Now let us present our general algorithm with the pseudo code below. The main
idea is simple. We design a routine procedure for sequentially processing each QoS
requirement. During each processing, the algorithm applies the corresponding solu-
tion described in the last section either directly or with slight modification for the

582 L. Zhang and B. Jin

specific QoS requirement type. The graph theory and the set theory are heavily de-
pended on in our algorithm.

 At the beginning, there is a mesh graph {V, E} where E is implicitly defined by V
 With the logical server vl included, another mesh graph G = ({V, vl}, E ∪ {vlvi | vi
∈ V}) is defined

 Define VP = {V, P} where P1 = {P(vi) | vi ∈ V and P(vi) includes all the non-loop
routing paths from vl to vi in G}

 Define VPI = {VP} and VPO = {}
 For the next prioritized QoS requirement q in Q

 Switch q’s major type
 Case: individual link state optimization

 For each VPi ∈ VPI
 Define VPo.V = VPi.V
 If VPi.P = ∀, then it is a mesh graph

 Apply the Dijkstra’s algorithm over the mesh graph to construct the
shortest path tree T

 VPo.P = {P(vo) | vo ∈ VPo.V and P(vo) includes the routing path from vl
to vo in T}

 Else
 VPo.P = {P(vo) | vo ∈ VPo.V and P(vo) includes the optimum routing
path in VPi.P(vo)}

 Add VPo to VPO
 Case: individual link state constrained

 For each VPi ∈ VPI
 Define VPo
 If VPi.P = ∀, then it is a mesh graph

 Apply the Dijkstra’s algorithm over the mesh graph to construct the
shortest path tree T until further growth of the tree will have the rout-
ing path not fulfill the constraint

 VPo.V = T.V and VPo.P = {P(vo) | vo ∈ VPo.V and P(vo) includes all
the routing paths from vl to vo in the mesh graph fulfilling the con-
straint}

 Else
 VPo.V = {vo | vo ∈ VPi.V and ∃ p ∈ VPi.P(vo), p fulfills the constraint}
and VPo.P = {P(vo) | vo ∈ VPo.V and P(vo) includes all the routing
paths in VPi.P(vo) fulfilling the constraint}

 Add VPo to VPO
 Case: group link state optimization

 For each VPi ∈ VPI
 Apply the Prim’s algorithm over the graph defined by VPi to construct
the minimum spanning tree T

 VPi.P = {P(vi) | vi ∈ VPo.V and P(vi) includes the routing path from vl to
vo in T}

1 The initial P is conceptual as it is impractical, if not impossible, to maintain it in the memory.

A symbol ∀ is used to denote this concept.

 A Service Query Dissemination Algorithm for Accommodating Sophisticated QoS 583

 Define VPo = VPi-opt where VPi-opt ∈ VPI and VPi-opt.V has the optimum
overall link states

 Add VPo to VPO
 Case: group link state constrained

 For each VPi ∈ VPI
 Define VPTMP include all VPtmp with VPtmp.V ⊆ VPi.V and VPtmp.P ⊆
VPi.P has the overall link states fulfilling the constraint

 Merge VPTMP to VPO
 Case: individual server state optimization

 For each VPi ∈ VPI
 Define VPo
 If VPi.P = ∀, then it is a mesh graph

 VPo.V = {vo-opt | vo-opt ∈ VPi.V has the optimum server state} and VPo.P
= {P(vo) | vo ∈ VPo.V and P(vo) = {vlvo}}

 Else
 Define VPtmp.V = {vtmp | vtmp ∈ VPi.V and VPi.P(vtmp) contains the rout-
ing path vlvtmp} and VPtmp.P = {P(vtmp) | vtmp ∈ VPtmp.V and P(vtmp) =
{vlvtmp}}

 VPo.V = {vo-opt | vo-opt ∈ VPtmp.V has the optimum server state} and
VPo.P = {P(vo) | vo ∈ VPo.V and P(vo) = VPtmp.P(vo)}

 Add VPo to VPO
 Case: individual server state constrained

 For each VPi ∈ VPI
 Define VPo
 If VPi.P = ∀, then it is a mesh graph

 VPo.V = {vo | the server state of vo ∈ VPi.V fulfills the constraint} and
VPo.P = ∀

 Else
 VPo.V = {vo | the server state of vo ∈ VPi.V fulfills the constraint} and
VPo.P = {P(vo) | vo ∈ VPo.V and P(vo) = VPi.P(vo)}

 For each vo ∈ VPo.V
 Delete all the routing paths from VPo.P(vo) that involve DSs not be-
longing to VPo.V

 Delete vo from VPo.V if VPo.P(vo) = ∅
 Loop the previous step until VPo no longer changes

 Add VPo to VPO
 Case: group server state optimization

 Define VPo = VPi-opt where VPi-opt ∈ VPI and VPi-opt.V has the optimum
overall server states

 Add VPo to VPO
 Case: group server state constrained

 For each VPi ∈ VPI
 Define VPTMP include all VPtmp with VPtmp.V ⊆ VPi.V has the overall
server states fulfilling the constraint and VPtmp.P = {P(vtmp) | vtmp ∈
VPtmp.V and P(vtmp) = VPi.P(vtmp)}

 For each VPtmp ∈ VPTMP

584 L. Zhang and B. Jin

 For each vtmp ∈ VPtmp
 Delete all the routing paths from VPtmp.P(vtmp) that involve DSs not
belonging to VPtmp.V

 Delete VPtmp from VPTMP if VPtmp.P(vtmp) = ∅ and break
 Merge VPTMP to VPO

 VPI = VPO, VPO = {}
 While VPI includes more than one member

 For the next predefined default QoS requirement q
 Switch q’s major type

 Case: individual link state optimization
 Same as the corresponding block above

 Case: group link state optimization
 Same as the corresponding block above

 Case: individual server state optimization
 Same as the corresponding block above

 Case: group server state optimization
 Same as the corresponding block above

 V’ = VPI[0].V and P’ = VPI[0].P
There are three areas in the pseudo code that cannot be solved in polynomial time

as highlighted in boldface. We handle them by approximation as follows.
 Case: individual link state constrained Instead of deriving all the routing paths
from vl to vo fulfilling the constraint, we apply the k-shortest-paths algorithm [4] to
only derive k routing paths that best fulfill the constraint.

 Case: group link state constrained Apply the Prim’s algorithm to construct the
minimum spanning tree until further growth of the tree will not fulfill the con-
straint. Backward the construction of the tree k steps with each step representing an
optional solution.

 Case: group server state constrained Apply the greedy algorithm to include as
many servers as possible until further inclusion will not fulfill the constraint.
Backward the greedy algorithm k steps with each step representing an optional so-
lution.

As we can see, the main technique we applied for approximation is to introduce a
parameter k to limit the search scope. We call this parameter degree of approximation.
The greater k is, the more accurate it is, and the less approximation is.

4 Performance Analysis

In this section, we conduct simulation to evaluate the performance of our algorithm.
The performance metric is the average processing time for deriving the set of directo-
ries as well as the routing paths to them fulfilling the QoS requirements. We compare
the performance of our algorithm with that of two source-based QoS-aware multicast
protocols: CST [5] and SunQ [6], both of which deal with the combination of delay-
constraint and least-cost QoS requirements and belong to the NP-complete problem
identified in [3]. We intentionally post the same two QoS-requirements to our algo-
rithm in order to discover how good our algorithm performs in the NP-complete situa-
tion comparing with the benchmark protocols.

 A Service Query Dissemination Algorithm for Accommodating Sophisticated QoS 585

Fig. 4. An example of a network and QoS requirements

The experimental settings are as follows. The program simulates a number of fully-
connected directories. For each link between two directories, a pair of integers (X, Y)
are generated for identifying the transmission delay and the transmission cost, respec-
tively. The two QoS requirements are 1) the transmission delay < Z seconds and 2)
the transmission cost is minimum, where Z is also a generated integer. Fig. 4 shows
an example of a generated network as well as an example of generated QoS require-
ments. In our simulation, the transmission delay of a link (X) is randomly generated
between 1 second and 5 seconds, the transmission cost of a link (Y) is randomly gen-
erated between 10 and 50, and the transmission cost of a routing path (Z) is randomly
generated between 10 seconds and 30 seconds. The test-bed computer is ThinkPad
x60 with 1.83 GHz Intel Core Duo T4200 CPU and 1 GB RAM. Each experiment is
conducted 1000 times to compute the average.

Fig. 5. Performance analysis

Fig. 5 shows the performance results with the number of directories as the x-axis
and the logarithm of the average processing time as the y-axis. It is easy to discover
that the average processing time of both our algorithm and the two benchmark proto-
cols increase as the number of directories increase. However, this increment is slower
than a linear one, which means all of them can effectively reduce the NP-complete
problem to polynomial with certain approximation. The second observation is that as
the degree of approximation of our algorithm decreases, i.e., k increases, the average
processing time increases because more routing paths are derived from those fulfilling
the delay-constrained QoS requirement. Although theoretically our algorithm is a

586 L. Zhang and B. Jin

general solution to QoS-aware routing and cannot make the optimization with respect
to the dealing QoS requirements, we can always maintain the performance of our
algorithm by simply adjusting the parameter k.

5 Conclusion

In this paper, we present a service query dissemination algorithm in our developing
service discovery system, Service CatalogNet. In this system, users can pose different
QoS requirements upon their service queries in order to manually control the scope of
service discovery. With the defined classification scheme for QoS requirements, the
service query dissemination algorithm performs a routine procedure by sequentially
processing each QoS requirement. In this way, our algorithm can deal with whatever
combination of QoS requirements and can eventually transform them into a set of
directories as well as the routing paths to them. With slight modification, our algo-
rithm can also be applied to other systems supporting QoS-aware routing. Finally, the
performance analysis shows a sound result of our algorithm.

Acknowledgment

This work was supported by the National Natural Science Foundation of China under
Grant No. 60673123 and the National Hi-Tech Research and Development 863 Pro-
gram of China under Grant No. 2006AA01Z231.

References

1. McGrath, R.E.: Discovery and Its Discontents: Discovery Protocols for Ubiquitous Com-
puting. UIUCDCS-R-99-2132, Department of Computer Science, University of Illinois
Urbana-Champaign (March 2000)

2. Chen, S.G.: Routing Support for Providing Guaranteed End-to-end Quality-of-service.
Ph.D. Thesis, Department of Computer Science, University of Illinois Urbana-Champaign
(May 1999)

3. Chen, S.G., Nahrstedt, K.: An Overview of Quality-of-service Routing for the Next Gen-
eration High-speed Networks: Problems and Solutions. IEEE Network 12(6), 64–79 (1998)

4. Macgegor, M.H., Grover, W.D.: Optimized k-shortest-paths Algorithm for Facility Resto-
ration. Software Practice and Experience 24(9), 823–828 (1994)

5. Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast Routing for Multimedia Commu-
nication. IEEE/ACM Transactions on Networking 1(3), 286–292 (1993)

6. Sun, Q., Langendorfer, H.: A New Distributed Routing Algorithm with End-to-end Delay
Guarantee. In: Workshop on Protocols for Multimedia Systems (October 1995)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 587–597, 2007.
© IFIP International Federation for Information Processing 2007

User Preference Based Service Discovery*

Jongwoo Sung, Dongman Lee, and Daeyoung Kim

Information and Communications University, Korea
{jwsung,dlee,kimd}@icu.ac.kr

Abstract. Existing service discovery protocols are designed to take less
consideration of different service qualities. Consequently, after the client
discovers the services using specific service type information, selecting the best
qualifying one among identical services is left to the user or application
developers. This paper proposes a quality of service discovery framework
which enables a client to discover and select the qualifying service by
considering different service qualities based on the weighted preference of the
user. We implement and evaluate the prototype system performance and
compare it with standard UPnP protocol.

Keywords: Quality of service discovery, user preference, UPnP.

1 Introduction

In a spontaneous network [1] where multiple services and devices cooperate with
each other without any user involvement, discovering a qualifying service among
different quality services is important. A service discovery protocol allows a service
client to discover a qualifying service on a network consisting of heterogeneous
devices and services. To discover a service in the network, UPnP (Universal Plug and
Play) [2] uses service types and service description while Jini [3] uses service
interface and additional static attributes. SLP (Service Location Protocol) [4, 5]
adopts string-based service attributes which come with query operators like AND, OR
and EQUAL.

However, existing service discovery protocols take less consideration of the quality
of a service: if there exist more than one service qualifying to a user’s service request,
they simply choose one of them based on either the order of appearance or randomly.
Consequently, after a client discovers target services using a specific service type or
through interface information, selecting the best qualifying one from the discovered
services is left to the user or application developers.

Each service instance can be characterized by attributes consisting of a functional
service type (cf. printer) and describing characteristics (cf. location) [6]. For service

* This research was supported by the MIC (Ministry of Information and Communication),

Korea, under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology Advancement)(IITA-2006-
C1090-0603-0047) and the Korea Science and Engineering Foundation (KOSEF) grant
funded by the Korea government(MOST) (No. R0A-2007-000-10038-0).

588 J. Sung, D. Lee, and D. Kim

discovery of fine granularity, various service attributes as well as service type should
be taken into consideration. However, such service discovery is not a simple problem
for two main reasons. First, because services are described by the collection of
heterogeneous attributes, it is difficult to compare them using simple string
operations. Second, since qualified services are scattered across a network(s),
comparison among them may be time consuming.

In this paper, we propose a new service discovery scheme which discovers and
selects a service that most satisfies the user’s quality requirement among qualified
service candidates. The key features of the proposed scheme are as follows: 1) it does
not depend on any central server for discovery; 2) to compare heterogeneous service
qualities efficiently, a scoring algorithm exploiting the user preference table and
service descriptions is introduced; and 3) it uses a response collision avoidance
mechanism which removes unnecessary responses, keeping service responses from
imploding the client.

2 Related Work

Service discovery is used to locate available services by service type; while service
selection is concerned with a particular service among services of the same type [7].
In this sense, many established service discovery protocols such as UPnP, JinI and
SLP are closer to service discovery than service selection. These discovery protocols
find multiple target services of a specified type, while the selection of one from the
discovered candidates is left to the user or software developer.

There have been some researches that have enhanced existing service discovery
protocols to have better gratuity. The researches in [6] and [7] aim to expand Jini
lookup services in order to utilize a variety of service attributes. Researchers in [12]
and [13] propose attributes-based extensions for easy service selection based on SLP,
which allows the service list to be returned in a sorted order so that the client can
easily select the most qualifying service from the candidates.

Quality of service and service discovery are considered together in [8], but that
research focuses only on QoS negotiation. The research in [9] integrates network
sensitivity into the service discovery process; while [10] describes QoS-aware service
discovery for mobile ad-hoc networks. Context or preference service discovery are
also proposed in [11, 21, 23].

3 Design Considerations

For designing an efficient service discovery protocol which allows discovery and
selection from identical services with different quality of service, the following
should be considered:

3.1 Decentralized Architecture

A centralized system fundamentally implies administrative setup and pre-knowledge
of discovery environments. Unlike this, the proposed system design does not depend
on any central systems. We assume that all services on the network spontaneously

 User Preference Based Service Discovery 589

cooperate for providing an answer to a quality of service discovery query.
Specifically, each device (service provider) calculates their conformance score based
on user defined preferences by themselves.

3.2 Qualifying Service Selection

In order to compare one service quality with others it is required to normalize service
characteristics. In addition, an effective way to express user preferences must be
created. For this, the service description table and the user preference table are
provided for the service provider and the client, respectively. A user can set his
preferences in the preference description table, and each preference is represented by
a weighted significance value for scoring. Then a service score, which is calculated by
the server itself, indicates the degree of service qualification against the user
preference.

3.3 Network Implosion Avoidance

Multicast is a popular tool for service discovery when there is no centralized server.
Multicast query-multicast response and multicast query-multiple unicast response can
overrun the client to the point of implosion. Because this may degrade the overall
performance of the system, proper service discovery has to alleviate this problem. We
use multicast request-multicast response, and our scoring based jitter delay allows
minimum network response messages to transfer.

4 Architecture

The proposed architecture uses an aggressive service discovery approach in which a
client sends a service discovery query to service devices instead of waiting for
services to announce their existence. The proposed quality of service discovery
consists of three tightly coupled phases: 1) sending quality of service discovery
queries which describe expected service attributes by a client; 2) service score
calculation on each device; and 3) score-based service response. The following sub-
sections explain each phase in more detail.

4.1 Quality of Service Discovery Query

To find the most qualifying service, a user needs to describe the expected service
attributes which the client is looking for. In the similar way, available services can be
described with multiple attributes and their value pairs by servers. User preference
based quality of service discovery problem can be conceptually summarized; there are
scattered services which have different featured attributes on the networks, and a
client describes expected service attributes, which are sent to network and compared
to each services. Comparisons of available service’s attributes and expected service’s
attributes are conceptually shown in Fig 1.

590 J. Sung, D. Lee, and D. Kim

attribute1
attribute2
attribute3

attribute5
attribute6

attribute4

Service attribute

Expected attribute by client

attribute1
attribute2
attribute3

attribute5
attribute6

attribute4

attribute1
attribute2
attribute3

attribute5
attribute6

attribute4

attribute value

attribute attribute attribute

attribute value attribute value

(a) service A (b) service B (c) service C

Fig. 1. Conceptual service selection process (Service A. and Service C. have several attributes
which do not meet the expectation of client while service B. show best matching to client
expectation)

Preference description table = a list of { service attributes, attribute value,
significance, arithmetic operators }

Fig. 2. Favorite and preference description table

The preference description table in Fig 2 is a list of attributes, its value, priroity
and arithmetic operators maintained by a client.

A property “Arithmetic operators” (>,<.=) explain attribute value condition (for
example, delay time is lower than 3 min). Operations may be expanded to include
richer and more complex ones as in [19] and [21]. The “priority” property expresses
the significance of its attribute compared with other attributes. For the illustration
purpose five different priority levels (Compulsory, Important, Normal, Trivial,
Reject) are defined. Four levels fall into positive categories while the other (reject)
level has negative connotations. We explain preference description table with a
simple printer example in Fig. 3.

In this example, six attributes, value, priority and arithmetic operators are
defined to express expected user preferences.

After user sets categorized priority level to each attribute according its importance,
it is necessary to change nominal attributes with a numeric value for calculations.
Two strategies are used for this quantification. First, we assign high numeric value
to more important attributes. Second, we assume that a client who request high
priority attributes cannot be satisfied with less priority attributes even though all
low priority attributes are qualified. This assumption can be explained with this
example. Suppose that there is a service which does not meets “service type (e.g.,
printer)” attribute which is ranked as a nominal “compulsory” priority level. Then,
there is the least possibility for a user to choose it regardless of other good attributes.

 User Preference Based Service Discovery 591

Attribute name priority
Arithmetic
operator

Value

Service Type Compulsory EQ(=) Printer

Usability (Waiting time) Important LT 10(>=) 10 min

Accessibility (location) Important EQ (=) R507

Color support Trivial GT 256 (>=) 16 Bit

Pay printer Reject EQ(=) No

Need authorization Reject EQ (=) Yes

Fig. 3. Preference description table

We use the function of S(n) to denote nth (n>=1) priority value with priority
ordering from 1(Compulsory) to 5(Reject). Then Fig 4 explains a simple mechanism
to calculate nth (n>=1) priority value.

1

() (1) (1) 1,(1), (0) (0) 0
n

S n A n S n n A S= − × − + >= = =∑

Fig. 4. Preference quantification

where A(n) is the number of attributes which have nth priority level. The nth
priority value S(n) can be calculated by adding guard score “1” to sum of all low
level attribute’s priority value between 0 to (n-1). The calculation process starts from
low priority level (n=1), and it continued to high priority (n) based on lower
priority value.

Negative priority level diminishes the chances of a service that meets the negative
significance to be chosen. For example, if the printer service has an attribute of “pay
printer” which is ranked in the “reject” priority level, it would be the last candidate
regardless of other good attributes.

The preference description table may be constructed automatically with GUI based
program and written in an XML format or simple text. A client sends a service
discovery query including this preference description table via a multicast channel.
Here, scoring calculation may be done by servers to alleviate the processing overhead
on limited client devices.

592 J. Sung, D. Lee, and D. Kim

4.2 Service Conformance Score Calculation

Like the preference description table of the service discovery client, participating
services maintain their own service description table which consists of service
attributes and their value pair.

Once services on multicast channels receive multicast query messages from a
client, they find a preference description table in query messages. To calculate
conformance score initially it is set to zero. If an attribute value, which describes a
service state in the service description table, meets an attribute condition in the
preference table, a corresponding priority value is accumulated to the service score.
For the simplicities purpose, we only use true or false judgment for each attribute
attributes. The conformance score is achieved by Fig.5.

Given a priority value S={ }1 ns sL where attribute list of preference description

table A={ 1 na aL }, and a attribute list of service description table B={ 1 nb bL },

a conformance score C is defined as the sum of priority value where nA = nB .

nc S=∑ such that (nA = nB)

Fig. 5. conformance score calculation

As a result, a device with a high conformance score is considered as a more
qualifying service compared to those with low scores.

4.3 Multicast Response and Service Selection

Services return back a discovery response message including a conformance score to a
client. If multiple response messages from services are sent to a client in a short period
of time, they can implode the client [4,15,18,22]. To overcome this response implosion
problem, some established service discovery protocols (e.g. UPnP) uses jitter delay,
which all service have to wait random period of time before sending their responses.

Our response collision avoidance mechanism is also based on jitter delay, but we
assign different jitter delay to services according to their calculated conformance
score. The jitter calculation algorithm is shown in Fig. 6.

1

2

() ()

(log)

m

n

PerfectScore ConformanceScore n

PerfectScore S n T n

DelayJitter Scale

=
−

= ×

= ×

∑

Fig. 6. Jitter calculations

 User Preference Based Service Discovery 593

where m is the number of different priority level (we use 4 because there are four
priority levels from a trivial to a compulsory), S(n) is nth priority value and T(n) is the
nth number of attributes. PerfectScore is the calculated score when a service has all
attributes expected by a client. DelayJitter is calculated to give high delay to a low
score matching service. Because a linear function gives same interval delay regardless
of their conformance score, the total delay time may be impractically long. We use
logarithms based jitter calculation so that relatively good qualified services can have
enough delay difference to be distinguished while less qualified services have small
delay difference among different services. As a result, it is assured that multiple
qualifying services can have long jitter delay enough to distinguish it with responses
from similar services, while less important services may pass over jitter delay quickly
to reduce maximum delay time. Variables n and Scale are used to characterize
calculations in real implementations.

The service which has expired jitter delay sends respond messages to a client, and
automatically, the first arriving service is the most qualifying service to the client’s
preference because it can be thought of as having the highest score according to our
jitter calculation.

Throughout this process because all service responds to a client, it would result in a
waste of precious network bandwidth and a client resource. To avoid this inefficiency
we utilize multicast protocol for service discovery responses. This services which
receive multicast response message from any other service stop to delay for
responding., and simply cancel remaining process.

As a result of our service discovery process, the multicast request and multicast
response mechanism alleviates the network implosion problem effectively, and our
scored based delay Jitter response assures the right selection of the most qualifying
service quickly.

5 Implementation

We implement the proposed system, and compare its performance with the standard
UPnP protocol. The testing environment consists of six desktop computers which
have Pentium 4 CPU 3GHz and 1GB RAM and 100Mbps Ethernet. We implemented
preference description tables and service description tables in client side and server
side respectively. We programmed the preference quantification, conformance score
calculation and jitter calculation mechanism as explained before.

The UPnP system is implemented based on Intel UPnP [17], and we modify both
the UPnP device (services) and the UPnP control point (client). Most modifications
are applied into the network layer in SSDP (Simple Service Discovery Protocol)
codes of UPnP protocol stacks. For clarity purposes, we disabled periodic service
notification announcements and ignoring cache control. Because originally UPnP
does not differentiate the quality of services if they are identical type, we modified the
UPnP client to accept continuous responses even after it receive first service.

6 Performance Evaluation

In the experimental we made virtual printer example which have 25 attributes. We
defined 5 significance levels from 1(compulsory) to 5(reject), and we set the identical
number of attributes which have each significance level. We set n=1 and scale=1 for

594 J. Sung, D. Lee, and D. Kim

jitter calculation. Because performance of proposed service discovery depends on
distributions of services, we assume services (service attributes) are uniformly
distributed. We use only one service requestor for simple comparison purposes, and
increase the number of devices from 0 to 100 with 5 steps.

We evaluate three factors: network traffic, time delay and accuracy. In our
evaluation we compare prototype system’s performance with standard UPnP. Because
UPnP does not support quality of service discovery, we use UPnP’s operations
(GET/SET) for retrieving service descriptions from services. In UPnP, total network
bandwidth is the sum of service discovery request/response message, communication
overhead for service descriptions transfer from services. Similarly, service delay is the
sum of service discovery request/response delay, communication delay for service
descriptions and descriptions sorting delay.

Network traffic is measured by the network capturing tool, Etherreal [16]. The total
request and response message sizes are monitored and the result of network
bandwidth is shown in Fig. 7. The bandwidth of service discovery increases as the
number of services increases.

As a result UPnP bandwidth will increase linearly, but our prototype shows more
stable results.

0
100000
200000
300000

1 15 30 45 60 75 90

device number

B
an

dw
id

th
 (

B
yt

e
Qos

UPnP

Fig. 7. Network bandwidth

0

2

4

6

8

10

12

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

device dumber

d

e

l
a

y

(
s
e

c

)

Qos

UPnP

Fig. 8. Service response time delay

 User Preference Based Service Discovery 595

Because the proposed service discovery model consists of one multicast request
and one multicast response, the network bandwidth is always the same regardless of
device numbers.

Service discovery delay is the total amount of time it takes from the client’s request
to the discovery of one qualifying service. Fig. 8 shows the time delay of the proposed
system. UPnP has an MX(default is 3sec) value on its multicast request query header
indicating the maximum waiting time. UPnP sends service discovery query two times.
On the other hand, the time delay of the proposed system shows fast response time. In
addition, because the increased device numbers give high probability of good services
overall response time is increased.

Because the client needs to communicate with multiple services at the same time, it
is easy to experience network errors. We measure error rates (number of actual
messages - expected message number)/ number of expected messages *100. In Fig 9,
UPnP have more packet errors when number of device is increased while our system
shown little error rate. This may come from packet collisions, and when devices are
too crowded, our delay jitter scheme failed to successfully differentiate delay
difference among services.

0

10

20

30

40

50

5 15 25 35 45 55 65 75 85 95

device number

er
ro

r
ra

te
 (

%
)

UPnP QoS

Fig. 9. Service discovery response error rate

In our experimental a client can composite service with maximum 1290 score
(when the client sets five attributes for each priorities), and worst case waiting for
service discovery response are 10.33 seconds. Because we use weighted delay
calculations according to a service’s good qualities, the most qualifying service is
assured to have at least 1 second delay difference with next qualifying service. This
prohibits services are miss-chosen due to simultaneous responses by other good
services. However, this long delay difference affects overall response time, we
diminish delay gap between less qualifying services. This is because considering a
few good services are more important than taking care of many less qualifying
services. However, this may cause the least qualifying service to have small delay
(0.001 seconds) gap, which can lead response duplications problems.

596 J. Sung, D. Lee, and D. Kim

6 Conclusion

In this paper, we have proposed a new service discovery based on the user’s QoS
requirement which finds the service based on preferred service quality. To minimize
network traffic and client overhead, service description comparison processing is
moved from the client side to service devices. The proposed service discovery
consists of three tightly coupled phases: 1) preference advertising by the client; 2)
candidate service score calculations at each device; and 3) qualifying service
response.

To prove the feasibility of our system, we compare the performance of our system
against standard UPnP. To the best of our knowledge, we have uniquely categorized
some service discovery mechanisms in the point of quality of service discovery. We
will study better jitter control to minimize duplicate multicast responses as our future
work.

References

[1] Preu, S., Cap, C.H.: Overview of Spontaneous Networking - Evolving Concepts and
Technologies. In: Future Services for Networked Devices (FuSeNetD) Workshop,
November 8-9, Heidelberg, Germany (1999)

[2] UPnP(Universal Plug and Play) forum, http://upnp.org/
[3] Jini, http://jini.org/
[4] Guttman, E.: Service location protocol: Automatic discovery of IP network services.

IEEE Internet Computing 3(4), 71–80 (1999)
[5] Guttman, E., Perkins, C.: RFC2608, Service Location Protocol, Version2 (June 1999)
[6] Moller, M.B, Jorgensen, B.N.: Enhancing Jini’s Lookup Service using XML-based

Service Templates. IEEE tech-nology of Object-Oriented Language and Systems, 19–31
(2001)

[7] Lee, C., Helal, S.: Context attributes: an approach to enable context-awareness for service
discovery. In: IEEE Symposium on Applications and the Internet (January 2003)

[8] Sung, M., Lee, G.-y.: A Qos-enabled Service Discovery and Delivery Scheme for Home
Networks. In: IEEE International Conference on Local Computer Networks(LCN 2003)
(2003)

[9] Huang, A.-C., Steenkiste, P.: Network-Sensitive Service Discovery. In: USITS (2003)
[10] Liu, J., Issarny, V.: Qos-aware Service Location in Mobile Ad-Hoc Networks. In: IEEE

International conference on Mobile Data Management(MDM 2004) (January 2004)
[11] Egashira, R., Enomote, A., Suda, T.: Distributed and Adaptive Discovery Using

Preference. In: Proc. of the Workshop on Service Oriented Computing in the IEEE
SAINT Symposium (2004)

[12] Zhao, W., Schulzrinne, H., Guttman, E., Bisdikian, C., Jerome, W.: Select and Sort
Extensions for the Service Location Protocol (SLP), Internet experimental RFC 3421
(November 2002)

[13] Zhao, W., Schulzrinne, H.: Improving SLP efficiency and extendability by using global
attributes and preference filters. In: International Conference on Computer
Communications and Networks (ICCCN 2002), Miami, Florida (October 2002)

[14] Goland, Y.Y., et al.: Simple Service Discovery Protocol /1.0, Internet Draft, draft-cai-
ssdp-v1-03.txt (Work in Progress)

 User Preference Based Service Discovery 597

[15] Mills, K., Dabrowski, C.: Adaptive jitter control for UPnP M-search. In: IEEE
International Conference on Communications, May 11-15, 2003, vol. 2, pp. 1008–1013
(2003)

[16] www.ethereal.com/
[17] Intel software for UPnP Technology http://www.intel.com/technology/upnp/
[18] Jaikaeo, C., Srisathapornphat, C., Shen, C.-C.: Diagnosis of Sensor Networks. In: IEEE

International Conference on Communications (ICC 2001) (2001)
[19] Howes, T.: A String Representation of LDAP Search Filters, RFC 2254 (December 1997)
[20] Thomson, G., Richmond, M., Terzis, S., Nixon, P.A.: An Approach to Dynamic Context

Discovery and Composition. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp
2003. LNCS, vol. 2864, Springer, Heidelberg (2003)

[21] Handziski, V., Frank, C., Karl, H.: Service Discovery in Wireless Sensor Networks.
Technical Report TKN-04-006, Telecommunication Networks Group, Technische
Universitat Berlin (March 2004)

[22] Barbeau, M.: Bandwidth usage analysis of service location protocol. In: Proceedings of
the 2000 International Conference on Parallel Processing Workshops (August 2000)

[23] Chen, G., Kotz, D.: Context-Sensitive Resource Discovery. In: Proceedings of the First
IEEE International Conference on Pervasive Computing and Communications, pp. 243–
252 (March 2003)

An Optimal Distribution of Data Reduction in

Sensor Networks with Hierarchical Caching

Ying Li1, M.V. Ramakrishna1, and Seng W. Loke2

1 Caulfield School of Information Technology, Monash University, Australia
{Ying.Li,Medahalli.Ramakrishna}@infotech.monash.edu.au
2 Department of Computer Science and Computer Engineering

La Trobe University, Australia
s.loke@latrobe.edu.au

Abstract. Reducing data transmission to conserve energy and provide
cost-efficient query answers in sensor networks is the topic of this paper.
We consider a sensor network logically organized into a tree structure.
The sensors at the lowest level cache raw data, and data is stored with
greater degree of compression as we move up the tree. Thus a query
answered using data at a lower level has less error but requires more
energy. We have proposed a model for accounting the cost of resources
consumed and the error in the result obtained. We have formulated an
optimization problem for the trade-off between the error cost and the re-
source cost of answering queries. Its solution enables us to determine the
optimal distribution of data reduction at each level. We have presented
numerical solutions for some sample data, illustrating the practicality of
the scheme.

Keywords: wireless sensor networks, energy-efficient, optimization.

1 Introduction

Conserving energy in sensor nodes is one of the crucial problems in wireless
sensor networks. This is specially true for a large sensor network deployed in
inaccessible fields. Data transmission is the major energy consumer in wireless
sensor networks [1]. To reduce the amount of data transmitted, we investigate
a data reduction scheme for efficiently answering queries in a hierarchical data
caching structure of large sensor networks while meeting user accuracy require-
ments. In the caching structure, data at different levels is with a corresponding
degree of compression [2]. Sensors at the leaf level cache raw data, compress
the data and transmit the compressed data to the intermediate upper level. As
we move up the levels, data is compressed to greater extents, but is cached for
longer duration. The root node receives user queries, routes the query to an ap-
propriate level and returns the result obtained from lower levels. Caching of the
compressed data enables to answer greater historical queries efficiently as some
queries can be answered at higher levels instead of being sent to the lower levels.
This caching also reduce data transmission in the network since not all the raw

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 598–609, 2007.
© IFIP International Federation for Information Processing 2007

An Optimal Distribution of Data Reduction in Sensor Networks 599

data is sent to upper levels. These gains are at the cost of query result accuracy.
Queries answered at higher levels will get larger error in the results.

The rest of the paper is organized as follows. The cost model is proposed to
describe the cost of query answering in Section 2. Section 3 presents an optimal
distribution scheme for data reduction by optimizing the trade-off between en-
ergy consumption and user error tolerance. Section 4 reports the experimental
results which indicate that our scheme can be adapted depending on the user
requests and some network parameters. We present related work in Section 5
and conclude our work in Section 6.

2 Cost Model

Caching data hierarchically with different compression degrees can reduce data
transmission. While queries answered with data at higher level get larger error in
results. To quantitatively analyze the trade-off between energy consumption and
result accuracy, we define two costs, transmission cost and error cost, to represent
the cost for query answering. As energy consumption on computing in a sensor
node is orders of magnitude lower than the consumption on transmission, we
ignore computation cost in this paper [1].

We define the energy consumption for data transmission as transmission cost,
denoted by CT . Let ct denote the unit cost for data transmission, which can
be quantified as cents per bit in practice. Let Bt denote the total amount of
data transmitted. Thus, CT is given by ctBt. As the transmission for queries
and query results is much less than the one for sensor data, and data compres-
sion techniques will not be applied on query results, we ignore it in this paper.
Besides the transmission cost, we define error cost to represent cost generated
by errors, which is denoted by CE . When queries are answered at upper levels
where compressed data are cached, the errors are generated in the results. We
use relative error as a measure of this error, which is defined as:

|result obtained−exact result|
exact result

Let ce denote the unit error cost, which can be quantified as cents per relative
error in practice. Let E denote the average relative error on all query answers.
Thus CE is given by ceE. When queries are answered in the caching structure,
the transmission cost and error cost will change with varying compression degree
of data. We use cumulative reduction ratio to represent compression degree on
the raw data, denoted by R, which is defined as the ratio between the compressed
data size and raw data size. Reduction ratio is used to represent the data com-
pression degree between two adjacent levels in the hierarchical structure and the
definition is given in Section 3. When the cumulative reduction ratio increases,
more data are transmitted to upper levels, the transmission cost increases. On
the other hand, the increase in cumulative reduction ratio leads to less errors
in query results, thus the error cost decreases. The relationship between the
the costs and cumulative reduction ratios are illustrated in Fig. 1. In this pa-
per, we aim to find a data reduction scheme with minimum total cost for query

600 Y. Li, M.V. Ramakrishna, and S.W. Loke

cumulative reduction ratio

cost

error

transmission

Fig. 1. Relationship between Transmission Cost and Error Cost

answering. Let C denote the total cost, i.e. the sum of transmission cost and
error cost, which is given by:

C = CT + CE = ctBt + ceE.

3 Optimal Distribution of Data Reduction

Given a group of queries to be answered in the hierarchical caching structure,
we concern the optimal compression degree for data at each level to keep the
overall cost minimum. For instance, there is a three-level caching structure. The
lowest level is level 0, and the root node is at level 2. The number of queries to
be answered at level 0, 1, 2 are 500, 300, 100 respectively. Thus the total cost of
answering this group of queries is C = ct(B1+B2)+ce(500e0+300e1+100e2)/900,
where B1 and B2 are the amount of data transmitted from level 0 to 1 and from
level 1 to 2 respectively, e0, e1, e2 are the average relative error in query results
at level 0 to 2 respectively. If the number of queries to be answered at level
0, 1, 2 changes to be 100, 400, 400 respectively, in order to obtain minimum
overall cost, it is expected that e1 and e2 decrease to make the error cost low.
The decrease in e1 and e2 need the increase in B1 and B2, thus the transmission
cost increases. Hence, we want to find the best average relative error and the
amount of data to be transmitted at each level to get minimum overall cost of
query answering. This is essentially the problem of finding the data compression
degree at each level. To solve this problem we formulate an optimization problem
in this section to give a general statement.

We first consider the data transmission cost. Suppose there are l levels in the
hierarchical structure, numbered as 0 to l − 1 from bottom to upper levels. At
level 0, each sensor node produces raw data at the rate of b0. At a certain upper
level i, a sensor receives compressed data from its children at the rate of bi. Each
sensor at level i has ni−1 children. We then define reduction ratio at level i as the
ratio between the data received in a node at level i and the one received in all its
children at level i − 1. Let ri denoted the reduction ratio, which is given by:

ri = bi

ni−1bi−1
.

An Optimal Distribution of Data Reduction in Sensor Networks 601

Defining reduction ratio enables us to determine the compression degrees
among the levels. In fact, the cumulative reduction ratio R can be calculated by
the reduction ratios. Let Ri denote the compression ratio of the data at level i,
there is Ri =

∏i
j=1 rj . Let N0 be the total number of sensors at level 0. Then

the amount of data received at level i, denoted by Bi, is given by:

Bi = N0b0Ri = N0b0
∏i

j=1 rj i ∈ [1, l − 1]

Thus the total amount of data transmitted is:

Bt =
∑l−1

i=1 Bi = N0b0
∑l−1

i=1
∏i

j=1 rj i ∈ [1, l − 1]

The total transmission cost is:

CT = ctBt = ctN0b0

l−1∑

i=1

i∏

j=1

rj (1)

We next consider the error cost of query answering. Let ei denote the average
relative error of a query result when the query is answered at level i. Let qi

denote the number of queries answered at level i. Given a group of queries, the
average relative error E of all the queries is:

E = e0q0+e1q1+...+el−1ql−1
q0+q1+...+ql−1

=
∑ l−1

i=0 eiqi
∑ l−1

i=0 qi

In this equation,
∑l−1

i=0 qi is the total number of queries posed at the hierar-
chical caching structure. For simplicity, let q denote the total number of queries,
i.e. q =

∑l−1
i=0 qi. e0 is 0 as the raw data is cached at level 0. The error ei is

due to the compressed data and is a function of cumulative reduction ratio. In
general, ei can be represented as:

ei = g(Ri) (2)

With different compression techniques applied on the sensor data, this func-
tion will be different. Further description on this function is given later in this
section. Hence, the total error cost is given by:

CE = ce

∑l−1
i=1 eiqi

∑l−1
i=0 qi

= ce

∑l−1
i=1 qig(

∏i
j=1 rj)

∑l−1
i=0 qi

(3)

Given the costs of transmission and error above, we want to find the optimal
reduction ratio at each level to keep the overall cost minimum. Thus, this problem
is formulated as an optimization problem:

Minimize
C = ctN0b0

∑l−1
i=1

∏i
j=1 rj + ce

∑ l−1
i=1(qig(

∏ i
j=1 rj))

∑ l−1
i=0 qi

1 ≤ i ≤ l − 1 (4a)

This problem is under following constraints:

– The errors in query results meet user specified accuracy requirement, i.e.

0 < g(
∏i

j=1 rj) < Tei (4b)

602 Y. Li, M.V. Ramakrishna, and S.W. Loke

where Tei is the threshold of error tolerance at level i, which is decided by
the user accuracy requirement. The discussion on user accuracy requirement
and Tei is given later in this section.

– reduction ratio at each level is between 0 and 1.

0 < ri < 1 (4c)

– As one of the characters of the hierarchical caching structure, older historical
data is cached at higher levels than the data at lower levels. Let ti be the
time span for data cached at level i, there is:

0 < ti−1 < ti (4d)

Let Mi be the memory space for caching in a sensor node at level i, the time
span for data cached at this node is given by:

ti = Mi

bi
= Mi

b0
∏ i−1

k=0 nk

∏ i
j=1 rj

.

Description of ei and Tei

As mentioned in Equation(2), the average error in query results at level i is the
function of ratio Ri. This function is determined by the compression technique
used. In our previous work, we proposed data approximation algorithms for
sensor data [3]. Using some real life data sets, we also analyzed the relationship
between the data cumulative reduction ratio and the error generated from the
approximated data. Based on our experiment results, we set the error function
as following to further illustrate the optimization problem in the next section.

ei = g(Ri) =
k(1 − Ri)

Ri
(k > 0) (5)

where k is the coefficient of the function. With different compression algorithms
or on different data sets, the value of k will be different. We set k as 2 in this
paper. In this function, if Ri is 0, then e = ∞. This means that when data is
totally compressed to size 0, the queries are not able to be answered. If Ri = 1,
e = 0. This indicates that when the raw data is sent to the upper levels, there
will be no error for query answering. If Ri > 1, the value of e is less than zero
which is meaningless. Thus, it complies with our requirement that the value of
Ri should be between 0 and 1. The graph of this function is illustrated in Fig. 2.

We use the idea presented by Ganesan et al to define the relationship between
user accuracy requirement and the error with the compressed data [4]. Users gen-
erally expect less errors for queries referring to recent data. If queries refer to the
older data, larger error is tolerable. With data cached at the hierarchical caching
structure, the errors are represented by a step function. Fig. 3 illustrates the re-
lationship between the user requirements and the errors, where z(t) represents
user requirements, f(t) represents the errors obtained. The values of f(t) should
be less than z(t) to meet user requirements. For instance, within (t1, t2], f(t1)
should be less than z(t1) to keep f(t) over (t1, t2] satisfy the user requirements.
Thus z(t1) is threshold of error tolerance for level 2, which is defined as Te2. To

An Optimal Distribution of Data Reduction in Sensor Networks 603

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

cumulative reduction ratioR i

re
la

tiv
e

er
ro

r
(i

n
%

)

Fig. 2. Error Function g(Ri)

time span of data storage at levels

error

t0
t1 t2 t3

z(t)

e2

T
e2

f(t)

Fig. 3. User Error Requirement z(t) and
Result Error f(t)

answer queries with data at level 2, there is e2 < Te2 = z(t1). In general, the
error threshold is given by:

Tei = z(ti−1).

4 Solution of the Optimization Problem

It appears that the optimization problem in Equation(4) is too difficult to solve
in general. However, we can solve it numerically for a given set of parameters.
In the following, we use two sets of parameters to illustrate the capability and
usefulness of the proposed optimization technique.

4.1 Sample Problem with Two Levels

We consider a sensor network with two-level caching. At level 0, there are N0
sensors and each sensor produces data at the rate of b0. The raw data is com-
pressed and sent to level 1 at reduction ratio r1. For this case, the problem
described by Equation(4) can be simplified as following:

Minimize
C = ctb0N0r1+kce

q1
q0+q1

1−r1
r1

(6a)

Subject to:
0 < k 1−r1

r1
< z(t0); (6b)

0 < r1 < 1; (6c)
0 < t0 < t1. (6d)

For simplicity, we assume the user specified accuracy requirement is a linear
function, i.e. z(t) = t. The time span for data at level 0 is t0, which equals
M0/b0. Thus, the constraint(6b) can be rewritten as:

0 < k 1−r1
r1

< M0
b0

To obtain the minimum value of C, let C
′
= 0. Then we can get:

604 Y. Li, M.V. Ramakrishna, and S.W. Loke

r1 =
√

kce
q1

q0+q1
(ctb0N0)−1

To illustrate the nature of the solution, we use sample values in the equations
above. Some of them are based on the typical values presented in the literature
[5,6].

ct = 10−6¢/b ce = 1¢/% b0 = 10Kb/s
N0 = 500 M0 = 512KB q0 = 10, q1 = 20, q = 30
The optimal reduction ratio for this case is r∗1 = 0.516.
Fig. 4 indicates the effect of ratio r1 on the transmission and error cost. We

observe that, in accordance with Equation(1) and (3) respectively, the trans-
mission cost increases linearly and the error cost reduces dramatically with r1.
Furthermore, the optimal reduction ratio will be different with varying network
parameters, such as ct and ce. In Fig. 4(a), the transmission cost changes slower
than the error cost over the reduction ratio 0.1 to 0.9. Increased the unit trans-
mission cost ct to 3 × 10−6¢/b, we get another curve of transmission cost illus-
trated in Fig. 4(b), where the transmission cost increases rapidly. The optimal
reduction ratio then decreases, which indicates that the data is sent to level 1
at higher compression degree when the unit transmission cost increases.

0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

reduction ratio

co
st

transmission cost

error cost

0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

reduction ratio

co
st

transmission cost

error cost

(a) c
t

= 10-6 ¢/b (b) c
t
= 3*10-6 ¢/b

r*
r*

Fig. 4. Cost Trade-off for the 2-level Caching Structure (b0 = 10Kb/s, ce = 1¢/%, N0 =
500, k = 2, q0 = 10, q1 = 20)

Except the network parameters, the time span of data requested by queries
also affects the optimal reduction ratio r∗1 . This is illustrated in Fig. 5. Given a
group of queries, when there are more queries referring historical data at level
1, i.e. q1/q increases, the optimal reduction ratio increases. This enables more
data send to level 1, so that those queries get less errors in results. We also plot
another curve by changing the value of the error function coefficient k. Since the
increase in k causes the rapid increase in errors, r∗1 will increase to allow more
data send to level 1. This is verified by the experiment results reported in Fig. 5,
where r∗1 increases rapidly with k = 3 comparing the one with k = 2.

2-level case is a special example as it only has one reduction ratio parameter
r1. As it can clearly show the effect on costs from the change of reduction ratio,

An Optimal Distribution of Data Reduction in Sensor Networks 605

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

k=2

k=3

op
tim

al
re

du
ct

io
n

ra
ti

o
r*

query ratio q
1
/q

Fig. 5. Reduction Ratios as A Function of q1/q (ct = 3 × 10−6¢/b, b0 = 10Kb/s, ce =
1¢/%, N0 = 500)

we discuss it in a separate section. In the following, an example of multi-level is
used to analyze the effect on reduction ratios from the change of data requests
and network parameters.

4.2 Sample Problem with Four Levels

We use 4-level caching structure in a sensor network as an example to illustrate
the multi-level problem. The transmission cost in Equation(1) can be simplified
as:

CT = ctb0N0
∑4−1

i=1
∏i

j=1 rj = ctb0N0(r1 + r1r2 + r1r2r3)

Same error function ei and user requirement function z(t) as the ones in the
2-level case are used here. Then the error cost is:

CE = ce

∑4−1
i=1 (qig(

∏i
j=1 rj))/

∑4−1
i=0 qi = kce

q (q1
1−r1

r1
+ q2

1−r1r2
r1r2

+ q3
1−r3

r3
)

The threshold of error tolerances on level 1 to level 3 is Tei = z(ti−1) =
ti−1, i ∈ [1, 3]. Suppose all the nodes have same number of children n. Then
Equation(4) is simplified as:

Minimize:
C = ctb0N0(r1 + r1r2 + r1r2r3) + kce

q (q1
1−r1

r1
+ q2

1−r1r2
r1r2

+ q3
1−r1r2r3

r1r2r3
)

Subject to:
0 < k 1−r1

r1
< M0

b0
0 < k 1−r1r2

r2
< M1

nb0
0 < k 1−r1r2r3

r3
< M2

n2b0
0 < r1 < 1 0 < r2 < 1 0 < r3 < 1
0 < t0 < t1 < t2 < t3

Suppose the relevant parameters are set as:

ct = 1 × 10−6¢/b ce = 1¢/1% b0 = 10Kb/s
n = 8 N0 = 512 k = 2
M0 = M1 = M2 = 512KB q0 = 10, q1 = 500, q2 = 100, q3 = 80

606 Y. Li, M.V. Ramakrishna, and S.W. Loke

This nonlinear constraint problem can be solved using Matlab tool and the
solution is:

r∗1 = 0.50, r∗2 = 0.58, r∗3 = 0.89

Next, we consider the effect of the user queries and network parameters on the
reduction ratios. The results are reported in Fig. 6. Fig. 6(a) illustrates the effect
on the reduction ratios when the percentage of q1 increases. r∗1 increases along
with the increase in q1/q. This enables more data sent to level 1 so that less error
generated in answering queries at this level. r∗2 and r∗3 decrease because of the
decrease in the percentage of q2 and q3. Fig. 6(b) reports the effect of the increase
in percentage of q2 on reduction ratios. r∗2 increases along with the increase in
q2/q. This enables more data sent to level 2 so that less error generated at this
level. When q2/q is less than 50%, its rise leads to the slight decrease in r∗1
because of the decrease in q1/q. When q2/q is over 50%, its effect on r∗1 turns
to be determinant, thus r∗1 starts to rise. Because of the decrease in q3/q and
the increase in r∗2 , r∗3 rapidly drops. Fig. 6(c) shows the effect of the increase in
q3/q. The effect on r∗1 is similar with the one in Fig. 6(b). When q3/q is less than
50%, r∗2 shows a gradual increase as the consequence of the interaction between
the slight decrease in r∗1 and rapid increase in r∗3 . When q3/q is over 50%, its
effect turns to be determinant. Thus r∗2 approximately reaches 1 to allow more
data to be received at level 2 and to be sent to level 3. In a summary, Fig. 6
indicates that the change in the percentage of queries at certain level has direct
effect on the reduction ratio at the corresponding level and also strong effect on
the immediate upper level. Furthermore, the results show that more queries are
answered at a certain level, more data is sent and less errors will be generated
at this level.

Unit transmission cost ct and unit error cost ce also have effect on the re-
duction ratios. Fig. 7(a) illustrates the effect of ct on r∗i , where log(ct) is used
as x-axis value for better display. When ct increases from 10−6¢/b, r∗1 firstly
decreases while r∗2 and r∗3 keep constant. When ct increases up to 3.16 ∗ 10−5¢/b
(i.e. log(ct) = −4.5), r∗1 stops decreasing and r∗2 starts to decrease. The sim-
ilar process is taken place on r∗2 and r∗3 . When ct reaches 3.16 ∗ 10−3¢/b (i.e.
log(ct) = −2.5), r∗2 stops decreasing and r∗3 starts to rapid decrease. The de-
crease process among r∗i indicates that the increase in ct gradually affects the
reduction ratios from lower level. This is due to the total amount of data trans-
mitted at lower levels is larger than the one at higher levels. Fig. 7(b) illustrates
the effect of ce on r∗i . The reduction ratios in the hierarchical structure shows the
same change order as the ones in Fig. 7(a), but with different change direction.
The increase process among r∗i indicates that the ce also gradually affects the
reduction ratios from lower levels. The first increase of r∗1 enables more data to
be sent from lower level, and alleviates total error cost.

In summary, these results show the effect of reduction ratio on the cost of
query answering, and the effect of user requests and network parameters on the
distribution of data reduction. We observe that the scheme is adaptive to keep
the overall cost minimum. Further, in this scheme, the increase in the percentage

An Optimal Distribution of Data Reduction in Sensor Networks 607

(a) q
0
=10, q

2
=100, q

3
=80 (b) q

0
=10, q

1
=300, q

3
=80

(c) q0=10, q1=300, q2=200

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

query ratio q 1 /q

r1 r2 r3

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

query ratio q 2 /q

r1 r2 r3

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

query ratio q 3 /q

r1 r2 r3

op
tim

al
re

du
ct

io
n

ra
tio

r*

op
ti

m
al

re
du

ct
io

n
ra

ti
o

r*

op
tim

al
re

du
ct

io
n

ra
ti

o
r*

Fig. 6. Reduction Ratios as A Function of q1/q, q2/q, q3/q (ct = 10−6¢/b, b0 =
10Kb/s, ce = 1¢/1%, n = 8, N0 = 512, k = 2, M0 = M1 = M2 = 512KB)

of queries posed at a certain level leads to the increase in the reduction ratio at
this level, i.e., less compression is applied on the data sent to this level.

5 Related Work

A wide range of methods have been proposed to reduce data transmission to con-
serve energy in wireless sensor networks. These can be roughly divided into three
categories: data routing, data compression, data prediction. Some researchers in-
vestigate to route the sensor data efficiently. Meliou et al present an algorithm to
compute the optimal communication path for data transmission [7]. An analyt-
ical model and a heuristic algorithm are proposed in [8] to construct an energy
efficient routing for real time data aggregation gathering. Exploiting the corre-
lation character in sensor data, some researchers have devoted to sensor data
compression or approximation to reduce data transmission. Exploiting spatial
correlation in sensor data, a distributed wavelet compression algorithm is pro-
posed in [9]. Lazaridis et al represent sensor data in an approximate format by
dividing the time series into segments [10]. Some researchers investigate to re-
duce data transmission by predicting data in sink node. For example, an ARIMA

608 Y. Li, M.V. Ramakrishna, and S.W. Loke

(a) ce= 1 ¢/% (b) ct= 1*10-6 ¢/b

0

0.2

0.4

0.6

0.8

1

-6 -5.5 -5 -4.5 -4 -4.5 -3 -2.5 -2 -1.5 -1

log(unit cost of transmission c t)

r1

r2

r3

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17

unit cost of error c e

r1

r2

r3op
tim

al
re

du
ct

io
n

ra
tio

r*

op
tim

al
re

du
ct

io
n

ra
tio

r*

Fig. 7. Effect of Unit Cost on Reduction Ratio (b0 = 10Kb/s, N0 = 512, k = 2, M0 =
M1 = M2 = 512KB, q0 = 10, q1 = 300, q2 = 100, q3 = 80)

model is used to predict data in sink node in [11]. Although these work consider
the trade-off between energy consumption and data quality, they neither pay
attention on the cost of query answering nor put the error cost in overall cost
for optimizing their solutions.

Our work is similar to that of Ganesan et al, where the compressed data
is stored in a hierarchical structure [4]. Their work focuses on optimizing the
memory usage, i.e. how long the data can be cached at each level, to satisfy
user accuracy requirements given the limited total memory capacity. Our work
focuses on optimizing the data reduction ratios while keep the overall cost to a
minimum.

6 Conclusion

Given a group of queries to be answered with hierarchically cached sensor data,
different data reduction schemes lead to different costs of data transmission and
error. In this paper, we provided a technique for determining the optimal strategy
for data compression to minimize the energy consumed while meeting the user
requirement. We used example data drawn from the literature to illustrate the
practicality of the technique presented. The results show that the optimal data
reduction scheme can adaptively change according to network parameters and
user requirements.

References

1. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Communications
of the ACM 43(5), 51–58 (2000)

2. Li, Y., Ramakrishna, M., Loke, S.W.: Approximate query answering in sensor net-
works with hierarchically distributed caching. In: Proceedings of the 20th Interna-
tional Conference on Advanced Information Networking and Applications, Vienna,
Austria, pp. 281–285. IEEE Computer Society Press, Los Alamitos (2006)

An Optimal Distribution of Data Reduction in Sensor Networks 609

3. Li, Y., Loke, S.W., Ramakrishna, M.: Energy-saving data approximation for data
and queries in sensor networks. In: Wen, G., Komaki, S., Fan, P., Landrac, G.
(eds.) 2006 6th International Conference on ITS Telecommunications Proceeding,
Chengdu, China, pp. 782–785. IEEE Computer Society Press, Los Alamitos (2006)

4. Ganesan, D., Greenstein, B., Estrin, D., Heidemann, J., Govindan, R.: Multireso-
lution storage and search in sensor networks. ACM Transactions on Storage 1(3),
277 (2005)

5. MICAmote: http://www.xbow.com
6. Kumar, R., Tsiatsis, V., Srivastava, M.B.: Computation hierarchy for in-network

processing. In: Proceedings of the 2nd ACM international conference on Wireless
Sensor Networks and Applications, pp. 68–77. ACM Press, New York (2003)

7. Meliou, A., Chu, D., Guestrin, C., Hellerstein, J., Hong, W.: Data gathering tours in
sensor networks. In: The Fifth International Conference on Information Processing
in Sensor Networks, pp. 43–50. IEEE Press, Los Alamitos (2006)

8. Hu, Y., Yu, N., Jia, X.: Energy efficient real time data aggregation in wireless sen-
sor networks. In: International Wireless Communications and Mobile Computing
Conference, Vancouver, Canada, pp. 803–808 (2006)

9. Ciancio, A., Ortega, A.: A distributed wavelet compression algorithm for wireless
sensor networks using lifting. In: Preceeding of International Conference on on
Acoustics, Speech and Signal Processing, pp. 825–828. IEEE Press, Los Alamitos
(2004)

10. Lazaridis, I., Mehrotra, S.: Capturing sensor-generated time series with quality
guarantees. In: Proceedings of the International Conference on Data Engineering,
pp. 429–440. IEEE Press, Los Alamitos (2003)

11. Liu, C., Wu, K., Tsao, M.: Energy efficient information collection with the arima
model in wireless sensor networks. In: Proceedings of IEEE Global Telecommuni-
cations Conference (2005)

http://www.xbow.com

MOFBAN: A Lightweight Modular Framework

for Body Area Networks

Benôıt Latré, Eli De Poorter, Ingrid Moerman, and Piet Demeester

Ghent University - IBBT vzw- IMEC vzw
Department of Information Technology (INTEC)

Gaston Crommenlaan 8, bus 201,B-9050 Gent, Belgium
Tel.: +32 9 331 49 00, Fax: +32 9 331 48 99

benoit.latre@intec.UGent.be

Abstract. The increasing use of wireless networks, the constant minia-
turization of electrical devices and the growing interest for remote health
monitoring has led to the development of wireless on-body networks or
WBANs. The research on communication in this type of network is still
at it’s infancy. The first communication protocols are being proposed,
but a general architecture that can be used to integrate the protocols
easily is still lacking. However, such an architecture could trigger the
development of new protocols and ease the use of WBANs. In this pa-
per, we present a lightweight modular framework for body area networks
(MOFBAN). A modular structure is used which allows for a higher flex-
ibility and improved energy efficiency. The paper first investigates the
challenges and requirements needed for sending messages in a WBAN.
Further, we discuss how this framework can be used when designing new
protocols by defining the different components of the framework.

1 Introduction

Recent advancements in electronics have enabled the development of small and
intelligent (bio) medical sensors which can be worn on or implanted in the human
body. However, the use of wires to extract data is becoming too cumbersome
due to the multitude of sensors. As a solution, the sensors placed on and inside
the body are equipped with a wireless interface which enables an easier appli-
cation [1]. Doing so, a patient is no longer compelled to stay in a hospital. The
health care is becoming mobile. This is referred to as m-health [2]. For this pur-
pose, a new type of network is defined: a wireless on-body network or a Wireless
Body Area Network (WBAN) [3,4]. This type of network communicates wire-
lessly and consists of several small and mobile devices close to, attached to or
implanted into the human body. Interaction with the user or other persons is
usually handled by a personal device, e.g. a PDA or a smartphone which acts
as a sink. Generally speaking, one can distinguish two types of devices: sensors
and actuators. The sensors are used to measure certain parameters of the human
body, either externally or internally. Examples include measuring the heartbeat,
body temperature or recording a prolonged ECG. The actuators or actors on the

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 610–622, 2007.
c© IFIP International Federation for Information Processing 2007

MOFBAN: A Lightweight Modular Framework for Body Area Networks 611

other hand take some specific actions according to the data they receive from
the sensors or through interaction with the user, e.g. an actuator equipped with
a built-in reservoir and pump for administering the correct dose of insulin to
diabetics based on the measurements of glucose level. These systems reduce the
enormous costs of patients in hospitals as monitoring can occur real-time and
over a longer period of time, even at home [5].

Only emerging in recent years, the concept of a Wireless Body Area Network
can be seen as fairly new. The main research nowadays focuses on the develop-
ment of new radio interfaces and sensors. The devices are becoming tinier, even
less than 1 cm3 [6] and the energy consumption is decreasing [7]. The IEEE 802.15
Working Group has recently started a Study Group for WBANs [8]. Current im-
plementations of WBANs generally assume a star topology where the sensors or
actuators are directly communicating with the personal device. However, recent
studies have spoken out for the use of multi hop routing in wireless on-body net-
works where intermediate sensors may be used as relay devices in order to reach
the personal device [9,10]. The main reasons for using such an approach are to
increase the reliability and connectivity of the network, the high path loss experi-
enced around the body [11,12] and to even further lower the energy consumption.

The development of new network protocols especially designed for body area
networks has been considered in a lesser degree. Nevertheless, the creation of pro-
tocols which are adapted and optimized to the specific requirements of WBANs,
can even further lower the energy consumption while other requirements, e.g.
reliability and delay, are still satisfied. In order to boost the development of such
protocols, we propose a lightweight framework for a system architecture usable
in body area networks called MOFBAN or MOdular Framework for Body Area
Networks. This framework will allow for an easy integration of existing and
newly developed protocols and optimizes the energy-efficiency by using its mod-
ular structure. It further provides a uniform interface for application and radio
designers.

The remainder of this paper is as follows. Section 2 gives an overview of
current work in the field of Body Area Networks where we will focus on ex-
isting networking protocols for body area networks. The specific characteristics
and properties will be discussed in Section 3. Section 4 discusses the modu-
lar framework of the proposed protocol. The modules are described in Section
5. In Section 6, the communication in the framework is discussed. And finally,
Section 7 offers directions for future research and Section 8 concludes the paper.

2 Related Work

Protocols for WBAN can be divided in intra-body communication and extra-
body communication, see Figure 1. The former controls the information han-
dling between the sensors or actuators and the personal device [13], the latter
ensures communication between the personal device and an external network
[7,14,15,16]. Doing so, the medical data of the patient at home can be consulted
by a doctor.

612 B. Latré et al.

Extra BAN communication

Intra BAN communication

External NetworkWBAN

WBAN

Fig. 1. Example of intra-body and extra-body communication in a WBAN

This paper deals with intra-body communication. Developing efficient routing
protocols in WBANs is a non trivial task because of the specific characteristics
of a wireless environment. First of all, the available bandwidth is limited, shared
and can vary due to fading, noise and interference, so the protocol’s amount
of control information should be limited. Secondly, the nodes that form the
network can be very heterogeneous in terms of available energy or computing
power. A lot of research has already been performed in the area of sensor net-
works [17]. These protocols can not be used in a intra-body network as is as
these protocols are mainly developed for large networks whereas the WBAN
only has a limited number of devices. Besides, sensor networks assume one-way-
communication between the sensor and the sink and more reliability is wanted
in WBANs. In current implementations, these networks consider a star topology
where the sensors are directly (and of course wirelessly) connected to a personal
device [18]. Hence, the routing aspects of these protocols are very minimal as
only direct communication is to be contemplated.

The strict separation of the protocol stack has proved to be a good solution
for wired networks, but is not suitable for wireless networks [19]. Hence, a cross-
layer approach is considered as the way to go in developing protocols for wireless
networks and sensor networks. By using a cross layer architecture, optimization
can be done at several layers at once, it is possible to achieve a global optimiza-
tion and conflicting optimizations between different layers can avoided. Hence,
most recent protocols have opted for a more holistic view using a cross layer ap-
proach [20]. A special type of cross layer is the modular approach [21]. This allows
for a rich interaction between the building blocks of the protocol, but requires a
total new approach which changes the very way protocols are organized. Another
approach of a modular sensor network, is to make the sensor nodes themselves
modular in hardware. This is done in mPlatform [22], that uses a collection of
stackable hardware modules that share a well defined common interface.

3 Properties of a WBAN

Many different types of sensors and actuators are used in a BAN. The main use
of all these devices is to be found in the area of health applications. In this view

MOFBAN: A Lightweight Modular Framework for Body Area Networks 613

Table 1. Examples of medical WBAN applications [23,24]

Application Data Rate Bandwidth Accuracy Reliability

ECG (12 leads) 144 kbps 100-1000 Hz 12 bits 10−10

EMG 320 kbps 0-10,000 Hz 16 bits 10−10

EEG (12 leads) 43.2 kbps 0-150 Hz 12 bits 10−10

Blood saturation 16 bps 0-1 Hz 8 bits 10−10

Glucose mon. 1600 bps 0-50 Hz 16 bits 10−10

Temperature 120 bps 0-1 Hz 8 bits 10−10

Motion sensor 35 kbps 0-500 Hz 12 bits 10−3

Audio 1 Mbps – – 10−5

Voice 50-100 kbps – – 10−3

a BAN can be utilized to provide interfaces for the disabled, for diagnostics, for
drug administration in hospitals, for telemonitoring of human physiological data,
as aid for rehabilitation, etc. The devices are worn on the body and therefore
should be made as tiny as possible. Consequently, limited space will be available
for energy supply. In order to minimize the energy consumption, one can use an
extremely low transmit power. Energy scavenging can be used, but this will only
deliver small amounts of energy [25].

An important property is that the data consist of medical information. Hence,
a high reliability and low delay is required. It is crucial that messages with mon-
itoring information are received by the health care professionals. The reliability
can be considered either end to end or on a per link base. Examples of relia-
bility include the guaranteed delivery of data, in-order-delivery, . . . Besides, the
delivery of the messages should be in reasonable time.

Different types of delivery can be distinguished: continuous (data or control
information is sent continuously or periodically with small intervals), demand
driven (data is only sent when needed), event driven (data is sent whenever an
event occurs, i.e. if a threshold is crossed) or hybrid (a combination of the types
above). Most applications will have continuous data transmission.

A small overview of health care applications in a BAN can be found in Table 1.
The data rate is calculated by means of the sampling rate, the range and the
desired accuracy of the measurements [23,24]. The sampling rate is twice the
required bandwidth. The number of bits required per measurement is calculated
through the range and accuracy:

Data rate = nr of bits · 2 · (fmax − fmin) (1)

Looking at Table 1 and the visualization of Fig. 2, we can group the applications
into 4 categories:

– Low data rate and low reliability
– Low data rate and high reliability

614 B. Latré et al.

Bandwidth

Reliability

Low High

B
es

t E
ffo

rt
R

ea
l T

im
e EEG

ECGBlood
analysis

Supervising

Control

Alarms

EMG

Video

Speech

Fig. 2. Traffic analysis in a WBAN

– High data rate and low reliability
– High data rate and high reliability

It is clear that the traffic in a WBAN is quite heterogeneous and newly developed
protocols should be capable of coping with this heterogeneity in mind.

In most cases, a WBAN will be set up in a hospital by medical staff, not by
network engineers. Consequently, the network should be capable of configuring
itself automatically, i.e. self-organizing should be supported. Whenever a node
is put on the body and turned on, it joins the network and the routes are set
up without any external intervention. When a route fails, a back up path should
be set up. The self organizing aspect also includes the problem of addressing
the nodes. They can use a preconfigured address given at manufacturing time
(e.g. the MAC-address) or an address given at set up time by the network it-
self. Further, the network should be quickly reconfigurable, i.e. for adding new
services.

Another important issue is the network security. The data gathered by the
sensors is highly confidential and private. Special efforts such as encryption, key
establishment, authentication, . . . are needed.

From the analysis above, it is clear that we have a set of different requirements
for supporting communication in a BAN. In order to ease the development of
new and robust applications, a framework and new protocols are needed. These
should consider the energy efficiency, reliability, the delay, the different QoS-
levels and data rates, the ease of use of the system and the security. In the
following, we present a framework especially designed for body area networks
that will take care of these requirements.

MOFBAN: A Lightweight Modular Framework for Body Area Networks 615

Application 1

Application 2

Application n

API

Phy Interface

PHY A
PHY B

Transmission
Routing

Self
organization

Security

Data
aggregation

Local
monitoring

Controller
Module

Reliability
Power
control

Fig. 3. The modular framework for BAN or MOFBAN

4 Modular Framework

In this section, we present MOFBAN, a lightweight MOdular Framework for
Body Area Networks. The framework uses a modular design instead of the nor-
mal layered approach. This means that all the functionalities needed are imple-
mented as software modules [21]. The use of modules allows for a more flexible
solution as some functionalities can be changed, added or removed more easily,
simply by altering the corresponding module. These modules can be used and
altered more easily compared to a general cross layer approach where all the
functionalities are implemented in one layer.

Developing protocols in a modular way requires a new approach in designing
network protocols. In a layered design, the interfaces between the protocols re-
siding on different layers are well-defined, i.e. in the TCP/IP stack. This is no
longer the case in a modular framework. One has to make sure the modules are
called in the appropriate order and that the exchange of parameters between
the modules is standardized. In MOFBAN, the interaction between the different
modules is handled by a controller module that is responsible for addressing the
appropriate function at the right time. The controller module further acts as a
general access to a storage space or data bank for the parameters that can be
used in the network.

An example of the MOFBAN framework can be found in Figure 3. The most
important element of the framework is the middle part. It contains the different

616 B. Latré et al.

modules which implement the desired functionalities and holds the controller
module. Further, two interfaces are provided. At the top, the application inter-
face eases the use of the framework for application designers. The application
layer is handled separately in order to facilitate the use of different applications
(such as sensing, video,. . .) and the addition of extra services/applications. It
is necessary to define a sort of generic interface between applications and the
framework (see section 6). At the bottom, the physical interface provides a uni-
form access to the physical layer. The framework has a simple architecture and
the use of modules avoids the duplication of functionality, making the framework
lightweight.

In a Body Area Network, two types of devices can be defined: a sensor/ actu-
ator node and the personal device. In these two types, the MOFBAN framework
is implemented.

– The Sensor/Actuator nodes are the regular nodes in the network. The spe-
cific use of the node is determined by the application designer who uses the
application interface to activate the required functions. A node can be a
ECG-sensor or an actuator. Another example is that the node can be used
as a relay device. These devices are merely used for relaying data, not for
sensing. The question of which modules needs to be used is determined by
the application designer. The sensor nodes can have different implementa-
tions between themselves. Doing so, the network can support the different
requirement of heterogeneity of the network.

– The Personal device acts as a gateway between the BAN and other networks.
Therefore, the personal device needs to support the normal IP-stack. It is an
IP-capable device and it takes care of the conversion between the modular
protocol stack and the layered OSI protocol stack. This device generally has
two or more physical interfaces: one to connect with the WBAN and the
other to connect with an external network. It further has a larger energy
supply and more computation power.

5 Modules

The modules of MOFBAN take care of the networking functionality in general,
such as routing, medium access, reliability, self organization, . . . Three types of
modules can be distinguished: the controller module and the required and op-
tional modules. The required modules are essential to have a proper working
BAN and implement the basic networking functionalities. When a more func-
tional BAN is needed, i.e. a BAN supporting a certain level of reliability, security
or power control, extra optional modules are added. It is up to the user of the
network, i.e. the application designer, to define what is needed.

5.1 Controller Module

The controller module is the most important module. It is responsible for han-
dling the correct functioning of the framework and handles all incoming requests

MOFBAN: A Lightweight Modular Framework for Body Area Networks 617

from the physical and application layer. It consists of two major parts: a sched-
uler that calls the other modules at the appropriate time and a passage to the
database that acts as a data-repository accessible by the other modules.

It is of utmost importance to keep the information between the different mod-
ules consistent. This is regulated by the controller module. It defines the inter-
action or communication process between the modules. For this purpose the
controller module uses an additional database module. If a module wants to
access or pass information, this is communicated to the controller that gets or
stores the information in the database. The controller module is responsible for
solving and controlling interdependencies between different modules. A uniform
data structure is used by all the modules.

The controller is responsible for calling the appropriate module. This can
occur packet-based or periodically. When a packet is received by the framework,
the controller intercepts it. The data part is removed and temporally stored in
the database. Based on the header information, the correct module is activated
by the scheduler. When the module has finished, it passes the control back to
the scheduler which activates the next module. The controller also holds several
timers. Upon expiration of a timer, the appropriate module is activated.

5.2 Required Modules

The required modules are essential to have a proper working WBAN. In the
following, an overview of the required modules is given:

– The Information Module stores all the information from the network and
the modules. It is the database of the controller. The controller module acts
as a gateway to the database and controls the access.

– The Transmission Module regulates the transmitting of data on the medium
and handles the channel access to the medium. The implementation in this
required module is very basic: a simple CSMA with collision avoidance.

– The Routing Module is responsible for setting up a path toward the per-
sonal device or other destinations. This can be done using a weight function,
number of hops, The routing module provides the next hop to the trans-
mission module via the controller module. It can use information about the
network, e.g. from the QoS module or from the information module. Different
implementations can be made for this module. If a new protocol is used, a
new routing module can be added easily. Even multiple routing modules can
exist in the same node. It is the responsibility of the controller to activate
the correct routing module.

– The Local Monitoring Module monitors the network parameters such as the
link quality, received signal strength, remaining battery power of the node,
the number of neighbors, . . . Stated otherwise, this module retrieves the infor-
mation of the physical layer and other layers that needs to be shared among
the other modules. The information is stored in the information module.

– The Self Organization Module is responsible for the automatic set up of the
network and for maintaining the network. It is activated by the controller
module when the node starts up and at certain periods of time.

618 B. Latré et al.

5.3 Optional Modules

The second type of modules are the optional ones. These modules are used to
enhance the functionality of the network. Some examples to illustrate the realm
of possibilities:

– The Advanced Transmission Module introduces a more sophisticated channel
access where slots are used.

– The ACK-Module is used for sending acknowledgments. It stores a copy of
the packet sent and a timer is started in the controller. If no ACK is received
when the timer expire, the transmission module is activated by the scheduler.
The module is also activated when a packet is received and it is required to
send an ACK.

– The Security and Privacy Module has as primary goal to authenticate de-
vices in order to protect the Body Area Network from intruders. The second
goal is to protect the privacy of sensitive information, i.e. medical data, by
encrypting the data and/or encrypting the links between the authenticated
devices. In order to obtain this, a private key can be exchanged.

– The Power Control Module acts on the transmission power of a node. This
can be useful for limiting the number of neighbors and thus influencing the
interference between nodes, or for lowering the power consumption and thus
lengthen the lifetime of the node. This module not only considers the power
control of each node individually, but can also look at the whole (or a large
area) of the network. The module needs to work closely with the routing
module. The routing module can ask to this module to alter the transmission
power (and doing so the network topology) if no appropriate route to the
destination can be found.

– The Reliability Module can be regarded as an extended version of the trans-
mission module. It adds error control, better retransmission, priority queu-
ing, . . . Stated otherwise, this module is responsible for providing QoS and
guaranteed delivery. If wanted, one can define multiple modules that each
take care of a QoS aspect.

– The Data Aggregation Module can be considered as an extension of the rout-
ing protocol. The data received by other nodes is aggregated prior to send
them further to the personal device. Doing so, fewer transmissions are needed
and the aggregated data can consist of fewer bits. Thus, the energy efficiency
is increased.

– The Local Data Processing module adds the possibility to perform local data
processing or in network processing.

6 Communication

When developing a framework, it is important to define how the communication
in the framework should take place. This communication can be either within or
between the framework and the application or physical layer or between nodes

MOFBAN: A Lightweight Modular Framework for Body Area Networks 619

themselves. In this section, we will briefly describe how the communication is
handled in MOFBAN.

The modules in the framework need to communicate with each other. This
communication mostly is nothing more than passing parameters to a module or
invoking another one. In the framework, this is handled by the controller. The
module sends the parameters to the controller which stores it in the information
module. By using the controller as gatekeeper to the database, data conflicts
between modules can be avoided.

The interaction between the framework and the application interface is pro-
vided via a sort of API, usable by the application designers. The API eases the
application development as the designers do not need to be aware of the under-
lying network characteristics. It allows the designers to adjust settings such as
the required level of security, the maximum desired delay, the bitrate needed by
the application,. . . The application interface also allows the application designer
to select the modules needed in order to meet the characteristics of the net-
work/application. The API informs the controller module which modules needs
to be included in the framework.

The properties of the physical layer largely depend on the design of the hard-
ware. In order to have a common interface usable by the framework, a mapping
between the proprietary characteristics of the hardware and the more generic
properties used by the framework is provided. Examples of such information
are bit error rate (BER), path loss, received signal strength, . . . Every time a
packet has been received, additional transmission information can be commu-
nicated to the framework through the interface. The controller module receives
this information and stores it in the information module.

A last type of communication can be found between similar modules located
at different nodes. For this purpose, the packet header is used. As the framework
is modular, i.e. modules can be added, removed or changed, the packet header
should be capable of handling the modularity. This can be done by using a
modular header structure. Each module can add an extension to the header.
When a packet is received by a node, the header is analyzed by the controller
module. The controller puts the data of the header in the database, determines
which modules need to be activated, starts the first one and passes the required
arguments to the module.

7 Future Work

The framework presented in this paper serves as a preliminary proposal for a
fully flexible modular architecture for WBANs. Various requirements considered
in section 3 are covered, such as coping with heterogeneity, flexibility, ease-of-use,
energy efficiency, . . . However, several improvements can still be made.

In a first step, we need to properly validate the framework and investigate
thoroughly the impact of the framework on the overall performance of the net-
work. The overhead introduced by MOFBAN should be examined. We believe
that this overhead will be minimal due to the avoidance of duplication and the

620 B. Latré et al.

use of the central database. Further we will use the framework to test existing
protocols for WBANS such as CICADA [13]. Based on the analysis, we will pro-
pose further improvements to have a more energy efficient solution. In a last
phase, we envision to put the framework to test in a real-life testbed.

In the communication part, we have introduced the concept of the modular
header structure. This structure is beneficial for reducing the overhead between
nodes as data can be shared better and no redundant or duplicate data is sent
over the network. Future research will specify the use of modular header structure
and analyze its performance.

8 Conclusion

In this paper we have proposed a framework that supports the communication
protocols in on-body networks. It is designed in such a way that it is more
transparent for the application designer. The functionality of the framework is
easily adaptable and expandable. This is made possible by the use of modules.
Other resulting advantages are:

– Duplication of functionality is avoided and a simple structure is used. The
framework can be regarded as being lightweight.

– Heterogeneity and QoS are well supported by using different implementa-
tions of the routing module or reliability module.

– Easy to add functionality by simply plugging in a new module in the frame-
work.

– Quickly reconfigurable through the application interface.

Further, we have discussed the communication in the framework. The interac-
tion between the modules is handled by the controller module and information is
stored in a common database. Conflicts in the database are avoided by using the
controller as gatekeeper. The controller module also takes care of the commu-
nication between modules, with the applications and physical layer en between
the nodes. It further is responsible for activating the appropriate module at the
correct time by using the scheduler. The controller module can be considered as
the key element of MOFBAN.

Finally, we are convinced that MOFBAN will proof to be a starting point for
the development of new protocols for communication in a WBAN. It will ease
the development of new applications and trigger the use of WBANs.

Acknowledgment

This research is partly funded by the Fund for Scientific Research - Flanders (F.W.O.-
V., Belgium) project G.0531.05, by The Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen) through the contract
No. 020152 and a PhD.grant for B. Latré and E. De Poorter and by the IBBT-IM3
project.

MOFBAN: A Lightweight Modular Framework for Body Area Networks 621

References

1. Cypher, D., Chevrollier, N., Montavont, N., Golmie, N.: Prevailing over wires in
healthcare environments: benefits and challenges. IEEE Communications Maga-
zine 44(4), 56–63 (2006)

2. Istepanian, R.S.H., Jovanov, E., Zhang, Y.T.: Guest editorial introduction to
the special section on m-health: Beyond seamless mobility and global wireless
health-care connectivity. Information Technology in Biomedicine, IEEE Transac-
tions on 8(4), 405–414 (2004)

3. Chlamtac, I., Conti, M., Liu, J.J.-N.: Mobile ad hoc networking: imperatives and
challenges. Ad Hoc Networks 1(1), 13–64 (2003)

4. Otto, C., Milenkovic, A., Sanders, C., Jovanov, E.: System architecture of a wireless
body area sensor network for ubiquitous health monitoring. Journal of Mobile
Multimedia 1(4), 307–326 (2006)

5. Park, S., Jayaraman, S.: Enhancing the quality of life through wearable technology.
IEEE Engineering in Medicine and Biology Magazine 22(3), 41–48 (2003)

6. Brebels, S., Sanders, S., Winters, C., Webers, T., Vaesen, K., Carchon, G., Gy-
selinckx, B., De Raedt, W.: 3d sop integration of a BAN sensor node. In: 2005.
Proceedings. 55th Electronic Components and Technology Conference, pp. 1602–
1606 (May/June 2005)

7. Jovanov, E., Milenkovic, A., Otto, C., de Groen, P.C.: A wireless body area network
of intelligent motion sensors for computer assisted physical rehabilitation. Journal
of NeuroEngineering and Rehabilitation 2(1), 16–23 (2005)

8. Ieee 802.15 wpan study group medical body area networks (sg mban)
9. Latré, B., Vermeeren, G., Moerman, I., Martens, L., Demeester, P.: Networking and

propagation issues in body area networks. In: 11th Symposium on Communications
and Vehicular Technology in the Benelux, SCVT 2004 (November 2004)

10. Braem, B., Latré, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Martens,
L., Demeester, P.: The need for cooperation and relaying in short-range high path
loss sensor networks. In: International Conference on Sensor Technologies and Ap-
plications (SENSORCOMM 2007) (accepted, 2007)

11. Reusens, E., Joseph, W., Vermeeren, G., Martens, L., Latré, B., Braem, B., Blon-
dia, C., Moerman, I.: Path-loss models for wireless communication channel along
arm and torso: Measurements and simulations. In: IEEE AP-S Internation Sym-
posium 2007 (June 2007)

12. Wegmueller, M.S., Kuhn, A., Froehlich, J., Oberle, M., Felber, N., Kuster, W.,
Fichtner, N.: An attempt to model the human body as a communication channel.
IEEE Transactions on Biomedical Engineering (accepted, 2007)

13. Latré, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., De-
meester, P.: A low-delay protocol for multihop wireless body area networks. In:
Mobile and Ubiquitous Systems: Networking & Services, 2007 4th Annual Interna-
tional Conference on, Philadelphia, PA, USA (August 2007)

14. Dokovski, N.T., van Halteren, A.T., Widya, I.A.: Banip: Enabling remote health-
care monitoring with body area networks. In: Guelfi, N., Astesiano, E., Reggio, G.
(eds.) FIDJI 2003. LNCS, vol. 2952, pp. 62–72. Springer, Heidelberg (2004)

15. Wac, K.E., Bults, R., van Halteren, A., Konstantas, D., Nicola, V.F.:
Measurements-based performance evaluation of 3g wireless networks supporting
m-health services. In: Chandra, S., Venkatasubramanian, N. (eds.) Multimedia
Computing and Networking 2005. Proceedings of the SPIE, vol. 5680, pp. 176–187
(December 2004)

622 B. Latré et al.

16. Milenkovic, A., Otto, C., Jovanov, E.: Wireless sensor networks for personal health
monitoring: Issues and an implementation. Computer Communications, Wireless
Sensor Networks and Wired/Wireless Internet Communications 29(13-14), 2521–
2533 (2006)

17. Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks.
Ad Hoc Networks 3(3), 325–349 (2005)

18. Ylisaukko-oja, A., Vildjiounaite, E., Mantyjarvi, J.: Five-point acceleration sensing
wireless body area network - design and practical experiences. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 184–185.
Springer, Heidelberg (2004)

19. Srivastava, V., Motani, M.: Cross-layer design: a survey and the road ahead. Com-
munications Magazine, IEEE 43(12), 112–119 (2005)

20. Melodia, T., Vuran, M., Pompil, D.: The state of the art in cross-layer design for
wireless sensor networks. In: Cesana, M., Fratta, L. (eds.) Wireless Systems and
Network Architectures in Next Generation Internet. LNCS, vol. 3883, pp. 78–92.
Springer, Heidelberg (2006)

21. De Poorter, E., Latré, B., Moerman, I., Demeester, P.: Universal modular frame-
work for sensor networks. In: International Workshop on Theoretical and Algorith-
mic Aspects of Sensor and Ad-hoc Networks (WTASA 2007), Miami, USA (June
2007)

22. Lymberopoulos, D., Priyantha, N.B., Zhao, F.: mplatform: a reconfigurable archi-
tecture and efficient data sharing mechanism for modular sensor nodes. In: IPSN
2007: Proceedings of the 6th international conference on Information processing in
sensor networks, pp. 128–137. ACM Press, New York (2007)

23. Penzel, T., Kemp, B., Klosch, G., Schlogl, A., Hasan, J., Varri, A., Korhonen, I.:
Acquisition of biomedical signals databases. IEEE Engineering in Medicine and
Biology Magazine 20(3), 25–32 (2001)

24. Arnon, S., Bhastekar, D., Kedar, D., Tauber, A.: A comparative study of wireless
communication network configurations for medical applications. IEEE [see also
IEEE Personal Communications] Wireless Communications 10(1), 56–61 (2003)

25. Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics.
IEEE Pervasive Computing 04(1), 18–27 (2005)

Performance Analysis for Distributed

Classification Fusion Using Soft-Decision
Decoding in Wireless Sensor Networks

Jing-Tian Sung1, Hung-Ta Pai2, and Bih-Hwang Lee3

1 Dept. of Electrical Engineering
National Taiwan University of Science and Technology

No. 43, Sec. 4, Keelung Rd., Taipei, 106 Taiwan
d9107305@mail.ntust.edu.tw

2 Graduate Institute of Communication Engineering
National Taipei University

No. 151, University Rd., Sanhsia, Taipei, 237 Taiwan
htpai@mail.ntpu.edu.tw

3 Dept. of Electrical Engineering
National Taiwan University of Science and Technology

No. 43, Sec. 4, Keelung Rd., Taipei, 106 Taiwan
lee@ccg.ee.ntust.edu.tw

Abstract. Distributed Classification Fusion using Error-Correcting
Codes (DCFECC) has recently been proposed for wireless sensor net-
works. It adopts the Minimum Hamming Distance (MHD) fusion rule and
performs much better than traditional classification approaches when the
network has faulty sensors. Different fusion rules were proposed later.
One of them is Distributed Classification fusion using Soft-decision De-
coding (DCSD). The DCSD fusion rule has a considerably lower mis-
classification probability than the MHD fusion rule. This work analyzes
the performance of the DCSD fusion rule. Asymptotic performance ap-
proximation of the DCSD fusion rule is derived based on the Central
Limit Theorem. Furthermore, an asymptotic upper bound on the mis-
classification probability is obtained. Finally, numerical simulations are
conducted to verify our analysis results.

Keywords: Wireless sensor networks, distributed detection, soft-
decision decoding, Central Limit Theorem.

1 Introduction

Wireless sensor networks (WSNs) comprise many tiny, low-cost, battery-powered
sensors in a small area. The sensors detect environmental variations and then
transmit the detection results to other sensors or a base station. The base sta-
tion or a sensor, serving as a fusion center, collects all detection results, and
determines what phenomenon has occurred [1,2]. The WSN sometimes must be
able to function under severe conditions, such as in a battlefield, fireplace or pol-
luted area. The transmission channel, as well as the environmental phenomenon

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 623–634, 2007.
c© IFIP International Federation for Information Processing 2007

624 J.-T. Sung, H.-T. Pai, and B.-H. Lee

observed by the sensor, is noisy. Furthermore, the observation signal to noise
ratio (OSNR) and the channel signal to noise ratio (CSNR) may change quickly
and be difficult to estimate accurately. Some sensors may even have unrecog-
nized faults in the harsh environment. Therefore, a fault-tolerant system must
be developed to make the received local decisions error-resistant [3, 4].

Wang et al. [5] proposed Distributed Classification Fusion using Error-
Correcting Codes (DCFECC) to solve this problem by combining the distributed
detection theory [6] with the concept of error-correcting codes in communication
systems [7]. DCFECC with the Minimum Hamming Distance (MHD) fusion rule
has a much lower probability of misclassification when some sensors are faulty
than the traditional distributed classification method. DCFECC outperforms the
method even when CSNR is not correctly estimated. Its performance analysis is
given in [8].

Three fusion rules were proposed and compared [9,10] later. One is the max-
imum a posteriori probability (MAP) fusion rule, one is the Minimum Euclean
Distance (MED) fusion rule, and the other is Distributed Classification fusion
using Soft-decision Decoding (DCSD) fusion rule. The MAP and DCSD fusion
rules have a considerably misclassification probability than the MED one. More-
over, the DCSD has a lower computational complexity than the MAP with little
performance loss when no faulty sensor appears. If some sensors are defective,
the DCSD outperforms the MAP when the misclassification probability is lower
than 0.2. Therefore, the DCSD fusion rule is a more practical choice than the
other ones. However, its performance analysis have not been provided.

In this work, we analyze the performance of the DCSD fusion rule without
assuming no errors in local decisions and wireless channels. Asymptotic perfor-
mance approximations are obtained by the Central Limit Theorem. Asymptotic
upper bounds on the misclassification probability are derived. These results can
be utilized for the optimal code matrix design in the future. Computer simula-
tions show the performance approximation is accurate and the upper bound is
tight when the misclassification probability is lower than 0.2.

The remainder of this work is organized as follows. Section 2 briefly addresses
the distributed detection problem in WSNs and the DCSD fusion rule. The
performance analysis of the DCSD fusion rule is derived in Section 3. Section 4
shows simulation results. Concluding remarks and suggestions for future works
are given in Section 5.

2 Fault-Tolerant Distributed Detection and DCSD Fusion
Rule

Figure 1 depicts a wireless sensor network for distributed detection with N
sensors deployed for collecting environment variation data and a fusion center
for making a final decision of detections. At the jth sensor, one observation yj is
undertaken for one of phenomena Hi, where i = 1, 2, . . . , M . The observation is
normally a real number represented by many bits. Transmitting the real number
to the fusion center would consume too much power, so a local decision, uj, is

Performance Analysis for Distributed Classification Fusion 625

Fig. 1. Structure of a wireless sensor network for distributed detection using N sensors

made instead. For a phenomenon, if only L bits are allowed to send the local
decision from the sensor to the fusion center, then the L bits are used to represent
the decision.

The DCFECC approach [5] sets L = 1, and designs an M × N code matrix
T not only to correct transmission errors, but also to resist faulty sensors. The
application of the code matrix is derived from error-correcting codes. Table 1 lists
an example of T, which is the optimal code matrix found through the criterion
in [11]. Row i of the matrix represents a codeword ci = (ci,1, ci,2, . . . , ci,N)
corresponding to hypothesis Hi, and ci,j denotes a 1-bit symbol corresponding
to the decision of sensor j. Notably, sensors 1 to 10 have the same decision
pattern and sensors 11 to 20 have the same decision pattern. As a result, there
are two decision patterns for the code matrix in Table 1.

Table 1. The 4 × 20 optimal code matrix

H1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

H2 1

H3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

H4 0

Let vj be the received local decision at the fusion center, where vj ∈ {0, 1}.
A cost function is then defined as

Cv,ci =

⎧
⎪⎨

⎪⎩

1 − 1
q , ci is one of q solutions of

arg min
ck

dH (v, ck) ;

1, else.

626 J.-T. Sung, H.-T. Pai, and B.-H. Lee

Notably, dH(v, ck) denotes the Hamming distance between a received vector,
v = (v1, v2, . . . , vN), and a codeword, ck. Hence, the Bayes risk function [6]
represents the probability of misclassification,

Pe =
∑

i,v

∫

y
p(v,y, Hi)Cv,cidy, (1)

where y = (y1, y2, ..., yN). Set u = (u1, u2, . . . , uN), and make the following
assumptions:
Assumption 1: Observations at all sensors are conditionally independent, i.e.,

p (y|Hi) = p (y1, y2, . . . , yN |Hi) =
N∏

j=1

p (yj|Hi) .

Assumption 2: The jth local decision, uj , only depends on the jth observation,
yj .
Assumption 3: The jth received local decision, vj , only depends on the jth
local decision, uj .
Equation (1) can then be recast as

Pe =
∑

i,u,v−vj

∫

y
P (Hi)[P (vj=1|u)p(u|y)p(y|Hi)Cvj=1,ci

+P (vj=0|u)p(u|y)p(y|Hi)Cvj=0,ci]dy,

where vj=bv = (v1, . . . , vj−1, bv, vj+1, . . . , vN), bv ∈ {0, 1}, and v − vj represents
the elements of v except vj .

The DCSD is applied as follows. Set u = (u1, u2, . . . , uN). The local decision
u is transmitted for the final decision to the fusion center. The received data at
the fusion center are ṽ = (ṽ1, ṽ2, . . . , ṽN), where

ṽj = (−1)uj

√
Es

L
+ nj . (2)

Notice that Es is the total transmission energy per sensor, and nj is the additive
white Gaussian noise (AWGN) with the two-sided power spectral density N0/2.
The received data are decoded as hypothesis i if

p (ṽ|ci) ≥ p (ṽ|ck) for all ck, where k = 1, . . . , M. (3)

For simplicity, let L = 1. Since ṽj does not depend on ci,j given uj , and according
to Assumptions 2 and 3, (3) can be rewritten as

N∏

j=1

1∑

bu=0

p (ṽj |uj = bu) p (uj = bu|ci,j) ≥
N∏

j=1

1∑

bu=0

p (ṽj |uj = bu) p (uj = bu|ck,j) ,

⇒
N∑

j=1

ln

1∑

bu=0
p (ṽj |uj = bu) p (uj = bu|ci,j)

1∑

bu=0
p (ṽj |uj = bu) p (uj = bu|ck,j)

≥ 0. (4)

Performance Analysis for Distributed Classification Fusion 627

Because ci,j and ck,j are binary, the bit logarithm-likelihood ratio of the received
data at the fusion center can be defined as

λj = ln

1∑

bu=0
p (ṽj |uj = bu) p (uj = bu|ci,j = 0)

1∑

bu=0
p (ṽj |uj = bu) p (uj = bu|ck,j = 1)

. (5)

(4) is then equivalent to

N∑

j=1

[λj − (−1)ci,j]2 ≤
N∑

j=1

[λj − (−1)ck,j]2 . (6)

3 Performance Analysis

Assume that the wireless channel between the fusion center and the sensor is
influenced by AWGN with zero mean and variance σ2

c . Namely,

p (ṽj |uj = bu) =
1

√
2πσ2

c

exp
{

− (ṽj − (−1)bu)2

2σ2
c

}

. (7)

For simplicity, let

Pj,0|0 = p (uj = 0|ck,j = 0)
Pj,1|1 = p (uj = 1|ck,j = 1) . (8)

Substituting (7) and (8) into (5), we can rewritte logarithm-likelihood ratio as

λj = ln
exp
{

ṽj

σ2
c

}

Pj,0|0 + exp
{

− ṽj

σ2
c

}

(1 − Pj,0|0)

exp
{

ṽj

σ2
c

}

(1 − Pj,1|1) + exp
{

− ṽj

σ2
c

}

Pj,1|1

= ln
exp
{

2ṽj

σ2
c

}

Pj,0|0 +
(
1 − Pj,0|0

)

exp
{

2ṽj

σ2
c

}
(
1 − Pj,1|1

)
+ Pj,1|1

. (9)

Thus, the Cumulative Density Function (CDF) of λj can be expressed as

Pr(λj < x|ci,j) = Pr

⎧
⎪⎪⎨

⎪⎪⎩
ln

exp
{

2ṽj

σ2
c

}

Pj,0|0 +
(
1 − Pj,0|0

)

exp
{

2ṽj

σ2
c

}
(
1 − Pj,1|1

)
+ Pj,1|1

< x

∣
∣
∣
∣
∣
ci,j

⎫
⎪⎪⎬

⎪⎪⎭

= Pr

{

ṽj <
σ2

c

2
ln

exPj,1|1 + Pj,0|0 − 1
Pj,0|0 + ex(Pj,1|1 − 1)

∣
∣
∣
∣
∣
ci,j

}

. (10)

628 J.-T. Sung, H.-T. Pai, and B.-H. Lee

We denote

ζj(x) =
σ2

c

2
ln
(

exPj,1|1 + Pj,0|0 − 1
Pj,0|0 + ex(Pj,1|1 − 1)

)

. (11)

Because the Probability Density Function (PDF) of ṽj can be represented by

fṽj (x|ci,j) =
Pj,ci,j |ci,j√

2πσ2
c

exp
{

−x − (−1)ci,j

2σ2
c

}

+
(1 − Pj,ci,j |ci,j

)
√

2πσ2
c

exp
{

−x − (−1)(1−ci,j)

2σ2
c

}

, (12)

where Pj,ci,j |ci,j
represents the probability of correct local decision for the sensor

j, (10) can be rewritten as

Pr(ṽj < ζj(x)|ci,j)

=
∫ ζj(x)

−∞
fṽj (x|ci,j)dx

= Pj,ci,j |ci,j
× Φ

(
ζj(x) − (−1)ci,j

σc

)

+(1 − Pj,ci,j |ci,j
) × Φ

(
ζj(x) − (−1)ci,j

σc

)

,

(13)

where Φ(·) is the CDF of a random variable with normal distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞
exp
{

−x2

2

}

dx.

Therefore, the PDF of λj can be given by

fλj (x|ci,j) =
d

dx

∫ ζj(x)

−∞
fṽj (t|ci,j)dt

=
1
2

[
Pj,ci,j |ci,j√

2πσ2
c

exp
{

−ζ(x) − (−1)ci,j

2σ2
c

}

+
(1 − Pj,ci,j |ci,j

)
√

2πσ2
c

exp
{

−ζ(x) − (−1)(1−ci,j)

2σ2
c

}]

×
σ2

cex(Pj,1|1 + Pj,0|0)
(exPj,1|1 + Pj,0|0 − 1)(exPj,1|1 + Pj0|0 − ex)

. (14)

The mean and the variance of λj can be found as

μλj =
∫ ∞

−∞
xfλj (x|ci,j)dx, (15)

Performance Analysis for Distributed Classification Fusion 629

σ2
λj

=
∫ ∞

−∞
(x − μλj)

2fλj (x|ci,j)dx, (16)

respectively.
The misclassification probability at the fusion center can be expressed by

Pe =
M∑

i=1

Pr(Hi) Pr

⎛

⎝
M⋃

k=1,k �=i

H̃k

∣
∣
∣Hi

⎞

⎠ . (17)

When the DCSD fusion rule is employed, the misclassification probability given
that Hi occurs can be derived as follows.

Pr(H̃k|Hi) = Pr

⎛

⎝
N∑

j=1

[λj − (−1)ci,j]2 ≥
N∑

j=1

[λj − (−1)ck,j]2
∣
∣
∣Hi

⎞

⎠

= Pr

⎛

⎝
N∑

j=1

λj (ck,j − ci,j) ≤ 0
∣
∣
∣Hi

⎞

⎠ , (18)

where k �= i. Let S be the number of the decision patterns for a code matrix
and Ω(�), � = 1, 2, ..., S, be the set of sensors with the same decision pattern �.
For example, Ω(1) = {1, 2, ..10} and Ω(2) = {11, 12, ..20} for the code matrix
in Table 1. Since the sensors with the same decision pattern operate identically,
the means and the variances of λj , where j ∈ Ω(�), have no difference and can
be denoted as μ� and σ2

� , respectively. Moreover, define d
(�)
H (ck, ci) as the partial

Hamming distance between ck and ci at the set �. For example, d
(1)
H (c1, c2) = 0

and d
(2)
H (c1, c3) = 10 for the code matrix in Table 1. The sensor sets Ω(�)

satisfying d
(�)
H (ci, ck) �= 0 are employed to differentiate Hk from Hi at the fusion

center. When the information from two or more sensor sets are utilized for the
final decision, the Hamming distance between ci and ck is large. Because of the
large Hamming distance, the probability of misclassification is small. Therefore,
when ‖{� : d

(�)
H (ci, ck) �= 0}‖ ≥ 2, (18) can be rewritten and approximated as

Pr(H̃k|Hi) = Pr

⎛

⎜
⎝

∑

{�:d(�)
H (ci,ck) �=0}

∑

j∈Ω(�)

λj (ck,j − ci,j) ≤ 0
∣
∣
∣Hi

⎞

⎟
⎠

≈
∏

{�:d(�)
H (ci,ck) �=0}

Pr

⎛

⎝
∑

j∈Ω(�)

λj (ck,j − ci,j) ≤ 0
∣
∣
∣Hi

⎞

⎠ . (19)

The following corollary can be obtained based on the Central Limit Theorem.

630 J.-T. Sung, H.-T. Pai, and B.-H. Lee

Corollary 1. If d
(�)
H (ck, ci) is sufficiently large, the misclassification probability

can be approximated as

Pr(H̃k|Hi) ≈
∏

{�:d(�)
H (ci,ck) �=0}

Φ

⎛

⎝−

√

d
(�)
H (ck, ci) × (ck,j − ci,j)μ�

σ�

⎞

⎠ . (20)

If the size of the code matrix is large, it is difficult to calculate the approximation
according to (20). Since the probability of the union in (17) can be approximated
as

M∑

k=1,k �=i

Pr
(
H̃k|Hi

)
, (21)

we can obtain the following approximation.

Corollary 2. If d
(�)
H (ck, ci) is sufficiently large, the misclassification probability

can be approximated as

Pe ≈
M∑

i=1

M∑

k=1,k �=i

Pr(Hj) ×

∏

{�:d(�)
H (ci,ck) �=0}

Φ

⎛

⎝−

√

d
(�)
H (ck, ci) × (ck,j − ci,j)μ�

σ�

⎞

⎠ .

Define

P ∗
e =

M∑

i=1

M∑

k=1,k �=i

Pr(Hj) ×

∏

{�:d(�)
H (ci,ck) �=0}

Φ

⎛

⎝−

√

d
(�)
H (ck, ci) × (ck,j − ci,j)μ�

σ�

⎞

⎠ .

Next, we propose a corollary to derive the upper bound of the approximation.

Corollary 3. For all � and all pair {i, k}, if

Φ

⎛

⎝−

√

d
(�)
H (ck, ci) × (ck,j − ci,j)μ�

σ�

⎞

⎠ ≤ Pr

⎛

⎝
∑

j∈Ω(�)

(ck,j − ci,j) ṽj ≤ 0

⎞

⎠ , (22)

then

P ∗
e ≤

M∑

i=1

M∑

k=1,k �=i

Pr(Hi) ×
∏

{�:d(�)
H (ci,ck) �=0}

Pr

⎛

⎝
∑

j∈Ω(�)

(ck,j − ci,j) ṽj ≤ 0

⎞

⎠ . (23)

Performance Analysis for Distributed Classification Fusion 631

From (12), the characteristic function of ṽj is

ϕ(z) = Pj,ci,j |ci,j
exp
{

j (ck,j − ci,j) z − σ2
cz2

2

}

+(1 − Pj,ci,j |ci,j
) exp

{

−j (ck,j − ci,j) z − σ2
cz2

2

}

(24)

and the characteristic function of a random variable which is the summation of
ṽj , j = 1, 2, ..., n, is

ϕn(z) =
n∑

t=0

(
n

t

)

(Pj,ci,j |ci,j
)t(1 − Pj,ci,j |ci,j

)(n−t)

× exp
{

j(2t − n) (ck,j − ci,j) − z2

2
(nσ2

c)
}

, (25)

where j =
√

−1. Then, the PDF of a random variable which is the summation
of ṽj , j = 1, 2, ..., n, is

f∑ ṽj
(x) =

1
√

2πnσ2
c

n∑

t=0

(
n

t

)

(Pj,ci,j |ci,j
)t(1 − Pj,ci,j |ci,j

)(n−t)

× exp
{

− (x − (2t − n) (ck,j − ci,j))2

2nσ2
c

}

. (26)

Let w� = d
(�)
H (ck, ci). According to Corollary 3, when (22) holds, the upper

bound can be expressed as

P ∗
e ≤

M∑

i=1

M∑

k=1,k �=i

Pr(Hi)
∏

{�:w� �=0}

w�∑

t=0

(
w�

t

)

(Pj,ci,j |ci,j
)t

×(1 − Pj,ci,j |ci,j
)w�−tΦ

(

− (2t − w�) (ck,j − ci,j)√
w�σc

)

.

(27)

4 Numerical and Simulation Results

The proposed approximations and the upper bound are verified by simulations
with 106 Monte Carlo tests. A fusion center and N = 20 sensors are deployed to
detect and classify four hypotheses H1, H2, H3 and H4. We also assume that the
local observations are interfered by the Gaussian noise with the same standard
deviation σo and mean 0, 1, 2, and 3, respectively. In addition, wireless channels
are interfered by AWGN and CSNR is 10 × log10(Es/N0). The code matrix in
Table 1 was utilized.

The first and second approximations are stated in Corollary 1 and Corollary 2,
respectively. The first set of figures shows the approximations and the simulation

632 J.-T. Sung, H.-T. Pai, and B.-H. Lee

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

CSNR = 0 dB

OSNR (dB)

M
is

cl
as

si
fic

at
io

n
P

ro
ba

bi
lit

y,
 P

e

Simulation
Approximation 1
Approximation 2

Fig. 2. Proposed approximations and simulation results when CSNR = 0 dB

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

CSNR = 10 dB

OSNR (dB)

M
is

cl
as

si
fic

at
io

n
P

ro
ba

bi
lit

y,
 P

e

Simulation
Approximation 1
Approximation 2

Fig. 3. Proposed approximations and simulation results when CSNR = 10 dB

result when CSNR is set to be 0 and 10, respectively. In this case, M is small
and the probability of the union in (17) is obtainable. As shown in Fig. 2 and 3,
both approximations are accurate when the misclassification probability is lower
than 0.2. The first approximation is better than the second one. However, the
computational complexity of the first approximation is higher than the second
one, as we pointed in the previous section. When OSNR is low, the probability of

Performance Analysis for Distributed Classification Fusion 633

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

CSNR = 0 dB

OSNR (dB)

M
is

cl
as

si
fic

at
io

n
P

ro
ba

bi
lit

y,
 P

e

Simulation
Upper bound

Fig. 4. Proposed upper bounds and simulation results when CSNR = 0 dB

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6
CSNR = 10 dB

OSNR (dB)

M
is

cl
as

si
fic

at
io

n
P

ro
ba

bi
lit

y,
 P

e

Simulation
Upper bound

Fig. 5. Proposed upper bounds and simulation results when CSNR = 10 dB

the union in (17) cannot be approximated by (21). Thus, the difference between
the approximation and the simulation result is large at −3 dB. Figures 4 and 5
show that the upper bound in (27) is very close to the simulation result when
the misclassification probability is lower than 0.2.

634 J.-T. Sung, H.-T. Pai, and B.-H. Lee

5 Conclusions and Future Works

This work analyzes the performance of the distributed detection using the DCSD
fusion rule. Two approximations and an upper bound of the misclassification
probability are presented. The analysis is based on the Central Limit Theorem.
The simulation results showed that the approximation and the upper bound are
accurate for the network with only twenty sensors. In the future, we will employ
the analysis result to design the optimal code matrix for the DCSD fusion rule.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. IEEE Commun. Mag. 38, 102–114 (2002)

2. Aldosari, S.A., Moura, J.M.F.: Detection in decentralized sensor networks. In: Proc.
ICASSP 2004, Montreal, Canada (2004)

3. Meyer, G.G.L., Weinert, H.L.: On the design of fault-tolerant signal detectors.
IEEE Trans. Acoust. Speech, Signal Processing 34(4), 973–978 (1986)

4. Reibman, A.R., Nolte, L.W.: Optimal fault-tolerant signal detection. IEEE Trans.
Acoust. Speech, Signal Processing 38(1), 179–180 (1990)

5. Wang, T.Y., Han, Y.S., Varshney, P.K., Chen, P.N.: Distributed fault-tolerant
classification in wireless sensor networks. IEEE J. Select. Areas Commun. 23(4),
724–734 (2005)

6. Varshney, P.K.: Distributed Detection and Data Fusion. Springer, New York (1997)
7. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Else-

vier, New York (1977)
8. Yao, C., Chen, P.N., Wang, T.Y., Han, Y.S., Varshney, P.K.: Performance analysis

and code design for minimum hamming distance fusion in wireless sensor networks.
IEEE Trans. Inform. Theory 53(5), 1716–1734 (2007)

9. Chen, P.N., Wang, T.Y., Han, Y.S., Wang, Y.T.: On the design of soft-decision
fusion rule for coding approach in wireless sensor networks. In: Int. Conf. on Algo-
rithms, Systems, and Applications, Xian, P. R. China, pp. 140–150 (2006)

10. Wang, T.Y., Han, Y.S., Chen, B., Varshney, P.K.: A combined decision fusion and
channel coding scheme for distributed fault-tolerant classification in wireless sensor
networks. IEEE Trans. Wireless Commun. 5(7), 1695–1705 (2006)

11. Pai, H.T., Han, Y.S., Sung, J.T.: Two-dimensional coded classification schemes in
wireless sensor networks. IEEE Trans. Wireless Commun. (submitted)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 635–649, 2007.
© IFIP International Federation for Information Processing 2007

Hard Constrained Vertex-Cover Communication
Algorithm for WSN

Maytham Safar and Sami Habib

Kuwait University
Computer Engineering Department
P. O. Box 5969 Safat 13060 Kuwait

{maytham,shabib}@eng.kuniv.edu.kw

Abstract. The communication problem is to select a minimal set of placed
sensor devices in a service area so that the entire service area is accessible by
the minimal set of sensors. Finding the minimal set of sensors is modeled as a
vertex-cover problem, where the vertex-cover set facilitates the
communications between the sensors in a multi-hop fashion keeping in mind
the limited communication range and battery lifespan of all sensors. The vertex-
cover is a subset of the coverage set of sensors; therefore, we transform the
search space from a continuous domain into a discrete domain. We encoded the
vertex-cover problem into the evolutionary domain, where the objective
function is to select a minimal set of sensors out of the coverage sensors to act
as the vertex-cover set so that its communication range covers all the coverage
sensors. The experimental results demonstrate the feasibility of our
evolutionary approach in finding minimal vertex cover set, which is less than
37% of total sensors used as communication sensors, in under 14 seconds with
100% coverage of the sensor nodes in wireless sensor network.

Keywords: Wireless sensor network, communication, vertex cover, discrete
space, optimization, evolutionary approach.

1 Introduction

The wireless sensor network (WSN) has emerged as a promising platform to monitor an
area with minimal human interventions. Advancements in low-power micro-electronic
circuits, wireless communications, and operating systems have made WSN into feasible
platforms that are used in many applications. Initially, the WSN applications were
dominated and funded by the military applications, such as monitoring the activity in a
battle field. Now, many civilian applications, such as environmental and habitat
monitoring have emerged to benefit from the usage of WSN.

There are two core problems that should be considered by deployment of any
wireless sensor networks. These problems are the coverage and communication
problems. The coverage problem is to place sensor devices in a service area so that
the entire service area is covered. In a previous work [17], we proposed a heuristic
model that maps the coverage problem into two sub-problems: floorplan and
placement, which are mimicking the placement and integration modules of integrated

636 M. Safar and S. Habib

circuit (IC) into a circuit board. The floorplan problem is to divide the circuit board
into well-defined geometric cells, and then the placement problem determines the best
cells to place the IC modules into them with minimal total wire connections. A
combined optimization of floorplan and placement was coded in an evolutionary
approach and found good coverage solutions as defined by the measure of quality of
coverage [18].

In this work we focus on the communication problem, which will assume that
sensor networks consist of two types of sensor devices. The first type of sensors
(coverage sensors) is responsible for sensing/monitoring the surrounding
environment, and generates data packets periodically. Those are the sensor devices
that we got as a result of applying our evolutionary coverage algorithm. They are also
responsible for forwarding the data they receive from other sensors towards a second
type of sensors (named communication sensors). Communication sensors are respon-
sible for collecting all the data generated by the coverage sensors. Communication
sensors have sufficient processing capability and more power supply that make their
communication ranges cover the whole service area. One of the challenges imposed
by such sensor networks, is the communication sensor placement problem. We define
the communication sensor placement problem as how to select the minimal number of
communication sensors out of the set of the coverage sensors while maximizing the
communication range of the communication sensors in the service area taking into
consideration the traffic intensity distribution in the area. Communication sensors
have significant impact on sensor network performance. Despite its significance,
results on this problem remain limited, particularly theoretical results that can provide
performance guarantee.

In this work, we develop a heuristic algorithm that is based on the vertex cover
approach. The vertex cover problem is the optimization problem of finding a vertex
cover of minimum size in a graph, where we assume that each vertex cover represents
a communication sensor and the covered nodes are the rest of the coverage sensors.
Finding the minimum vertex cover is an NP-complete problem. However, by using
some heuristics we can obtain a vertex cover set, which is in the worst case at most
twice that of the optimal. Our algorithm provides solutions specifying coverage
sensors that can be used as communication sensors and minimizes the number of the
communication sensors, while providing a satisfactory quality of service to the users.
This is accomplished by trying to cover the largest set of the coverage sensors, and
hence covering a maximum possible part of the service area. The goodness of a
solution depends on how it minimizes the number of the communication sensors
while maximizing the communication coverage of the sensors in the service area. In
the rest of the paper, we will use the terms base stations and communication sensors
interchangeably.

The rest of the paper is organized into five sections. Section 2 describes the related
work with respect to the coverage problem and communication problem in wireless
sensor networks. Section 3 contains the mathematical formulation of the
communication problem. Section 4 describes our evolutionary approach in solving the
communication problem. Section 5 illustrates our experimental results generated by
the proposed evolutionary methodology. Section 6 contains the conclusion and future
directions.

 Hard Constrained Vertex-Cover Communication Algorithm for WSN 637

2 Related Work

Recently, many researchers have been investigating and developing deployment
strategies that give the optimal base stations placement for guaranteed coverage,
connectivity, bandwidth and robustness, taking into consideration numerous factors
such as traffic density, channel condition, interference scenario, the number of base
stations, …etc. The objectives are either minimizing the number of base stations
deployed, minimizing the total cost, minimizing the energy consumption, or
maximizing the number of served sensors by a base station, maximizing network
lifetime, and maximizing the network utilization.

Therefore, many researchers have focused their efforts on reducing network traffic
of these sensor networks [2, 5, 7, 11, 12, 15]. Many other researchers have focused on
minimizing the number of base stations [2, 5, 8, 13, 16], where others used a
predefined fixed number of base stations [1, 9, 11, 12, 14]. Also, some researchers
have focused on maximizing the number of sensors served by a base station [3].
However, most of the above researches have assumed that the number of sensors
served by any base station is fixed [1, 2, 5, 9, 12].

The base stations in these applications may be arranged in wired networks, and
may in general pose considerable technical problems in data processing,
communication, and management. The base stations can also be arranged into
wireless networks. This even pose more technical challenges because of their
dynamic structures and more constrained energy and bandwidth capabilities. Thus,
the base stations placement has been formulated in various ways.

The strategy reported in [1] aimed to find a base station configuration that ensures
each user to communicate with a satisfactory signal to-interference ratio (SIR) in a
wireless CDMA system. The solution is guaranteed to be optimal and considered
coverage, capacity and cost but not interference. The work in [2] is an adaptation to
the recent bio-inspired optimization approach, Particle Swarm Optimization (PSO), to
form a suitable algorithm that converges with a faster rate than genetic algorithms.
Two important factors are considered simultaneously, coverage and economic.
Another work in [3] describes an application of combinatorial optimization to the
problem of designing cellular mobile telephone wireless networks. The goal of the
network design problem is to cover the maximum number of subscribers in an
effective and efficient manner. Work [6] focuses on the problem of where to place
base stations to yield high capacity and efficiency in term of channel quality and
spectral. One of the key objectives is to allow many users to co-exist in a relatively
small area while maintaining spectral efficiency, system capacity and channel quality.
New dynamic base station selection technique for overlapping cell placement based
on robust traffic performance for personal communication systems in fluctuating and
heavily tapered traffic is suggested in [7]. The proposed technique improves the
blocking probability and carried traffic performance. It enhances the robustness of a
system for congested traffic due to moving of the subscribers even if the base station
has few channels. The authors in [8] addressed the problem of placing the sensor
nodes, relay nodes and base stations in the sensor field such that each point of interest
in the sensor field is covered by a subset of sensors of desired cardinality. Several
deployment strategies to determine optimal placement of the nodes for guaranteed
coverage, connectivity, bandwidth and robustness are considered in this paper.

638 M. Safar and S. Habib

The authors of paper [9] have studied two phases of installation process, the
placement of the base stations and assignment of frequency channels in WLAN
networks. They aimed to reduce installation costs, minimize interferences of signals
between channels and improve the network throughput. The processes that have been
taken to choose the best placement of base stations are to map the demand area by
dividing it into small quadrangular pieces of demand points. Next, choose candidate
locations that offer low cost of installation and good attendance area. Then signal
measurement for the signal level received by each candidate base station on each
demand point. Finally, they defined the computational model which is developed
using integer linear programming computational model. Limited number of base
stations and candidate locations are used. The strategy represented in [10] aimed to
find optimization methods for base station placement in wireless applications. The
authors suggest that Nelder-Mead method or some other direct search method will be
highly effective for many formulations, particularly as reliable problem-specific
initialization heuristics are developed. A set of non linear programming models are
developed based on the Hooke and Jeeves method, quasi Newton, and conjugate
gradient search algorithms to search the optimal location of transmitters to serve
specified distributions of receivers. In [12] the authors considered an alternate
objective, that is, to determine the base station positions and transmission power
levels so as to maximize the minimum throughput among the mobiles, according to
their study both of them determine the coverage area and the signal to interference
ratio, and hence influence the system capacity. In [13] an approach for automatic base
station placement is presented. An optimization strategy forms the core of the
automatic process which not only determines the number of base stations and their
locations but also base station configurations. It aims at designing a high-quality
network that guarantees the system performance; i.e. meets the requirement of the
coverage capacity, and interference level, while trying to minimize the required
bandwidth and the cost involved in building such a network. The number of base
stations and their locations and the transmissions power are defined. In [15] the
authors analyzed the problem of automatic base station placement and used a
hierarchical approach to solve the problem. A fuzzy expert system was developed to
determine the optimal base station parameters. A numerical experiment was made for
adjusting the transmitted power to reduce the interference and to distribute traffic
equally to the cells so that the frequency cost is minimized. The objective function
was based on several weighted factors, such as covered area, interference area, and
mean signal path loss. The authors in paper [16] have developed a computer aided
planning tool known as POPULAR, which stands for a planning of Pico cellular
radio. Planning must take into account the specifics of radio wave propagation at the
installation site. POPULAR computes the minimal number of base stations and their
locations given a blueprint of the installation site and information about the wall and
ceiling materials. The internal technique within POPULAR, depends on the number
of assigned test points inside the building to be covered.

In this work, we consider similar formulation of the coverage problem as discussed
in [17, 19, 20]. However, we have assumed that the cell size is not fixed, and the
service area can be floorplanned in arbitrary ways. Also, we used object-oriented
classes to represent chromosomes and their genes. Our evolutionary methodology is
attached with a sensor device library with heterogeneous features, such as the radius
of coverage (ranging from 1 meter to 50 meters) and cost (ranging from $50 to
$1000).

 Hard Constrained Vertex-Cover Communication Algorithm for WSN 639

3 Communication Problem Formulation

We are given a two-dimensional service area (A) with width (W) and height (H) as
shown in Figure 1. The service area is an obstacle-free. Also, the service area A is
already divided into M x N cells, where each cell can possibly contain a sensor device
at its center of mass. All the centers of mass represent demand points, which were
considered as the candidate locations for the sensor devices for the coverage problem.
Thus, a set of placed sensors for the coverage problem, B, is given as an input to the
communication problem. Each element in the set B is a tuple, bi, consisting of six
ordered parameters, bi = <Sj, CMxN, RC, SC, CR, BL>. The parameter Sj refers to the
sensor identification, which was allocated from the sensor device library S. The
parameter CMxN represents the physical cell location of the placed sensor within the
service area. The indices M and N refer the column and row numbers respectively of
the floorplan of the service area, as shown in Figure 1. The parameter RC indicates
the radius of coverage in meters of the placed sensor Sj. The parameter SC refers to
the initial installation and deployment cost in Dollars ($) of the placed sensor Sj. The
parameter CR refers to the communication radius that the radio signal within the
placed sensor (Sj) can reach in meters. The range of CR varies with the consumption
of power. The last parameter BL indicates the current battery level of the placed
sensor Sj.

W

H

Cell

Demand points

1 2 3 … M

1

2

3

N

Fig. 1. A service area to be monitored by WSN

Also, the total coverage (TC), which represents the ratio of the total non-
overlapping of all placed sensors’ radius of coverage over the total area of service
area (WxH), is given as an input to the communication problem. The communication
problem is to determine a minimal subset C of B (C ⊆ B) such that the
communication radiuses (CRs) of all selected sensors (vertex covers) within B can
reach all other sensors in Ĉ = B – C; moreover, the sensors in Ĉ should be as far as
possible away from the radius of coverage of all selected vertex covers in C, as

640 M. Safar and S. Habib

Si

RC

CR

S1

S4

S10

S20

S5

S8

Fig. 2. The relationship between the communication and coverage ranges of s vertex-cover

illustrated in Figure 2. There are three possible relations between the communication
radius (CR) and the radius of coverage (RC) of a sensor:

1. CR = RC,
2. CR < RC, and
3. CR > RC.

The first two relations, where the communication radius is equal or less than the
radius of coverage respectively, are not considered in this paper. According to the
leading company in the development of WSN [21], the relations 1-2 are not
considered due to their impractical usage in the field. In this paper, we considered
the third relation (CR > RC), where the communication radius is greater than the
radius of coverage (sensing range). If a sensor is selected as a vertex cover, then
there should be a minimal number of sensors in its sensing range (within the

white-circle 2RC×π) as illustrated in Figure 2. Also, all the sensors within the

shaded circle ((π × CR2) − (π × RC2)) can be bound to the vertex cover Si. Our
objective function is to achieve a minimal vertex cover set as stated in Equation (1).

kδ represents an allocation variable of a vertex cover; kδ = 1 indicates that a sensor

device k has been allocated to be used as a vertex cover. This objective function is
subject to a set of constrains (2), (3), (4), (5), (6), (7) and (8).

∑
∈Bk

kδmin (1)

z

B
C ≤≤1 (2)

Cj C
Ck

jk
ˆsensor given for ,1 , ∈≤∑≤

∈
ω (3)

 Hard Constrained Vertex-Cover Communication Algorithm for WSN 641

Ck UL
Cj

jk ∈≤∑≤
∈

cover ex given vertfor ,
ˆ

,ω
(4)

() ()() CjC, kRCC kkhwjk
ˆfor ,2

,, ∈∀∈∀××∉× πδω (5)

() ()() CjC, kRCCRC kkkhwjk
ˆfor ,22

,, ∈∀∈∀×−××∈× ππδω (6)

()() ()() Ci, j jiRCRC jjii ∈≠≅××∩×× and where,22 φπδπδ (7)

{ }1,0, ∈ωδ (8)

Constraint (2) ensures that the cardinality of the vertex cover set C is bound
between one and the cardinality of the entire sensors set B divided by some given
value (z). Constraint (3) ensures that each sensor, which is not selected as a vertex
cover, must be bound to at least one vertex cover. jk ,ω is a binding variable; jk ,ω =

1 indicates that a sensor j is bound to a vertex cover k. Otherwise, the sensor j is
bound to different vertex cover. Constraint (4) ensures that the bound sensors to an
allocated vertex cover are restricted between a lower (L) and upper (U) values. The
values of L and U are determined by the designers, and also they are used to create a
load-balance workload for each vertex cover. Constraint (5) ensures that the number
of sensors located within the sensing range of a vertex cover is minimized and cannot
be more than the total number of vertex cover sensors. Moreover, Constraint (6)
ensures that a sensor is located within the communication range of its vertex cover
excluding its sensing range. Constraint (7) ensures that the coverage ranges of two
vertex cover sensors are not overlapping, hence, ensures that no vertex cover sensor is
located within the sensing range of another vertex cover sensor. Finally, Constraint
(8) defines the allocation (δ) and binding (ω) variables as a Boolean.

4 Evolutionary Approach for Solving the Communication
Problem

The selection problem of communication sensors requires an enormous computational
effort to achieve optimal solutions. Therefore, we have selected the Genetic
Algorithm (GA) to search the discrete design space for good solutions. GA uses a
population of chromosomes, which represent the candidate solutions, to evolve
toward better solutions. Through some genetic operators such as a mutation and
crossover, these chromosomes would reach the optimum or near-optimum solutions.
The evolution process starts from a population of chromosomes generated by
applying the coverage algorithm, and occurs over a number of generations. In each
generation, multiple chromosomes are stochastically selected from the current
population, modified using different operators to form a new offspring, which
becomes the new chromosomes in the next iteration of the algorithm. The basic

642 M. Safar and S. Habib

structure of GA, as shown in Figure 3, is a powerful search technique that is used to
solve many combinatorial problems.

The genetic algorithm starts with an initial population P (t=0) of solutions encoded
as chromosomes. Each chromosome is made of a sequence of genes and every gene
controls the inheritance of specific attributes of the solution's characteristics. A fitness
function measures the quality of the chromosome (number of communication sensors,
and number of sensors covered by their sensing and communication ranges). A fit
chromosome suggests a better solution. In the evolution process relatively fit
chromosomes reproduce new chromosomes and inferior chromosomes die. This
process continues until a chromosome with desirable fitness is found. These selected
chromosomes, known as parents, are used to reproduce the next generation of
chromosomes, known as offspring.

Genetic Algorithm:
1 begin
2 t = 0;
3 initialize chromosomes P(t);
4 evaluate chromosomes P(t);
5 while (termination conditions are unsatisfied)
6 begin
7 t = t + 1;
8 select P(t) from P(t-1);
9 mutate some of P(t);
10 crossover some of P(t);
11 evaluate chromosomes P(t);
12 end
13 end

Fig. 3. The basic structure of Genetic Algorithm

The evolution process involves two genetic operations namely, mutation and
crossover. A mutation operator arbitrarily alters one or more genes of a randomly
selected chromosome. The intuition behind the mutation operator is to introduce a
missing feature in the population. Our mutation replaces an existed communication
sensor device with a new one from the list of coverage sensors.

A crossover operator combines features of two selected chromosomes (parents) to
form two similar chromosomes (offspring) by swapping genes of the parent
chromosomes. The intuition behind the crossover operator is to exchange information
between different potential solutions.

4.1 Chromosome Representation

We represent a solution of communication sensors selection problem as three object-
oriented link lists, as shown in Figure 4. The first link-list represents the population,
which contains all chromosomes. The second link-list, which is attached with every
chromosome class, represents how many sensor devices have been allocated and
bound to a chromosome. The third link-list, which is attached with every chromosome
class, represents the vertex cover nodes.

 Hard Constrained Vertex-Cover Communication Algorithm for WSN 643

We combined all chromosomes in the population of size P into one data structure,
which comprises of one link list representing all chromosomes and each chromosome
has one link list representing all its genes, where each gene symbolizes a sensor
device that is allocated as a base station. Two types of nodes are declared as two
different classes, where first class represents a chromosome’s attributes and the
second class represents a gene’s features. Also, we maintain a dynamic matrix to
illustrate all cells and demand points.

Fig. 4. A population of Chromosomes

5 Experimental Results

To test our evolutionary methodology for the communication problem in wireless
sensor networks, we first ran our previously developed code for the coverage problem
to find a good solution to the coverage problem of a sensor wireless network. We
have coded the coverage within WSN using the evolutionary methodology, which
searches for good solutions using JAVA as a programming language. For this
experiment, we assigned the population size, the number of generations, the crossover
rate and mutation rate to be 100, 1000, 0.45, and 0.25 respectively. The budget
threshold C is set to $150,000, and we have used a cell size of 30 meters by 30
meters; moreover, we maintained 10 cells by 10 cells as a service area. We choose
the solution that consisted of 45 sensors with an average cost of $25,334, and an
average coverage ratio of 86.71% of the service area. The coverage ratio represents
the total amount of service area that is covered by the sensing range of the sensor
devices. Next, we ran our developed methodology for the communication problem on
the previous network setup to pick up the least number of the coverage sensors as
vertex cover (communication) sensors that would have the maximum communication
ratio. The communication ratio represents the total number of coverage sensors that
are covered by the communication range of the sensor devices considered as vertex
cover (communication) sensors.

644 M. Safar and S. Habib

For the next experiments, we started by assuming that all the coverage sensors are
considered as communication sensors (vertex covers). Hence, 100% of the coverage
sensors are covered by the vertex covers, i.e., the communication sensors would have
the exact same coverage ratio as the coverage sensors. Then, we applied our
evolutionary methodology to reduce the number of required vertex covers, while
maintaining the exact same coverage ratio. To achieve such a coverage ratio, we only
used the mutation operation that removes or replaces a vertex cover sensor from a
solution if and only if the 100% coverage ratio is not affected. In addition, we have
ignored the crossover operation, since we cannot guarantee that we end up with a
solution that has 100% coverage ratio as we started with. All the experiments are
executed on a PC platform and each experimental run for 1000 generations of the
communication problem took under 14 seconds. Moreover, in all of our experiments,
as the number of generations increased, the behavior of our algorithm changed and
then it reaches a plateau after 240 generations. In each of the Figures 5, 6, and 7, we
illustrate six curves that tracked the average behavior of the whole population with
respect to the number of vertices chosen as vertex covers and how many other vertex
covers are in their communication range. This behavior is measured as the number of
generations increased.

Fig. 5. Relation between the average percentage of coverage sensors chosen as vertex covers,
the average percentage of coverage sensors covered by the vertex covers and the number of
generations

Figure 5 illustrates two curves that tracked the behavior of the whole population
with respect to the average percentage of coverage sensors chosen as vertex covers,
and the average percentage of coverage sensors covered by the vertex covers. As the
number of generations increased, the average number of coverage nodes chosen as

 Hard Constrained Vertex-Cover Communication Algorithm for WSN 645

vertex covers decreased from 100% of the coverage sensors to around 16% of the
coverage sensors. In addition, the second curve illustrates that our methodology
managed to cover all the coverage sensors by the set of the vertex covers (100%
coverage ratio) as the number of generations increased. The average ratio of the
number of vertex covers out of the total number of coverage sensors was around 37%
and those vertex covers covered 100% of the original 45.

In Figure 6, the curve tracked the behavior of the whole population with respect to
the average number of vertex covers in the range of other vertex covers. Since we
began with a solution that considers every coverage sensor as a vertex cover, and
given the communication ranges of those vertex covers, a large percentage of the
vertex cover sensors are covered by the communication ranges of other vertex covers.
However, as the number of generations increased, this ratio dropped to almost 0%.
Thus, our methodology was able to optimize the solution to a minimum set of vertex
covers that cover the whole coverage sensors and at the same time they do not cover
each other by their communication ranges (i.e., minimized their intersections.)

Fig. 6. Relation between the average number of vertex covers in range of other vertex covers
and the number of generations

Figure 7 illustrates three curves that track the best, the average, and the worst
percentage of sensors chosen as vertex covers as the number of generations increased.
All the three curves show a consistent behavior of our methodology in choosing the
optimum number of sensors as vertex covers, and that the number of VCs decreases
with the increasing number of generations. We concluded from these early
experiments that our methodology managed to produce a near optimal number of
vertex cover sensors that cover all the coverage sensors, and this was accomplished in
less than 14 seconds.

646 M. Safar and S. Habib

Fig. 7. Relation between the best, average and worst number of vertex-cover sensors and the
number of generations

Fig. 8. A snapshot of the Sensor CAD Visualizer, which shows that after 631 generations of
applying the coverage GA found 45 sensors as the best coverage at a cost of $30,430 while
having a coverage ratio is equal to 99%

 Hard Constrained Vertex-Cover Communication Algorithm for WSN 647

Fig. 9. A snapshot of the Sensor CAD Visualizer, which shows that after 200 generations of
applying the communication GA found 8 sensors as the best vertex-cover sensors that cover all
coverage sensors

Finally, in Figures 8 and 9 we show snapshots of our Sensor CAD Visualizer. It
provides a graphical user interface that lets the user control the genetic algorithm,
visualizes the solutions graphically, shows how it would look like in real life, and lets
you go through different generations that were produced by the GA. Figure 8 shows
the result of applying our evolutionary coverage GA, while Figure 9 shows the result
of applying our evolutionary communication GA.

6 Conclusion and Future Directions

We have extended our previously proposed model for the coverage problem in the
wireless sensor networks by introducing a new model for the communication
problem. As with the coverage model, our communication modeling has reduced the
solution space into a discrete optimization problem so that it can achieve the
maximum communication possible with the least number of the coverage sensors
(i.e., vertex covers) and at the same time guarantees that all the coverage sensors are
covered by the vertex covers. Our early experiments with our new evolutionary model
demonstrate very promising results. We will continue to improve our methodology by
trying to solve both the coverage and communication problems simultaneously, and
hence try to increase the transmission power during the coverage problem while
reducing the energy utilization and reducing the over all cost of constructing the
sensor network. Furthermore, we want to run our evolutionary communication GA
using both the mutation and crossover operations. We want to study the effect of
using both operations on the number of vertex cover sensors and the time required to
get such optimal solution.

648 M. Safar and S. Habib

References

1. Wong, J., Neve, M., Sowerby, K.: Optimisation strategy for wireless communications
system planning using linear programming. Electronic Letters 37, 1086–1087 (2001)

2. Yangyang, Z., Chunlin, J., Ping, Y., Manlin, L., Chaojin, W., Guangxing, W.: Particle
Swarm Optimization for Base Station Placement in mobile communication. In: IEEE
International Conference on Networking, Sensing and Control, Taipei, Taiwan, vol. 1, pp.
428–432 (2004)

3. Hurley, S., Kapp-Rawsley, R.: Towards automatic cell planning. In: The 11th IEEE
International Conference on Personal, Indoor and Mobile Radio Communications, London,
pp. 1583–1588 (2000)

4. Ishizuka, M., Aida, M.: Performance Study of Node Placement in Sensor Networks. In:
IEEE International Conference on Distributed Computing Systems 2004 Workshops
Assurance in Distributed Systems and Networks, Tokyo, Japan, pp. 598–603 (2004)

5. Han, J.K., Park, B.S., Choi, Y.S., Park, H.K.: Genetic approach with a new representation
for base station placement in mobile communications. In: The proceedings of the 54th
IEEE Conference on Vehicular Technology, vol. 4, pp. 2703–2707 (2001)

6. Butterworth, K.S., Sowerby, K.W., Williamson, A.G.: Base station placement for in-
building mobile communication systems to yield high capacity and efficiency. IEEE
Transactions on Communications 48, 658–669 (2000)

7. Takanashi, H., Rappaport, S.S.: Dynamic base station selection for personal
communication systems with distributed control schemes. In: The proceedings of the 47th
IEEE Conference on Vehicular Technology, vol. 3, pp. 1787–1791 (1997)

8. Patel, M., Chandrasekaran, R., Venkatesan, S.: Energy efficient sensor, relay and base
station placements for coverage, connectivity and routing. In: The 24th IEEE International
Performance, Computing, and Communications Conference (IPCCC), pp. 581–586 (2005)

9. Rodrigues, R.C., Mateus, G.R., Loureiro, A.: Optimal base station placement and fixed
channel assignment applied to wireless local area network projects. In: IEEE International
Conference on Networks, pp. 186–192 (1999)

10. Wright, M.H.: Optimization Methods for Base Station Placement. In: Wireless
Applications the proceedings of Vehicular Technology Conference (1998)

11. Park, B.-S., Park, H.-K., Yook, J.-G.: The Determination of Base Station Placement and
Transmit Power in an Inhomogeneous Traffic Distribution for Radio Network Planning.
In: The proceedings of the 56th IEEE Conference on Vehicular Technology, vol. 4, pp.
2051–2055 (2002)

12. Yang, S.-T., Ephremides, A.: Optimal Network Design: the Base Station Placement
Problem. In: The proceedings of the 36th IEEE Conference on Decision and Control, San
Diego, CA, USA, vol. 3, pp. 2381–2386 (1997)

13. Huang, X., Behr, U., Wiesbeck, W.: A New Approach to Automatic Base Station
Placement in Mobile Network. In: The International Zurich Seminar on Broadband
Communications, pp. 301–306 (2000)

14. Lindström, M.: Base Station Placement in Asymmetric TDD Mode Systems in a
Manhattan Environment. In: The proceedings of the 59th IEEE Conference on Vehicular
Technology, vol. 4, pp. 1968–1972 (2004)

15. Huang, X., Behr, U., Wiesbeck, W.: Automatic base station placement and dimensioning
for mobile network planning. In: The proceedings of IEEE 52nd Vehicular Technology
Conference (VTC2000-Fall), Boston, Massachusetts, USA, vol. 4, pp. 1544–1549 (2000)

 Hard Constrained Vertex-Cover Communication Algorithm for WSN 649

16. Fruhwirth, T., Brisset, P.: Placing base stations in wireless indoor communication
networks. IEEE Intelligent Systems 15, 49–53 (2000)

17. Habib, S.: Modeling the Coverage Problem in Wireless Sensor Networks as Floorplanning
and Placement Problems. In: The proceedings of the 6th IASTED International Multi-
Conference on Wireless and Optical Communications (Wireless Sensor Networks), Banff,
AB, Canada (2006)

18. Dasgupta, K., Kukreja, M., Kalpakis, K.: Topology-Aware Placement and Role
Assignment for Energy-Efficient Information Gathering in Sensor Networks. In: The
proceedings of Eighth IEEE International Symposium on Computers and Communication,
Turkey, vol. 1, pp. 341–348 (2003)

19. Quintao, F.P., Mateus, G.R., Nakamura, F.G.: An Evolutive Approach for the Coverage
Problem in Wireless Sensor Network. In: The Proceeding of 24th Brazilian Computer
Society Congress (2004)

20. Quintao, F.P., Nakamura, F.G., Mateus, G.R.: Evolutionary Algorithm for the Dynamic
Coverage Problem Applied to Wireless Sensor Networks Design. In: The proceedings of
IEEE Congress on Evolutionary Computations, Edinburgh, UK (2005)

21. Crossbow Technology Inc.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 650–660, 2007.
© IFIP International Federation for Information Processing 2007

A Selective Push Algorithm for Cooperative Cache
Consistency Maintenance over MANETs

Yu Huang1,2, Beihong Jin3, Jiannong Cao4, Guangzhong Sun5, and Yulin Feng3

1 State Key Laboratory for Novel Software Technology (Nanjing Univ.), Nanjing, China
2 Dept. of Computer Science and Technology, Nanjing Univ., Nanjing, China

yuhuang@ics.nju.edu.cn
3 Technology Center of Software Engineering, Institute of Software

Chinese Academy of Sciences, Beijing, China
{jbh,feng}@otcaix.iscas.ac.cn

4 Internet and Mobile Computing Lab, Dept. Of Computing
Hong Kong Polytechnic Univ, Kowloon, Hong Kong

csjcao@comp.polyu.edu.hk
5 Dept. of Computer Science and Technology

Univ. of Science and Technology of China, Hefei, China
gzsun@ustc.edu.cn

Abstract. Cooperative caching is an important technique to support efficient
data dissemination and sharing in Mobile Ad hoc Networks (MANETs). In
order to ensure valid data access, the cache consistency must be maintained
properly. Many existing cache consistency maintenance algorithms are
stateless, in which the data source node is unaware of the cache status at each
caching node. Even though stateless algorithms do not pay the cost for cache
status maintenance, they mainly rely on broadcast mechanisms to propagate the
data updates, thus lacking cost-effectiveness and scalability. Besides stateless
algorithms, stateful algorithms can significantly reduce the consistency
maintenance cost by maintaining status of the cached data and selectively
propagating the data updates. Stateful algorithms are more effective in
MANETs, mainly due to the bandwidth-constrained, unstable and multi-hop
wireless communication. In this paper, we propose a stateful cache consistency
maintenance algorithm called Greedy Walk-based Selective Push (GWSP). In
GWSP, the data source node maintains the Time-to-Refresh value and the cache
query rate associated with each cache copy. Thus, the data source node
propagates the source data update only to caching nodes which are in great need
of the update. After recipients of the source data update have been decided,
GWSP employs a greedy but efficient strategy to propagate the update among
the selected caching nodes. Extensive simulations are conducted to evaluate the
performance of GWSP. The evaluation results show that, compared with the
widely used Pull with Dynamic TTR algorithm, GWSP can save up to 41%
traffic overhead and reduce the query latency by up to 85% for cache
consistency maintenance in cooperative caching over MANETs.

Keywords: Mobile Ad hoc Networks, Cooperative Caching, Cache
Consistency, Stateful, Cache Status Maintenance, Selective Push.

 A Selective Push Algorithm for Cooperative Cache Consistency Maintenance 651

1 Introduction

Mobile Ad hoc Networks (MANETs) have received considerable attention due to the
potential applications in pervasive Internet access, outdoor assemblies and disaster
salvage [1, 2, 3, 20]. Ad hoc networks feature in their quick deployment and easy
reconfiguration, which makes them ideal in situations where installing an
infrastructure is too expensive or too vulnerable. The primary goal of deploying
MANETs is to support pervasive and efficient data dissemination and sharing [2, 3,
20]. For example, in a MANET shown in Fig. 1, the mobile hosts close to an access
point can directly access the Internet, and hence can serve as gateway nodes. Other
mobile hosts access Internet resources via the gateway nodes through multi-hop
wireless connections. In another example, several commanding officers and a group
of soldiers form a MANET in fulfilling a mission of disaster salvage. The
commanding officers can access useful information, such as the geographic
information, via the satellites. The useful information and commands from the
officers can then be efficiently disseminated via the MANET.

Fig. 1. A MANET with one data source node and multiple caching nodes

However, the limited communication resources (e.g., bandwidth and battery

power) and users’ mobility make pervasive data dissemination and sharing a
challenging task in MANETs. One effective and widely-used method to improve the
performance of data access in MANETs is to use Cooperative Caching, i.e., to cache
frequently accessed data objects at the data source node (gateway node) and a group
of caching nodes [3, 4, 5, 13, 20]. Thus, other mobile users can access the cached data
objects nearby, with reduced traffic overhead and query latency.

In order to ensure valid data access, the cache consistency [2, 13, 20, 21], i.e.,
consistency among the source data owned by the data source node and the cache
copies held by the caching nodes, must be maintained properly. Cache consistency
maintenance algorithms can be divided into two main categories: stateful [17] and
stateless [15, 16], based on whether the cache status is maintained on the data source
node [21]. Existing consistency maintenance algorithms for MANET (e.g., [2, 13,

652 Y. Huang et al.

20]) are mainly stateless, in which the data source node is unaware of status of the
cached data. The data source node mainly relies on broadcast mechanisms to
propagate the data updates, which inevitably introduces much redundant data update
propagation.

Besides stateless algorithms, there also exist stateful consistency maintenance
algorithms in the literature. In stateful algorithms, the data source node maintains the
cache status (e.g. the Time-to-Refresh value [9]) of each cache copy. Based on the
cache status maintained, the data source node can hence selectively propagate the data
updates to the caching nodes which are in great need of the updates, i.e., caching
nodes whose cache copy will soon expire. Compared with stateless algorithms,
stateful ones significantly reduce the consistency maintenance cost by selectively
propagate the data updates based on the cache status. We argue that stateful
algorithms are more suitable for MANETs, since the power consumption of data
transmission (for data update propagation) is much more than that of local
computation (for cache status maintenance) on wireless terminals [10]. So far, to the
best of our knowledge, no stateful cache consistency maintenance algorithm has been
proposed for MANETs.

In this paper, we propose a stateful cache consistency maintenance algorithm
called Greedy Walk-based Selective Push (GWSP). In GWSP, the data source node
maintains the Time to Refresh value and the cache query rate associated with each
cache copy. Based on the cache status, the data source node can hence make online
decisions on which cache copies are in need of the data updates upon each update.
When recipients of the data update have been decided, GWSP employs the greedy
walk mechanism to propagate the data update among the selected caching nodes.
Cooperation among the data source node and caching nodes amortizes the cost for
data update propagation.

Extensive simulations are conducted to evaluate the performance of GWSP. The
evaluation results show that, compared with the stateless Pull with Dynamic TTR
algorithm, GWSP can save up to 41% traffic overhead and reduce the query latency
by up to 85%.

The rest of this paper is organized as follows. Section 2 presents design and analysis
of the GWSP algorithm. In Section 3, we present the experimental evaluation. Finally,
Section 4 concludes the paper with a summary and the future work.

2 Greedy Walk-Based Selective Push

The Greedy Walk-based Selective Push (GWSP) algorithm adopts a widely accepted
system model [2, 13, 20], in which each data object is associated with a single node
that can update the source data. This node is referred to as the data source node. Each
data object can be cached by a collection of nodes called the caching nodes. The data
copies held by the caching nodes are called the cache copies1. There are two basic
mechanisms for cache consistency maintenance: push and pull. Using push, the data
source node informs the caching nodes of data updates. Using pull, the caching node
sends a request to the data source node to check the update.

1 In this paper, we do not consider the issue of caching node membership. This issue should be

addressed by the cooperative caching mechanism, based on which we further focus on the
issue of cache consistency maintenance.

 A Selective Push Algorithm for Cooperative Cache Consistency Maintenance 653

In designing GWSP, we assume that the source data updates and the cache queries
follow the Poisson Process of rate λu and λq respectively [22]. We also assume that
the routing protocol employed in the network layer provides the hop count between
each pair of nodes, and the hop count of data transmission is used to measure the
consistency maintenance cost [3].

2.1 Providing Delta Consistency by Pull with TTR

GWSP provides Delta Consistency based on the Pull with TTR algorithm. In Pull with
TTR, each cache copy is associated with a timeout value Time to Refresh (TTR). The
initial value of TTR is set to δ. When TTR is valid (TTR > 0), the caching node can
directly serve cache queries. When TTR expires, the caching node first pulls the data
source node to update the cache copy and to renew TTR to δ. Then the caching node
can directly serve cache queries. By associating a TTR value with each cache copy,
GWSP guarantees that deviation between the source data and the cache copy will not
be over δ, thus ensuring Delta Consistency [2, 21].

Although the Pull with TTR algorithm guarantees Delta Consistency, it is not cost-
effective, mainly due to the round–trip consistency maintenance cost imposed by the
pull mechanism. Therefore, GWSP employs a stateful selective push mechanism to
save consistency maintenance cost.

2.2 Selective Push

Using push, the data source node informs the caching nodes of data updates, which
only imposes one-way consistency maintenance cost (traffic overhead, query latency
etc.). However, if the data source node is unaware of the cache status of each cache
copy, there exist redundant data update propagations in the following two cases:

• After the cache copy and the associated TTR are renewed via push, there comes no
cache query before the TTR expires;

• Before the TTR expires, there are multiple data updates (only the last data update
should make the data source node push the caching nodes);

Thus, the following design principles should be followed in designing GWSP: use the
push mechanism to save consistency maintenance cost, but

• Push only if the cache copy is expected to serve queries;
• Push if there are probably no other data updates before TTR expires;

The detailed design of the GWSP algorithm is. Upon the source data update at tu,
we consider the cache status on one caching node, as shown in Fig. 2. The TTR of
this cache copy was renewed (via push or pull) at time t0. Thus, the remaining TTR of
this caching node at time tu is TTRremain = t0+δ–tu, and the TTR renewed is TTRrenew =
tu - t0. According to the design principles, the data source node pushes one caching
node only when the following two requirements are both satisfied:

1. The probability that there is at least one query in period (t0+δ, tu+δ) is greater
than threshold value τq;

2. The probability that there is at least one update in period (tu, t0+δ) is less than
threshold value τu;

654 Y. Huang et al.

Fig. 2. Cache status on one caching node

For a Poisson Process with rate λ, the probability that there are k events in a period

of length t is: P{t, k} = (λt)k e-λt / k!. Thus, the probability that there is at least one
query in period (t0+δ, tu+δ) is:

q u 0- (t - t)
u 0 u 01 - P { (t +)-(t +), 0 } = 1 - P { t - t , 0 } = 1 - e λδ δ

Thus, for Requirement (1), we have that:
q u 0- (t -t)

q1 - e λ τ≥ , which is equivalent to:

TTRrenew = tu - t0 ≥ -log(1 - τq) / λq (1)

Note that each caching node maintains the query rate λq for the cache copy. When the
caching node pulls the data source node, it will piggyback the value λq in the pull
message. Thus, the data source node obtains the query rate λq of each cache copy. The
data source node also maintains the TTR value of each cache copy.

The probability that there is at least one update in period (tu, t0+δ) is:

u 0 u- (t + -t)
0 u1 -P { t + t , 0} = 1 - e λ δδ −

Thus, for Requirement (2), we have that u 0 u- (t + - t)
u1 - e λ δ τ≤ , which is equivalent to:

TTRremain = t0 + δ - tu ≤ -log(1 - τu) / λu (2)

Based on inequality (1) and (2), the data source node can make on-line decisions on
which caching nodes should receive the PUSH message upon each data update.

2.3 Greedy Walk-Based Data Update Propagation

After the data source node has decided the Push Set, i.e., the caching nodes which
should receive the data update, it needs to decide how to propagate the data updates
among the selected caching nodes. GWSP employs a greedy but efficient strategy
Greedy Walk to disseminate the PUSH message (which contains the source data
update and IDs of the push set nodes) to all caching nodes in the push set. The data
source node sends the PUSH message to the nearest caching node in the push set via
unicast. The caching node which receives the PUSH message deletes itself from the
push set. It acknowledges the PUSH message with a PUSH_ACK message, and then
goes on relaying the push message to the nearest caching node in the push set (The
path length between two nodes are provided by the routing protocol, according to our
assumption). This process is repeated until the push set is empty. The last caching

 A Selective Push Algorithm for Cooperative Cache Consistency Maintenance 655

node will send a PUSH message to the data source node, which initiates the PUSH
message propagation process.

If the sender of some PUSH message does not receive the corresponding
PUSH_ACK (since either the PUSH message or the PUSH_ACK message is lost), it
will wait for at most τACK seconds. Then, it will send the PUSH message to the data
source node. We require that PUSH messages should be acknowledged, in order to
deal with the message loss, which often occurs in MANETs.

When the data source node receives the PUSH_ACK message, it obtains the time
span of the PUSH message propagation process. It also knows the caching nodes
which have received the PUSH message. The data source node then updates the TTR
values of the cache copies as follows. Let tpush denote the time span of the PUSH
message propagation process. The data source node sets the TTR values of all cache
copies which receives the PUSH message to δ - tpush. Hence, the data source node can
maintain the TTR values of each cache copy more accurately, by taking into account
the time delay imposed by the PUSH message propagation process. The pseudo-code
of the GWSP algorithm is listed below.

Algorithm 1. GWSP on the data source node
Upon each source data update
// deciding the Push Set
(1) Put all caching nodes satisfying inequality (1) and (2) into the push set;
// propagating the source data updates by Greedy Walk
(2) Send the source data update and the push set information in a PUSH
message to the nearest caching node in the push set;

Upon receiving PUSH message
(3) Decide all the caching nodes which have received the PUSH message and
the time span of the push process tpush;
(4) Update the TTR of the caching nodes which received the PUSH message
by letting TTR = δ - tpush;

Algorithm 2. GWSP on a caching node
Upon receiving a cache query
(1) If (TTR = 0) pull the data source node to update the cache copy and TTR;
(2) Serve the cache query;

Upon receiving a PUSH message
(3) Reply the PUSH message with PUSH_ACK;
(4) Delete itself from the push set;
(5) If(size of the push set > 0) relay the PUSH message to the nearest
caching node in the push set;
(6) Else send the PUSH message to the data source node;

Upon receiving a PUSH_ACK message
(7) If(no PUSH_ACK is received within time τACK)
send the PUSH message to the data source node;

656 Y. Huang et al.

2.4 Analysis of the Greedy Walk Strategy

Finding the optimal path for propagating the PUSH message can be easily proven to
be an instance of the Traveling Salesman Problem (TSP). TSP is NP-Complete and
there is no even approximate algorithm with constant approximation ratio for it [6].
Thus the simple greedy walk strategy is adopted in GWSP, which is inspired by the
Anycast mechanism. Moreover, the greedy walk strategy is also easy to implement in
the distributed and asynchronous MANET environment. We also find that GWSP is
load-balanced. The data source node and the caching nodes cooperate to propagate the
data updates and hence amortize the overhead. The load balance of GWSP makes it
suitable for the resource-constrained mobile terminals.

3 Experimental Evaluation

3.1 Experimental Methodology and Configurations

We have conducted simulations to evaluate the performance of GWSP. In the
experiments, we first compare greedy walk with the optimal solution. We adopt a
brutal force search strategy to obtain the optimal solution. The network we consider
should contain a suitable number of nodes, so that computation of the optimal
solution does not become exceedingly cumbersome. Then we finely tune the number
of caching nodes and the cache query rate, which have great impact on GWSP. We
study the cost-effectiveness of GWSP based on extensive performance comparison
with the Pull with Dynamic TTR (named as DynTTR in short) algorithm [11, 12, 13,
20]. The following performance metrics are used in the evaluation:

• Traffic overhead: number of hops counted for consistency maintenance message
propagation;

• Query latency: latency imposed by consistency maintenance. We obtain the query
latency based on the number of hops the message needs to be relayed in the
MANET;

Detailed experimental configurations are listed in Table 1.

Table 1. Experiment configurations

Network area 200× 200 m2
Size of network 80 m
Transmission range 15 m
Mobility model Random way point [23]
Average speed 0.5 m/s
Maximum portion of crashed nodes 10%
Pattern of date updates and queries Poisson process
Initial value of TTR (δ) 10 s
τu 50%
τq 50%
τACK 2s

 A Selective Push Algorithm for Cooperative Cache Consistency Maintenance 657

The default configurations of the number of caching nodes and average query
interval are as follows:

• number of caching nodes: 20 ;
• average query interval: 10 s ;

We will study the impact of varying these parameters in the following experiments.

3.2 Evaluating the Greedy Walk Strategy

In this experiment, we compare greedy walk with the optimal solution. From the
evaluation results (Fig 3), we find that, even compared with the optimal solution, the
greedy walk strategy is quite cost-effective, especially when there are a suitable
number of caching nodes. As the number of caching nodes increase, the performance
of greedy walk gradually degrades. Given the computational complexity of finding
the optimal solution, greedy walk is quite cost-effective.

Fig. 3. Cost-effectiveness of greedy walk

3.3 Effects of Tuning the Number of Caching Nodes

In this experiment, we increase the number of caching node from 10 to 20, 30 and 40.
We find that GWSP is comparatively more cost-effective when there are a suitable
number of caching nodes. When there are 20 and 30 caching nodes, the traffic
overhead saved by GWSP is 26% and 21% respectively (Fig. 4). Here, the percentage
of traffic overhead saved refers to the ratio of the saved traffic overhead to that
imposed by DynTTR. However, when there are 10 and 40 caching nodes, the traffic
overhead saved decreases to 15% and 9% respectively (Fig. 4). It is mainly because,
when there are only a few caching nodes, little traffic overhead can be saved by
selective push in GWSP. On the other hand, when there are many caching nodes, the
PUSH & ACK process in GWSP also imposes great traffic overhead.

We also find that the query latency imposed by GWSP is relatively stable, while
the latency imposed by DynTTR increases as the number of caching nodes increases
(Fig. 5). The query latency saved in GWSP can go up to 85% when there are 30
caching nodes. The selective push mechanism based on the cache status accounts for
the better performance of GWSP in terms of query latency.

658 Y. Huang et al.

Fig. 4. Traffic overhead Fig. 5. Query latency

3.4 Effects of Tuning the Cache Query Rate

In this experiment, we tune the cache query rate. We find that, when the cache query
rate decreases, the traffic overhead imposed by GWSP gradually decreases, while the
traffic overhead imposed by DynTTR decreases much more quickly (Fig. 6). The
traffic overhead saved by GWSP decreases from 41% (query interval = 5s) to 19%
(query interval = 20s). The query latency imposed by DynTTR decreases similarly. In
GWSP, the query latency even increases when there are less frequent queries (query
interval = 15), as shown in Fig. 7. The query latency saved in GWSP decreases from
72% (query interval = 5s) to 19% (query interval = 20s). It is mainly because less and
less caching nodes are selected in the push set when faced with less and less frequent
queries. Thus, the GWSP algorithm gradually approaches the Pull Each Read [14]
algorithm, which suffers from round-traffic query latency.

Fig. 6. Traffic overhead Fig. 7. Query latency

4 Conclusion and Future Work

In this paper, we study how to cost-effectively maintain cache consistency in
cooperative caching in MANETs. We focus on stateful cache consistency
maintenance algorithms since they can significantly reduce the consistency
maintenance cost utilizing the cache status information. We propose the stateful
Greedy walk-based Selective Push algorithm. In GWSP, the data source node
maintains the TTR value and the cache query rate associated with each cache copy.
Upon each source data update, the data source node efficiently decides the caching
nodes which are in great need of the data updates. GWSP employs the greedy walk

 A Selective Push Algorithm for Cooperative Cache Consistency Maintenance 659

strategy to propagate the data updates among the selected caching nodes. Extensive
experiments are conducted to evaluate the performance of GWSP. The evaluation
results show that the greedy walk strategy can cost-effectively propagate the data
updates in a MANET environment. The GWSP algorithm can save up to 41% traffic
overhead and 85% query latency for cache consistency maintenance, compared with
the Pull with Dynamic TTR algorithm. In our future work, we plan to study how to
support different consistency models, besides Delta Consistency, by stateful
consistency maintenance algorithms in cooperative caching in MANETs.

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China
under Grant No. 60673123, the National High-Tech Research and Development
Program of China under Grant No. 2006AA01Z231, the Hong Kong RGC CERG
grant PolyU 5105/05E and Hong Kong PolyU ICRG grant G-YF61.

References

1. Corson, M., Macker, J., Cirincione, G.: Internet-based Mobile Ad Hoc Networksing. In:
IEEE Internet Computing, pp. 63–70 (July-August 1999)

2. Cao, J., Zhang, Y., Xie, L., Cao, G.: Consistency of Cooperative Caching in Mobile Peer-
to-Peer Systems Over MANET. Intl. J. of Parallel, Emergent, and Distributed
Systems 21(3) (2006)

3. Yin, L., Cao, G.: Supporting Cooperative Caching in Ad Hoc Networks. IEEE
Transactions on Mobile Computing 5(1) (2006)

4. Lau, W., Kumar, M., Venkatesh, S.: A Cooperative Cache Architecture in Supporting
Caching Multimedia Objects in MANETs. In: Proc. Fifth Intl Workshop Wireless Mobile
Multimedia (2002)

5. Sailhan, F., Issarny, V.: Cooperative Caching in Ad hoc Networks. In: Chen, M.-S.,
Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574,
Springer, Heidelberg (2003)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Approximation Algorithms,
Introduction to Algorithms, ch. 35. MIT Press, Cambridge (2002)

7. Wang, Z., Das, S.K., Che, H., Kumar, M.: A Scalable Asynchronous Cache Consistency
Scheme (SACCS) for Mobile Environments. IEEE Tran. on Parallel and Distributed
Systems 15(11) (2004)

8. Tan, K., Cai, J., Ooi, B.C.: An Evaluation of Cache Invalidation Strategies in Wireless
Environments. IEEE Tran. on Parallel and Distributed Systems 12(8) (2001)

9. Urgaonkar, B., Ninan, A., Raunak, M., Shenoy, P., Ramamritham, K.: Maintaining Mutual
Consistency for Cached Web Objects. In: Proceedings of the 21st International Conference
on Distributed Computing Systems (ICDCS-21), Phoenix, AZ (April 2001)

10. Ferrigno, L., Marano, S., Paciello, V., Pietrosanto, A.: Balancing Computational and
Transmission Power Consumption in Wireless Image Sensor Networks. In: IEEE
Symposium on Virtual Environments, Human-Computer Interfaces and Measurement
Systems(VECIMS) (2005)

660 Y. Huang et al.

11. Urgaonkar, B., Ninan, A., Raunak, M., Shenoy, P., Ramamritham, K.: Maintaining Mutual
Consistency for Cached Web Objects. In: Proceedings of the 21st International Conference
on Distributed Computing Systems (ICDCS-21), Phoenix, AZ (April 2001)

12. Lan, J., Liu, X., Shenoy, P., Ramamritham, K.: Consistency Maintenance in Peer-to-Peer
File Sharing Networks. In: The 3rd IEEE Workshop on Internet Applications (2003)

13. Huang, Y., Cao, J., Jin, B.: A Predictive Approach to Achieving Consistency in
Cooperative Caching in MANET. In: Proc. of the 1st Intl. Conf. on Scalable Information
Systems, P2PIM workshop section, ACM Press, New York (2006)

14. Howard, J., Kazar, M., et al.: Scale and Performance in a Distributed File System. ACM
Trans. on Computer Systems 6(1) (1988)

15. Barbara, D., Imielinksi, T.: Sleeper and Workaholics: Caching Strategy in Mobile
Environments. In: Proc. ACM SIGMOD Conf. Management of Data, pp. 1–12 (1994)

16. Cao, G.: A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environments.
In: Proc. ACM Int’l Conf. Computing and Networking (Mobicom), pp. 200–209 (August
2001)

17. Kahol, A., Khurana, S., Gupta, S.K.S., Srimani, P.K.: A Strategy to Manage Cache
Consistency in a Distributed Mobile Wireless Environment. IEEE Trans. Parallel and
Distributed Systems 12(7), 686–700 (2001)

18. Yang, B., Hurson, A.R., Jiao, Y.: On the Content Predictability of Cooperative Image
Caching in Ad hoc Networks. In: Proc. Of the 7th Intl. Conf. on Mobile Data Management
(MDM) (2006)

19. Liu, B., Lee, W., Lee, D.L.: Distributed Caching of Multi-dimensional Data in Mobile
Environments. In: Proc. Of the 6th Intl. Conf. on Mobile Data Management (MDM)
(2005)

20. Huang, Y., Cao, J., Wang, Z., Jin, B., Feng, Y.: Achieving Flexible Cache Consistency for
Pervasive Internet Access. In: proc. of the 5th Annual IEEE Intl. Conf. on Pervasive
Computing and Communications (PerCom), New York, U.S, pp. 239–250 (2007)

21. Cao, J., Zhang, Y., Xie, L., Cao, G.: Data Consistency for Cooperative Caching in Mobile
Environments. IEEE Computer, 60–67 (2007)

22. Hou, Y.T., Pan, J., Li, B., Panwar, S.S.: On Expiration-based Hierarchical Caching
Systems. IEEE J. on Selected Areas in Comm. 22(1) (2004)

23. Camp, T., Boleng, J., Davies, V.: A Survey of Mobility Models for Ad Hoc Network
Research. Wireless Communications & Mobile Computing (WCMC) 2(5) (2002)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 661–670, 2007.
© IFIP International Federation for Information Processing 2007

A Constrained Multipath Routing Protocol
for Wireless Sensor Networks

Peter K.K. Loh and Y.K. Tan

Nanyag Technological University, School of Computer Engineering,
Nanyang Avenue, Singapore 639798

askkloh@ntu.edu.sg

Abstract. A deployed wireless sensor network must be managed by an efficient
and reliable routing protocol to overcome node degradation and failure, RF
communication disruptions and limited energy reserves. RF transmissions are
inherently broadcast. Existing research proposals for routing protocol designs
typically use either flooding (routing same packet over all available paths) or
selective broadcasting (routing packet over a specified path). Research has
shown that routing protocols that use selective broadcasting exhibits better
performance with lower communication overheads. Flooding-based protocols
typically require lower control overheads and exhibit better fault tolerance. This
paper presents two variations of a novel routing protocol, called SOS, which
uses constrained broadcasting (packet routed over small subset of available
paths) to adapt to network failures and disruptions. Simulations show that SOS
compares favourably with existing selective broadcasting and flooding-based
protocols in terms of performance, reliability and energy efficiency.

Keywords: routing protocol, sensor networks, selective broadcasting,
constrained broadcasting, flooding.

1 Introduction

A smart environment needs information about its surroundings and its sensory system
to operate reliably and efficiently. The importance of a wireless sensor network
(WSN) as a sensory system is demonstrated by several recent initiatives [11].
Advances in radio and micro-electro mechanical systems (MEMs) technologies have
made sensor nodes more cost effective. Hence, these nodes may be deployed in large
numbers in various operating scenarios. Deployment is, however, often under
unpredictable and/or inhospitable conditions that may prevent the sensory system
from maintaining a stable network configuration to sustain long-term operations [2,8].
To tolerate these conditions, the WSN must be managed by a reliable routing protocol
that will maintain its configuration and its operations in the presence of faults [6, 9,
10]. Existing routing protocols typically depend on either flooding [13, 15] or
selective broadcasting [12, 14] to relay data packets. In flooding, each data packet is
routed over all available RF links at a node. It is a brute-force approach to increase the
chances of packet delivery. In selective broadcasting, only one neighbouring node
receives the packet though other neighbours may hear it. The packet is progressively

662 P.K.K. Loh and Y.K. Tan

routed along a single path to the hub. It has been demonstrated that selective
broadcasting protocols exhibit a performance edge over flooding protocols but the
latter can exhibit better fault tolerance in small to moderate-sized networks with lower
control overheads [3, 5, 12, 14]. In this paper, we propose a routing protocol that
relays data with constrained broadcasting (small set of available paths for routing)
while meeting the conflicting requirements of low communications and energy costs.

2 Related Work

In this section, we present a concise survey of four routing protocols: the Periodic,
Event-Driven and Query-Based protocol (PEQ) [3-4], Gradient-Based Routing
protocol (GBR) [14], Efficient and Reliable protocol (EAR) [12], and Gradient
Broadcast protocol (GRAB) [13, 15]. These routing protocols are similar in the sense
that they make use of path length and/or energy metrics for data dissemination. The
first three protocols are based on selective broadcasting while the fourth uses network
flooding and serves as a control reference for flooding-type protocols.

The PEQ (Periodic, Event-Driven and Query-Based) routing protocol uses an ACK
(acknowledgement)-based scheme to identify node failures or weak signal conditions.
To set up route distance information, each network node is initialised with a hop
count to the hub. The hub is initialised with a hop count of 0. If a node receives hop
information from more than one neighbour, only the lowest value is stored. Each node
will only send data to the next node that is of a lower hop value. Hence, a single,
shortest path for each node is created to deliver its data to the hub. To tolerate node
failures and noisy links, PEQ uses two phases: (i) failure detection at receiver node
and (ii) location of a new neighbour. A sender node forwards data to its neighbour
and sets a timeout to wait for the ACK. The ACK message will only be received after
the neighbour has forwarded the packet. Thus, the sender node on receiving its
neighbour’s ACK, knows that its neighbour is alive and that the packet has also been
forwarded to the next node. However, if no ACK message is being received, the
neighbour node is deemed to have failed and the sender node will select another
neighbour as its new intermediate destination. To do this, the sender node broadcasts
a search message to its neighbours. Neighbours reply with a message containing their
hop count and identification. The sender will choose the lowest hop count and the first
one to reply becomes the new neighbour node. The sender’s routing table will be
updated for relaying subsequent packets and the sender node sets its own hop count to
be the neighbour node’s hop count plus one. This also avoids looping in paths.

GBR distributes traffic evenly among all nodes and prevents non-uniform traffic
overloading. The hub will broadcast an interest message that is flooded throughout the
network. Each node upon receiving the interest message will record the number of
hops taken by the interest message. Each node then knows the number of hops it
needs to reach the hub. The gradient between two nodes is the difference in their hop
counts. A hop gradient is set up from the nodes to the hub and all messages will flow
in that direction towards the hub. A node will forward a message to a neighbour with
the largest gradient (nearest) to the hub. When there are multiple neighbours with the
same gradient to the hub, one is randomly chosen to spread traffic levels more
uniformly. When less than 50% of a node’s energy level remains, the node lowers its

 A Constrained Multipath Routing Protocol for Wireless Sensor Networks 663

gradient with respect to its neighbours. This reduces the chance of future packets
being routed through it. Any changes in gradient will be progressively updated across
the network to maintain routing consistency.

Routing decisions in EAR are based on four metrics: hop-count, distance traveled,
energy level of next hop node and link transmission success history. A weighted
combination of these metrics is used to relay packets. A “sliding-window” keeps track
of the last N successful transmissions via a specified RF link to compute success
history. An optimal route in EAR is not necessarily the shortest but represents the best
combination of distance, energy requirements and link quality. Control packets are
minimized by “piggy-backing” routing information onto MAC-layer protocol packets.
EAR deals well with communication faults in WSNs with low to moderate traffic
volumes. However, with a high-volume of network traffic, the more complex route
management incurs an appreciable overhead affecting its performance.

GRAB is designed for reliability by routing redundant copies of messages in a
mesh from a source node to the hub. A cost field is set up in the network and the
value of a node in the field is the minimum cost to reach the hub from that node. The
cost field has a value of 0 starting from the hub and the value at each node increases
with the distance from the hub. Messages will flow through the cost field in the
direction of decreasing cost, that is, towards the hub. When a node generates a packet,
it initialises the header with its cost to the hub and assigns a credit value to that packet
before broadcasting it. When neighbouring nodes receive the packet, only those nodes
that have a lower cost will enter a decision process of whether to route or drop that
packet. A message’s credit is consumed at each node on the path to the hub. When a
message has enough credit, the node will route the message or else the message will
be dropped. By assigning an appropriate amount of credit to each message, duplicate
copies of that message will travel in multiple paths from the source node to the hub.

3 Protocol Design Details

This section details the design of the SOS and SOSd routing protocols. SOSd is a
double path variant of SOS that incorporates limited route redundancy. Both protocols
support single or multiple hubs in a multi-hop WSN [16]. SOS and SOSd can also be
easily modified to support either query- or event-detection based WSNs.

3.1 Route Discovery Phase

This phase determines the WSN’s configuration and builds appropriate routing tables
at each node. A hop-level distribution from the hub is established in a similar manner
to PEQ. A node will use its hop-level to identify the next possible neighbour(s) to
relay the data. If the hop level received is lower than the receiving node’s hop level by
more than one, the receiving node updates its own hop level by adding one to the
received hop level and retransmitting the ‘hop’ message with its own hop level to its
neighbour(s). Otherwise, there will no updating and the ‘hop’ message will be
discarded. Each node may store up to three possible routes to enhance routing
reliability. To minimise the probability that an important node may not be discovered
or a link that could have failed due to interference between two neighbouring nodes,

664 P.K.K. Loh and Y.K. Tan

each node transmits the ‘hop’ message twice, with each message separated by a
random delay to prevent collision of messages. The hub, however, only broadcasts the
‘hop’ message once to avoid energy wastage as in periodic flooding.

3.2 Data Relay Phase

Here, data is routed from each node to the hub and vice versa (Figure 1).
Each node maintains a routing table with up to three different routes to the hub.

Each table entry is a 5-tuple: <hub address, neighbour node ID, route status, times
route failed, route usage counter>. Hub address is the hub ID in the WSN, neighbour
node ID is the ID of the intermediate node to which a data packet is to be sent en-
route to the hub, route status indicates route availability, times route failed tracks the
number of times the route has failed. The route will be removed from the routing table
once a specified maximum number of retries is reached, route usage counter tracks
the number of times a route has been used. A node will choose the route with the
lowest usage. This helps distribute network traffic more uniformly. As a consequence,
network lifetime can be increased with probability of node failure due to insufficient
energy reduced. Another advantage is that message data packets forwarded along
different routes will reduce the chance that a fault in one route causes loss of the
entire message. Figure 1 shows node 7 receiving a data packet. In ‘Route Table of
node 7’, although the route to node 8 has the smallest route usage of 1, the route status
indicates it has failed. The next suitable route is to node 6, an active route with lowest
route usage. After relaying the packet to node 6, the route usage value of this route
will increase to 3, same as the route to node 5. The route to node 5 will be chosen the
next time round as, with the same usage value, the first node in the routing table will
be selected. Thus, the data packet will be routed from nodes 7-6-2-1 to the hub.

Fig. 1. Illustration of data packet relaying in SOS

 A Constrained Multipath Routing Protocol for Wireless Sensor Networks 665

3.3 Failure Recovery Phase

Node x relays a data packet to neighbour y by first sending RTS. After a specified
number of retries, if no CTS is received from node y, node x updates its routing table
by deleting node y’s ID, decrements its ‘number of routes to hub’ value and
broadcasts node y’s ID in an error message to its neighbours. Neighbours receiving
this error message remove the problematic node ID from their routing tables. If at
least one route to the hub is left, it will be selected as the alternate route to forward the
data packet. Presence of extra routes to the hub will increase the chance of delivery.
Node x will then broadcast ‘search’ messages to neighbouring nodes to replace the
problematic node. Node x could also be isolated if all its neighbours have failed. After
the search, if no replacement is found, the process will terminate. Neighbours of
higher hop level now know that node x has no more routes to the hub and will remove
it’s ID from their routing tables. A node will respond to a ‘search’ message when it
has at least one route to the hub. Reply message with its hop level and ID is sent after
a random delay to minimize collisions with other replies.

3.4 SOS Double Path - SOSd

SOSd exploits constrained broadcasting to relay data packets. It utilizes an additional
message path to increase the probability of bypassing node/link failures and avoiding
packet loss while relaying data packets. Additional paths to forward data packets will
have a higher chance of ensuring delivery to the hub. However, the energy usage will
be higher especially in larger networks. The limitation to a double instead of multiple
paths is to avoid excessive redundancy, which can cause significant increases in
packet collisions and network congestion, and incur unacceptable energy overheads.
Only source nodes send packets to two different neighbours. However, if two data
packets from a source reaches the same node z, node z also relays the packet to two
different nodes due to routing control imposed by the route usage counter (Figure 2).

z

Fig. 2. Illustration of a double path

There are up to three routes to a hub in its routing table.

4 Simulation

UCLA’s Global Mobile Simulation Systems Library (GloMoSim) [1] was employed
with network nodes modelled after the Xbow MICA2 mote [7]. The MAC protocol
was implemented using the distributed coordination function (DCF) of IEEE 802.11.
Radio transmission range for each node was 56 meters. Radio model was signal-to-
noise (SNR) bounded. Propagation model was ground reflection (two-ray). Frequency

666 P.K.K. Loh and Y.K. Tan

used was 433 MHz and the bandwidth used was 76800 kbps. These settings are fixed
throughout each simulation experiment conducted. Each simulation was executed for
60 minutes and the size of data payload was 24 bytes.

4.1 Performance Metrics

Performance of each protocol was analyzed using the following performance metrics.

(a) Packet Delivery Ratio (PDR): proportion of packets successfully delivered.
Total number of data packets received X 100%

Total number of data packets sent

(b) Packet Latency: average time for hub to receive data packet from source node.
 Individual data packet latency

Total number of data packets delivered

It includes processing times at various layers of each node, route recovery and repair,
retransmission, queuing, propagation, transfer times etc.

(c) Energy Consumption: energy consumed per delivered packet.

Node energy consumption model in GloMoSim is used, where energy used by a node
for each packet transmitted at the radio layer/received at the MAC layer is:

Energy expended (J) = Voltage (V) X Current (A) X Transmission/Receive Duration
 = 3.0V X 0.0052A X ((packet size X 8) / bandwidth)

Energy consumed will increase proportionally with the number of packets sent.
Hence, energy consumption also contributes to the total overhead of a protocol.

(d) Packet Collisions: the total number of packet collisions that occurred during the
simulation. It includes collisions by both control and data packets.

4.2 Non-ideal Conditions

Simulations were carried out for networks of 50 to 500 nodes with 10% and 50%
active source nodes. This enables protocol scalability with network size to be
evaluated for increasing traffic volume. Active source nodes were randomly chosen
and data packet rate at each source node was 1 per 30 seconds. A noise model where
every node except the hub takes on a random noise factor between 10% and 50% was
used. The noise factor is the probability that a packet received by the node is
corrupted or lost in transmission. A fault model where 50% of the nodes, except the
source nodes, were randomly selected to fail at a random time within the simulation
duration was used. For each network size, results were averaged over 30 runs.

Total number of packets delivered

Total energy consumed= ∑ Individual node’s expended energy

 A Constrained Multipath Routing Protocol for Wireless Sensor Networks 667

Packet Delivery Ratio (PDR) with 10% Source Nodes (With Fault and

Noise)

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

Number of nodes

%
 o

f
p

a
c
k
e
ts

d
e
li

v
e
re

d
s
u

c
c
e
s
s
fu

ll
y

EAR

GBR

GRAB

PEQ

SOS

SOSd

Packet Delivery Ratio (PDR) with 50% Source Nodes (With Fault and

Noise)

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

Number of nodes

 %
 o

f
p

a
c

k
e
ts

 d
e

li
v
e

re
d

 s
u

c
c

e
s
s

fu
ll

y

EAR

GBR

GRAB

PEQ

SOS

SOSd

Fig. 3. Packet Delivery Ratio in Non-Ideal Conditions

With 10% source nodes, PDR of PEQ averages above 80% for networks of 400 nodes
or less. PEQ is able to maintain a reasonable PDR even at high node failures of 50%.
However, PDR drops significantly when active sources increase to 50%. With
increased number of active sources, there are more data as well as control packets.
PEQ employs an ACK-based scheme that results in an increase in packet collisions -
more packets are dropped thus reducing the PDR. A less drastic trend is observed for
SOSd due to the additional path used by each source node. Duplicate data packets
transmitted from each source node increases collision rates as in PEQ but
performance is increasingly better with more active source nodes as path redundancy
in SOSd is restricted to only source nodes. Figure 3 shows that both SOS and EAR
maintain a reasonable PDR above 85%. PDR for GRAB is the lowest for both 10%
and 50% active sources. GRAB uses flooding to forward the data to the hub; this
generates a significantly large number of data packets in the network and results in
over-utilization of bandwidth. Average PDR with 10% is thus better than for 50%
active sources where there are considerably more packet collisions and packet loss.

Expectedly, PDR for 50% active sources decreases for all protocols as network
size increases. Neighbours within transmission range of a node increases leading to
increased collisions. GBR, EAR and SOS protocols make use of a single route for
each data packet (selective broadcasting). Reliability of packet delivery is not
necessarily directly proportional to the number of multiple paths from source to hub.
GRAB and SOSd achieve fault tolerance by sending duplicate copies of data packets
along different routes. However, the PDR of SOSd for both 10% and 50% source
nodes scale better with network size, even exceeding GBR for large networks in
excess of 400 nodes. Reconfiguration in GBR does not consider link quality.

GBR maintains relatively low packet latency for 10% active source nodes while it
has the lowest packet latency for 50% active sources. In larger networks, GBR’s fast
and simple random routing has greater chance of locating an active link. However, it
does not guarantee that a complete route is available. Also, GBR only updates nodes
with network configuration changes when nodes’ energy threshold < 50%.
Performances of SOS and SOSd are competitive with EAR. In EAR, the need to
continuously process piggybacked control information increases the processing time
of data packets resulting in increased latency. SOS informs its neighbours that a
change has occurred only when it detects a problem with its intended receiver node.
This is more evident with networks in excess of 350 nodes and 50% active nodes.

668 P.K.K. Loh and Y.K. Tan

Packet Latency with 10% Source Nodes (With Fault and Noise)

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300 350 400 450 500

Number of nodes

at
en

cy
 p

er
 p

ac
ke

t
(s

)

EAR

GBR

GRAB

PEQ

SOS

SOSd

Packet Latency with 50% Source Nodes (With Fault and Noise)

0

0.5

1

1.5

2

2.5

3

50 100 150 200 250 300 350 400 450 500

Number of nodes

La
te

nc
y

pe
r

pa
ck

et
 (

s) EAR

GBR

GRAB

PEQ

SOS

SOSd

Fig. 4. Packet Latency in Non-Ideal Conditions

For networks < 450 nodes and 10% active sources, SOSd has lower packet latency
than SOS and EAR. A double path allows one data packet to reach the hub first while
recovery is in progress in the other failed path. Any network reconfiguration process
will have a reduced effect on latency. With 50% active sources, EAR’s piggybacking
advantage is no longer significant with network sizes > 350 nodes. Here, control
overhead becomes considerable and compromises latency. With larger networks, SOS
reverses its trend against SOSd as the chance of avoiding failed paths increases with
more neighbours available. Now, double transmissions in SOSd become overheads.

With PEQ and 50% active sources in larger networks, increased transmissions are
accompanied by increased acknowledgements. PEQ has to wait for an ACK message
timeout to detect a problem before path repair begins. The next data packet has to
wait for PEQ to find a new path before it can be relayed. Thus, PEQ’s packet latency
is higher due to no immediately available alternative routes when transmission fails.
GRAB’s use of flooding generates large quantities of redundant packets, resulting in
unacceptable levels of collisions (also see Figure 6), severely degrading latencies.

Energy Consumption with 10% Source Nodes (With Fault and Noise)

0

20

40

60

80

100

120

140

160

50 100 150 200 250 300 350 400 450 500

 Number of nodes

E
n
e
rg

y
 e

x
p
e
n
d
e
d
 p

e
r

p
a
c
k
e
t
(m

J
)

EAR

GBR

GRAB

PEQ

SOS

SOSd

Energy Consumption with 50% Source Nodes (With Fault and Noise)

0

10

20

30

40

50

60

70

80

50 100 150 200 250 300 350 400 450 500

Number of nodes

E
n
e
rg

y
 e

x
p
e
n
d
e
d

p
e
r

p
a
c
k
e
t
(m

J
)

EAR

GBR

GRAB

PEQ

SOS

SOSd

Fig. 5. Energy Consumption in Non-Ideal Conditions

GRAB has the highest energy consumption for both 10% and 50% active sources.

This is one of the drawbacks of flooding-based strategies to achieve reliability.
During routing, a large amount of redundant data packets are generated (Figure 5).

PEQ’s ACKs raise packet transmissions two-fold and reduce its energy efficiency
to below that of SOS, SOSd, EAR and GBR, which are not acknowledgement-based.
This is more evident with 50% active sources. Performance of SOSd may be
compromised in a high traffic and noisy environment. Sending duplicate copies of the

 A Constrained Multipath Routing Protocol for Wireless Sensor Networks 669

Packet Collisions experienced with 10% Source Nodes (With Fault

and Noise)

0

200

400

600

800

1000

1200

1400

50 100 150 200 250 300 350 400 450 500

Number of nodes

N
u
m

b
e
r

o
f

p
a
c
k
e
ts

 c
o

ll
id

e
d

EAR

GBR

GRAB

PEQ

SOS

SOSd

Packet Collisions experienced with 50% Source Nodes (With Fault

and Noise)

0

50000

100000

150000

200000

250000

50 100 150 200 250 300 350 400 450 500

Number of nodes

N
u
m

b
e
r

o
f
p
a
c
k
e
ts

c
o
ll
id

e
d

EAR

GBR

GRAB

PEQ

SOS

SOSd

Fig. 6. Packet Collisions in Non-Ideal Conditions

same packet over a second path consumes 100% extra energy and increases traffic
loads in a congested network resulting in more collisions and packet loss.

Figure 6 shows that as the number of active sources increase, collisions become a
significant performance factor affecting all routing protocols. Extra overhead will be
involved in dealing with collisions resulting in less packets delivered successfully.
Packet collisions cause unnecessary retransmissions of packets and will impact the
latency and energy efficiency of the protocols. PEQ and GRAB, which experience
high levels of packet collisions, experience large latencies and high energy
consumption figures. With PEQ, increased packet collisions result as a consequence
of its ACK-based scheme. With 50% active sources in larger networks, this is more
evident allowing SOS to better it.

Both EAR and SOS have lower packet collisions compared to other protocols.
EAR uses piggybacked control information to detect node failures. For lower traffic
levels, EAR experiences the least number of packet collisions. However, as the traffic
levels increase, more failed transmissions are experienced. EAR will send out
recovery messages whenever a node detects a problematic neighbour. This results in
more control packets exacerbating the collisions. SOS, however, sends out recovery
messages only after error detection during transmission. Hence, the situation reverses
with SOS experiencing lower packet collisions than EAR with 50% active source
nodes. SOSd experiences higher packet collisions than SOS, EAR and GBR as it
exploits an additional path to transmit data packets at each source node. This is
moderated to an extent as the path redundancy is restricted to only source nodes.

With 10% active source nodes, GBR experiences more packet collisions than SOS
and EAR. The situation reverses with 50% active source nodes. With more active
sources transmitting, levels of packet collisions are higher for every protocol.
However, this congestion of packet traffic has slightly less effect on GBR due to its
stochastic random route selection, enabling it to avoid more collisions with “well-
spaced” transmissions. However, a randomly selected path may not lead to successful
delivery due to failed nodes as seen in GBR’s comparatively low PDR (Figure 3).

5 Conclusions

Several self-reconfiguring routing protocols were evaluated against two variations of
SOS. Results show the effectiveness of both protocols’ performance. SOS is preferred

670 P.K.K. Loh and Y.K. Tan

over SOSd in WSNs with moderate to heavy data traffic while SOSd, with constrained
broadcasting, performs better in lightly loaded networks. Results showed that SOS
and SOSd are able to achieve competitive levels of PDR, energy efficiency and packet
latency, with comparatively less packet collisions in the former. Limitations identified
include poor performance in having unrestricted message path redundancy and the use
of acknowledgement-based control. Finally, SOS and SOSd do not require any
changes to the MAC layer to achieve comparable performance to EAR. Practical
realization will therefore be easier as only the network layer needs to be implemented.

References

1. Ahuja, R., Bagrodia, R., Bajaj, L., Gerla, M., Takai, M.: GloMoSim: A Scalable Network
Simulation Environment. Technical report 990027, UCLA, Computer Science Dept (1999)

2. Akyildiz, I.F., Cayirci, E., Sankarasubramaniam, Y., Su, W.: A Survey on Sensor
Networks. IEEE Communications, 102–114 (2002)

3. Bourkerche, A.: Performance Evaluation of Routing Protocols for Ad Hoc Wireless
Networks. Mobile Networks and Applications 9(4), 333–342 (2004)

4. Boukerche, A., Werner, R., Pazzi, N., de Araujo, R.B.: A fast and reliable protocol for
wireless sensor n/ws in critical conditions monitoring apps. In: MSWiM, pp. 157–164
(2004)

5. Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.-C., Jetcheva, J.: A Performance Comparison
of Multi-Hop Wireless Ad Hoc Network Routing Protocols. In: Proceedings of
ACM/IEEE International, Conference on Mobile Computing and Networking, pp. 85–97
(October 1998)

6. Bulusu, N., Estrin, D., Girod, L., Heidemann, J.: Scalable Coordination for Wireless
Sensor Networks: Self-Configuring Localization Systems. In: ISCTA (July 2001)

7. CrossBow MICA 2 motes specification, http://www.xbow.com
8. Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting The World With Wireless

Sensor Networks. In: Proceedings of International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2001), Salt Lake City, Utah, USA (May 2001)

9. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next Century Challenges: Scalable
Coordination in Sensor Networks. In: MobiCOM (August 1999)

10. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next Century Challenges: Mobile Networking for
Smart Dust. In: Proc 5th ACM/IEEE Intl Conf Mobile Comp & N/wking, pp. 271–278
(1999)

11. Lewis, F.L.: Wireless Sensor Networks, Smart Environments: Technologies, Protocols,
and Applications. John Wiley, New York (2004)

12. Loh, P.K.K.: A Scalable, Efficient and Reliable Routing Protocol for Wireless Sensor
Networks. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.) UIC 2006. LNCS, vol. 4159,
pp. 409–418. Springer, Heidelberg (2006)

13. Lu, S., Ye, F., Zhang, L., Zhong, G.: GRAdient Broadcast: A Reliable Data Delivery
Protocol for Large Scale Sensor Networks. ACM Wireless Networks 11(2) (2005)

14. Schurgers, C., Srivastava, M.B.: Energy Efficient Routing In Wireless Sensor Networks.
In: MILCOM (2001)

15. Ye, F., Zhong, G., Lu, S., Zhang, L.: GRAdient Broadcast: A robust data delivery protocol
for large scale sensor networks. ACM Wireless Networks 11 (2005)

16. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In: INFOCOM (2002)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 671–682, 2007.
© IFIP International Federation for Information Processing 2007

PerSON: A Framework for Service Overlay Network in
Pervasive Environments

Kumaravel Senthivel1, Swaroop Kalasapur2, and Mohan Kumar3

1 Fujitsu Network Communications, Richardson, Texas, USA - 75082
2 Samsung Information Systems America, San Jose, California, USA - 94086

3 Department of Computer Science and Engineering,
The University of Texas at Arlington, Arlington, Texas, USA - 76019

kumar.senthivel@us.fujitsu.com,
s.kalasapur@samsung.com, kumar@cse.uta.edu

Abstract. With the increase in the number of mobile devices and their network
capabilities, users expect transparent access to available services in their
pervasive environment. However, heterogeneity and interoperability issues
persist in existing mechanisms. In this paper, we present a lightweight
framework, PerSON (Service Overlay Network for Pervasive Environments), to
abstract the details of service provision and utilization in a pervasive
environment. PerSON constructs an ad hoc service overlay network in the
pervasive environment based on service requests. PerSON achieves high
efficiency by combining service discovery with route discovery. PerSON is
especially suitable for resource constrained devices as minimal information
about discovered services and the neighboring devices is maintained. In
particular, the proposed framework provides the overlay network for the earlier
developed middleware for pervasive computing. We also describe the
implementation of a prototype for emergency response system (ERS).

1 Introduction and Motivation

In 1988, Mark Weiser envisioned that the computing devices will recede into the
background in pervasive computing environments [1]. Even though there has been
tremendous progress in many related areas, research is still being done to address
many challenges [2]. The most common challenges to creating a pervasive
environment are service provisioning and utilization. In a pervasive environment,
there are a variety of devices such as desktops, laptops, PDAs, cell phone, etc. These
devices may be connected to different physical and logical networks like the Wireless
LAN, Bluetooth, etc. The services and applications hosted on different devices should
be able to discover and communicate with each other over heterogeneous networks.

In keeping with Mark Wesier’s vision PerSON attempts to address two important
objectives of pervasive environments: i) A service developer’s focus should be on the
details of what to provide in the service rather than how to provide the service; and ii)
An application developer’s interest in the services that can be utilized by the
application rather than how to access them.

In this paper, we present a simple framework called PerSON (Service Overlay
Network for Pervasive Environments) for constructing a service overlay network.

672 K. Senthivel, S. Kalasapur, and M. Kumar

PerSON abstracts the complexity of the underlying heterogeneous networks and
provides a simple application interface to the user for developing services and
applications. We employ distributed query based architecture [3] [4] to discover
services and dynamic source routing (DSR) [5] to discover routes across multiple
networks. Service discovery is optimized by piggybacking the route messages in the
service discovery messages. We also describe the implementation of a prototype for
an Emergency Response System (ERS) [6] using the Pervasive Information
Community Organization (PICO) [7] architecture.

2 Related Work and Limitations

Over the last few years, significant research has been done in the field of service
provision and utilization. Almost all existing frameworks construct a service overlay
network to provide additional services over the underlying network. Service Overlay
Network (SON), proposed by the authors of [8], enhances the best-effort services in
the Internet by providing QoS. An application overlay network, created in [9], detects
and recovers from path outages and periods of degraded performance in the Internet
within seconds. The peer-to-peer overlay networks like Kaaza and Gnutella provide
content sharing. Content Addressable Network (CAN) [10], Chord [11] and Pastry
[12] organize the overlay network based on the content attributes to optimize the
search.

Recent research initiatives have led to the development of Konark [13] and JXTA
[14] [15] that provide support for generic services in a dynamic pervasive
environment. Though these frameworks have their own advantages, there are certain
limitations when executed in a pervasive environment. XML is used for service
description and other data messages in both Konark and JXTA. XML is flexible but
not suitable for resource constrained devices. High processing power and huge
memory is required to parse the XML messages. JXTA attempts to provide support
for such devices by introducing a new version called JXTA for Java 2 Micro Edition
(J2ME) or JXME. Konark is dependent on IP multicasting. The routing mechanisms
provided by the underlying network are used to route messages. Bridging between
different physical or logical networks is not supported. The services in one network
cannot be accessed by the devices in a different network. Though JXTA supports
different message transport bindings like TCP, HTTP and TLS, it requires special
designated devices to discover routes and forward messages.

3 Architecture of PerSON

The services and applications developed using PerSON may be hosted on devices
with different computing capabilities. The devices may be connected to different
physical or logical networks. A service overlay network is created by the framework
to ensure availability, accessibility and utility of services. The services in PerSON can
be discovered and utilized by external services and applications, regardless of the
topology and complexity of the underlying network.

 PerSON: A Framework for Service Overlay Network in Pervasive Environments 673

Suppose three devices (Fig. 1) are connected in two different physical networks.
For example, the cell phone and the laptop are connected using RFCOMM in the
Bluetooth network, whereas the laptop and the PDA are connected using TCP/IP in
wireless LAN. Generally, a service available on the PDA cannot be accessed by an
application on the cell phone. If the application and service are developed using
PerSON, then they are connected by the service overlay network. The two different
networks are bridged by the laptop using PerSON. The underlying network
complexity is hidden by the overlay network and service discovery and connectivity
are abstracted from applications and services.

Fig. 1. PerSON Architecture

3.1 PerSON Stack

The PerSON stack (Fig. 2) is implemented by every device that participates in the
overlay network. PerSON stack comprises three layers – network, device and service.

3.1.1 Network Layer
The network layer abstracts the various networks that connect the devices. A device is
identified by a unique device identifier (DID). The addresses of the physical networks
are masked by the DID. The network connections are made using the available
transport on each physical network. The unicast and broadcast functions of the
network layer are utilized by the device layer to exchange messages with the
neighboring devices.

3.1.2 Device Layer
The functions provided by the network layer are utilized by the device layer. The
details of service creation, discovery and utilization are abstracted from the services
by the device layer. The device component is central to the PerSON architecture. The
incoming messages are received by the device and delivered to the service
connections, the resolver or the discoverer based on the message type. Whenever a
message is received, the device table is updated with the physical address of the

Bluetooth
Wireless

LAN

Cell phone
Laptop

PDA

Bluetooth Wireless LAN

PerSON overlay

Application Service

Application Service

RFCOMM

PerSON

Application

RFCOMM TCP+UDP / IP TCP+UDP / IP

PerSON

Apps/Services Service

PerSON

674 K. Senthivel, S. Kalasapur, and M. Kumar

neighboring device from which the message is received. The device is also
responsible for choosing the right network connection to send the outgoing messages.
The services hosted by a device are registered in the local services. Each service is
identified by a unique service identifier (SID). A new service connection is spawned
when the device receives a service request. The connection is utilized by the service
layer to communicate with the application that requested the service.

Fig. 2. PerSON Stack

The discoverer is responsible for finding the required services. When an application
or service requests the discoverer to find a service, a query message is broadcast to other
devices. The query contains the service description in simple text. The discoverer can be
overridden to support user defined complex descriptions like XML format description.
The scope of the discovery is restricted in terms of hop count.

The received query messages are processed by the resolver. If a matching service is
found in the local registry then a result message is sent back by the resolver to the
device that requested the service. The result messages received from other devices are
also processed by the resolver. The SID of the requested service and the complete
route to the device that hosts the service are contained in the result message. The
service information is updated in the service table and the route information is
updated in the route table. If the discoverer is overridden, then the resolver is also
overridden to analyze the query message and search for service description.

The router is only used when the device is connected to multiple networks and the
device is willing to act as a bridge between those networks. The router is not required
for a device with only one network interface. When a message received is not
intended for the device, the router forwards it to the next hop in the route.

3.1.3 Service Layer
The user defined services and applications are included in the service layer. The
functions provided by the device layer are utilized to create new services. The
applications in the service layer request the device layer to discover other services and

TCP+ UDP
IP

Bluetooth

……Service Connections

Services Applications

Device
Router

Resolver

Discoverer

Network

Device

Service

Network Connections Network Connections

……Local Services

Service Table

Route Table

Device Table

 PerSON: A Framework for Service Overlay Network in Pervasive Environments 675

connect to the required services. Once a service connection is established by the
device layer, an application and a service can communicate using the connection.

3.2 Physical Network Connections

In a pervasive environment, a device may be connected to more than one network.
For example, a device may be connected to two IP networks supporting TCP and
UDP transports and to one Bluetooth network using RFCOMM connections. The
functionalities of the underlying network are utilized to broadcast query messages and
unicast other data messages. IP and Bluetooth networks are supported by the current
implementation of PerSON.

In IP networks, the query messages are broadcast using UDP transport. The device
responding to the query, first establishes a TCP connection. In Bluetooth networks,
when a device enters (or turned on) the network, the neighboring devices are
discovered using the Bluetooth discovery mechanism. If a PerSON service is found,
then a RFCOMM connection is established to those neighbors. Devices that can
alternate between the master and slave modes (of Bluetooth) listen for incoming
connections and also connect to other devices. Multiple connections with different
devices are possible for such devices. Devices that are not capable of alternating
between master and slave modes can have only one connection. Query messages are
flooded using multiple unicasts.

3.3 Overlay Network

The overlay network in PerSON is constructed to facilitate service provisioning and
utilization. By combining the service discovery with route discovery, high efficiency
is achieved. The route information is piggybacked in the service discovery messages,
so that additional route discovery messages are not required to discover the route
between the service provider and the service consumer.

Distributed query architecture is used to propagate the service discovery queries. In
a pervasive environment where only local scalability is considered the flooding
mechanism, restricted by the scope is a simple method for service discovery. The
devices do not depend on specific service directories to discover the available
services. Each device broadcasts a query for the required service in its local network.
All other devices in the local network process the query message, but only those
devices that support routing to bridge different physical or logical networks will
forward the queries.

Consider the network in Fig. 3(a) that comprises five different sub networks.
Devices S, A, B, C, D and E belong to network I. Devices A, B, X, and Y belong to
network II. Devices E, M, and N belong to network III. Device A and P belong to the
network IV. Devices X and R belong to the network V. Only devices A, B and E have
two different network interfaces and belong to two different networks. The device S
sends a query for a specific service with a scope of 2. The query is broadcast in the
local network of device S. The devices A, B, C, D and E in this local network process
the query. But only those devices that are willing to route the messages will propagate
the query to other networks. For example, B propagates the query and acts as a bridge
between networks I and II. E cannot propagate the query because it does not support

676 K. Senthivel, S. Kalasapur, and M. Kumar

(a) (b)

S

BX

D
Physical Network Connection

Overlay Network connection

Result message forwarding

S

B

E
C

A

D

M

N

Y

X 1

1

1

1

1

2

2
2

P3

R

I

II

III

IV

V

Fig. 3. (a) Query propagation in PerSON, (b) Overlay network in PerSON

routing. Duplicate queries are not propagated. Hence device A propagates the query
to network IV only once, even if it receives the same query from devices S and B.

Whenever a query message (Fig. 4 (b)) is broadcast in a network, the DID of the
device that propagates the query is added to the route information in the message. The
device also specifies the physical network address through which other devices can be
connected. The time for which the device can be expected to be available is also
added to the message. When device B receives the query message from device S, it
knows how to connect to device S if needed and similarly device X knows how to
connect to device B. This information is cached in the device table (Fig. 4 (i)) and
cleared from cache after the specified time. Each record in the device table contains
the DID, available time and the physical address of the neighboring device.

Device X also knows the complete route to device S by reversing the route in the
query message. The route information for device S is cached in the route table (Fig. 4
(j)), which is cleared when all the connections to the next hop are broken. The route
information can also be cleared when any other device in the route sends a negative
acknowledgement specifying that the route is longer valid. Each record in the route
table contains the DID of the destination device and the list of all intermediate
devices. A device may cache many routes to another device based on the route
information specified in the messages it receives.

Suppose the required service is provided by device X, its result message (Fig. 4
(c)) to device S is sent via the resolver of device X. The resolver specifies the
complete route in the message. The network layer chooses the first entry in the device
table and tries to connect to the device if there are no previous connections. If the
connection is successful, then the message is sent, else the network layer tries to
connect using the next entry in the device table. If the message cannot be sent an error
message is returned to the device layer. All routes that include this device are cleared
from cache. The device layer retries to send the message with an alternate route. The
message is dropped if there are no more routes to the destination device. When a
device such as B receives the message (sent from X to S), it simply routes the
message to S via the router in the network layer.

 PerSON: A Framework for Service Overlay Network in Pervasive Environments 677

Scope Text Description of the required service

1 byte (DLEN -1 - 2) bytes

Query ID

2 bytes

SID Available Time Service Description

8 bytes 16 bytes (DLEN - 2 -16 - 8) bytes

Query ID

2 bytes

SID CID (Source)

16 bytes 1 byte 2 bytes

0

CID (Destination)

1 byte 2 bytes

1

CID (Source)

2 bytes 2 bytes

CID (Destination) 0

1 byte

Error Message

2 bytes (DLEN – 16 – 1) bytes

CID (Destination) Response

1 byte

Data Message

2 bytes (DLEN – 16) bytes

CID (Destination)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Header

Msg
Type

Hop
Count

RLEN

Route

Address

DLEN

Data

Footer

+person+

Message type

Current number of
hops

Length of the route

List of DID in the
route

Physical Address
of previous device

8 bytes

1 byte

1 byte

1 byte

RLEN *
16 bytes

N bytes

Length of data 2 bytes

Data DLEN bytes

-person-8 bytes

Avl Time
Available time of the
device

8 bytes

(a)
DID RLEN List of DIDs of intermediate devices

1 byte16 bytes RLEN * 16 bytes

DID Available Time Physical Address

8 bytes16 bytes N bytes

SID Available Time Service Description

8 bytes16 bytes N bytes

DID

16 bytes

(i)

(j)

(k)

Fig. 4. (a) Message Format, (b) Query, (c) Result, (d) Connect Request, (e) Close Request, (f)
Success Response, (g) Error, (h) Data, (i) Device table, (j) Route Table (k) Service Table

Suppose device D also provides the requested service then it sends the result
message to device S. The overlay network (Fig. 3(b)) is formed only between the
devices X and S and between devices D and S. A device that provides a service gets
connected to a device that consumes the service. When the device S receives the
result message, it caches the service information in the service table (Fig. 4 (k)) and
the reversed route in the route table. Each record in the service table contains the SID,
service available time, the DID of the device which provides the service and the
service description.

An application on device S requests the device layer to connect to the required
service by specifying the SID, The device layer retrieves the DID of the device X that
provides the service from the service table. The first available route to device X is
obtained from the route table. The device layer then requests the network layer to
send the message to the DID of the next hop (B). Devices S and X exchange messages
(Fig. 4), through device B, by using the connections previously established during the
service discovery process.

4 Prototype Implementation

The PerSON framework is not dependent on a specific development language or
operating system. The reference implementation of PerSON is developed using Java.
The J2SE version of PerSON can be executed in powerful devices like desktops and

678 K. Senthivel, S. Kalasapur, and M. Kumar

laptops. The J2ME version can be executed in resource constrained devices like PDAs
and cell phones. The J2SE version supports both TCP/IP and Bluetooth networks
whereas the J2ME version supports only Bluetooth networks. The reference
implementation provides simple Java APIs to create, discover and utilize services.

The implementation of PerSON is used to provide the overlay network for the
PICO middleware for pervasive computing. The main components of PICO are
devices, and intelligent agents called delegents. PICO creates mission oriented
dynamic and static communities of delegents that perform tasks for the users and
devices.

4.1 PICO Implementation Using PerSON

The device layer and the service layer of PerSON integrate with the device layer and
the delegent layer of PICO middleware. When a device is started, the different
networks supported by PerSON are initiated. The TCP/IP networks open a UDP
server socket and wait for incoming query messages. The Bluetooth networks explore
other devices in the vicinity and connect to the devices that implement PerSON.
Additional functionalities like the definition of system characteristics are added by the
device layer of the PICO framework. The delegent layer of the PICO middleware is
similar to the service layer of the PerSON framework.

4.2 Emergency Response System

A prototype for enhanced Emergency Response System (ERS) is implemented by
employing services developed using the PICO middleware framework. In the scenario
for an ERS, when an automobile on a highway meets with an accident, a crash
detector application running on the automobile’s computer detects the crash through
various sensors. The user may or may not require immediate help based on the
intensity of the crash. In order to avoid false alarms the application has to confirm
whether the user needs any help. So, it communicates with a UI Service that can
inquire the user and confirm the crash. The UI service may be located on the user’s
watch or PDA or any device that can display the message and get the user’s attention.
If the user’s response is negative or if the user does not respond, the computer
assumes that a real crash has occurred. Now the application finds a Dialer Service that
can request help from an emergency response center. The dialer service may be
located on the user’s cell phone or any communication device that can access the
Internet. The crash detector application requests the dialer service to place an
emergency call with information about the location of the incident and user’s personal
details for retrieving the available medical history. The emergency response center
dispatches an emergency medical services (EMS) vehicle nearest to the location.

In the prototype for the ERS, the crash detector application is executed on a Fujitsu
laptop, equipped with a DBT120 Bluetooth dongle driven by Microsoft Bluetooth
stack. The UI service is executed on a Sharp Zaurus 5500 PDA with a compact flash
wireless LAN card. The Dialer service is executed on the Nokia 6230 cell phone. A
light sensor is used to simulate the crash. The laptop and PDA communicate using an
ad hoc wireless LAN. The cell phone and the laptop communicate using Bluetooth
network.

 PerSON: A Framework for Service Overlay Network in Pervasive Environments 679

Connect to UI Service

Create Dialer
Service

Execute Crash Detector

Find UI Service

Detect Crash

Nokia 6230 cell phone
Dialer Service
PerSON for J2ME

Sharp Zaurus 5500
UI Service
PerSON for J2ME

Laptop
Crash Detector App
PerSON for J2SE

Create UI
 Service

Connect to
PerSON Bluetooth

Service using
RFCOMM

Result UI Service

Find Dialer Service

Response Dialer
Service

Find Dialer Service

Connect to Dialer
Service

Send “Contact
Emergency”

Receive “OK”

Send “Are you OK?”

Receive “NO”

Fig. 5. Execution of ERS services using PerSON

The services and the application are initialized and executed as shown in Fig. 5.
The PerSON framework is utilized by the PICO middleware to initialize the
Bluetooth network in the cell phone and the laptop. A Bluetooth service of PerSON is
created on the cell phone and the laptop. When the Bluetooth network is initiated in
the laptop the Bluetooth discovery mechanism discovers the cell phone. The laptop is
connected to the “PerSON” service on the cell phone using RFCOMM connection.
The dialer service and UI service are created and registered only in the devices in
which they are hosted. When the crash detector detects a crash, a query message is
broadcast using UDP in the IP network and unicast to the cell phone using the
RFCOMM connection. The query message is received by PerSON on PDA and a
TCP connection is created between the laptop and the PDA. The response message
for the UI service is unicast over the TCP connection. A service connection is
established between the crash detector application and the UI service. The data
messages are exchanged over this service connection. Similarly, the dialer service is
discovered and utilized by the crash detector application.

5 Features of PerSON

5.1 Light-Weight Framework

In PerSON, the directory of available services in the network is distributed. Each
device stores only the information about the provided services. Other devices cache
the information for the discovered services and the complete route to those services.

680 K. Senthivel, S. Kalasapur, and M. Kumar

Table 1. Comparison of PerSON, JXTA, and Konark

Feature PerSON JXTA Konark
Support for
resource
constrained
devices

Yes. Uses
binary
messages and is
light-weight

Partial support. Uses
XML messages for
JXTA and binary
messages for JXME

No support. Uses
XML messages

Support for
heterogeneous
network

Supports
TCP/IP and
Bluetooth
networks

Current implementation
supports only TCP/IP
networks.
Supports different
message transport
binding

No support.
Depends on IP
multicasting

Support for
multiple network
interfaces

Yes. Yes No

Support for
dynamic
networks

Yes Yes Yes

Service discovery
Highly
decentralized
Only reactive.

Uses distributed service
indices.
Reactive and proactive

Highly
decentralized
Reactive and
proactive

Service
description

Simple Text XML XML

Support for
service
composition

No No No

Platform
Independence

Yes Yes Yes

Scalability
Locally
scalable

Scalable over Internet
Depends on the
scalability of IP
multicasting

Since there is no central repository, PerSON requires less memory to store the
minimal service information, compared to the service-coordinator based approaches.
PerSON uses simple text to describe services. The memory required to cache the
discovered services is considerably reduced. A typical record in the service table
requires 16 bytes for the service identifier, 8 bytes to specify the available time, 16
bytes the device identifier and say, 256 bytes for the service description. A total of
296 bytes is required to cache the information of a service. A typical record in the
route table for a route with 3 hops requires 16 bytes for the destination device
identifier, 1 byte for the length of the route and 32 bytes for the route. A total of 47
bytes is required to cache the route. A record in the device table that stores the
information about another device on an IP v4 network requires 16 bytes for the device
identifier, 8 bytes for the available time and 6 bytes for the IP address and the port
number. A total of 30 bytes is required to cache the device information.

 PerSON: A Framework for Service Overlay Network in Pervasive Environments 681

5.2 Heterogeneous Network Connectivity

The reference implementation of PerSON is capable of bridging IP networks and
Bluetooth networks. Devices connected to only Bluetooth network can communicate
with devices connected only to an IP network using any device that is connected to
both networks. The bridging is done at the application layer above the TCP/IP stack
and the Bluetooth stack. A device willing to route the messages should include the
router component of PerSON stack. The router component simply forwards the
message to the next hop in the route.

5.3 Dynamic Service Discovery and Routing

In order to support heterogeneous networks, the messages have to be routed in the
overlay network. Dynamic source routing protocol is used in the overlay network for
routing messages in the ad hoc environment. The route discovery is merged with
service discovery. The route information is piggybacked in the service discovery
query messages. A device receiving the query message knows the route to the device
that requires the service. Similarly a device receiving the response message knows the
route to the service provider. The service and route information are cached in each
device. The complete route is specified in each message. The route includes only the
list device identifiers of intermediate devices. Each intermediate device is responsible
for connecting to the next hop in the route using the physical network connections.

6 Conclusion

PerSON is a framework for constructing service overlay network to facilitate
interoperability in pervasive environments. It provides a light-weight abstraction of
the complexities of the underlying heterogeneous network to the applications and
services. A reference implementation of the framework is developed and used to
provide the overlay network for the pervasive computing. The prototype is implem-
ented using the services for an enhanced emergency response system. Future work
includes support for service composition and security. Authentication and authori-
zation will be incorporated in future versions of PerSON. The framework will also be
evaluated for scalability and throughput.

Acknowledgements. The material presented in this paper is based on the work
supported by the National Science Foundation Research Grants STI -0129682 and
IIS-0326505.

References

1. Weiser, M.: The Computer for the 21st Century. Scientific American 265(3), 94–104
(1991)

2. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal
Communications 8(4), 10–17 (2001)

682 K. Senthivel, S. Kalasapur, and M. Kumar

3. Perkins, C.E., Koodli, R.: Service discovery in on-demand ad hoc networks. IETF Internet
Draft (work in progress) (2002)

4. Engelstad, P.E., Zheng, Y.: Evaluation of Service Discovery Architectures for Mobile Ad
Hoc Networks. In: Wireless On-demand Network Systems and Services. Proceedings of
the Second Annual Conference on. pp. 2–15 (2005)

5. Perkins, C.E., Royer, E.M., Das, S.R., Marina, M.K.: Performance comparison of two on-
demand routing protocols for ad hoc networks. IEEE Personal Communications 8(1), 16–
28 (2001)

6. Kalasapur, S., Senthivel, K., Kumar, M.: Service Oriented Pervasive Computing for
Emergency Response Systems. In: Pervasive Computing and Communications Workshops
2006. Ubicare’06. Proceedings of the Fourth Annual IEEE International Conference on,
pp. 517–521 (2006)

7. Kumar, M., Shirazi, B., Das, S.K., Singhal, M., Sung, B.Y., Levine, D.: PICO: A
Middleware framework for Pervasive Computing. IEEE Pervasive Computing 2(3), 72–79
(2003)

8. Duan, Z., Zhang, Z.L., Hou, Y.T.: Service overlay networks: SLAs, QoS and bandwidth
provisioning. Network Protocols. In: Proceedings of the 10th IEEE International
Conference on, pp. 334–343 (2002)

9. Anderson, D., Balakrishnan, H., Kaashoek, M., Morris, R.: Resilient Overlay Network. In:
Proceedings of ACM Symp on Operating Systems Principles (2001)

10. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proceedings of ACM SIGCOMM, pp. 161–172 (2001)

11. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F.,
Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for Internet applications.
Networking. IEEE/ACM Transactions on 11(1), 17–32 (2003)

12. Rowstron, A., Druschel, P.: Pastry: Scalable, Distributed, Object Location and Routing for
Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

13. Choonhwa, L., Helal, A., Desai, N., Verma, V., Arslan, B.: Konark: A system and
protocols for device independent, peer-to-peer discovery and delivery of mobile services.
Systems, Man and Cybernetics. IEEE Transactions on 33(6), 682–696 (2003)

14. Li, G.: JXTA: a network programming environment. IEEE Internet Computing 5(3), 88–95
(2001)

15. Traversat, B., Arora, A., Abdelaziz, M., Duigou, M., Haywood, C., Hugly, J., Pouyoul, E.,
Yeager, B.: Project JXTA 2.0 Super-Peer Virtual Network (2003), http://www.jxta.org/
project/ www/docs/JXTA2.0protocols1.pdf

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 683–693, 2007.
© IFIP International Federation for Information Processing 2007

Universal Adaptor: A Novel Approach to Supporting
Multi-protocol Service Discovery in Pervasive Computing

Joanna Izabela Siebert1, Jiannong Cao1, Yu Zhou1,2, Miaomiao Wang1,3,
and Vaskar Raychoudhury1

1 Department of Computing,
The Hong Kong Polytechnic University,

Kowloon, Hong Kong
2 Department of Computer Science and Technology,

Nanjing University,
Nanjing, China

3 The University of Science and Technology of China,
Hefei, Anhui, China

{csjsiebert,csjcao,csyuzhou,csmmwang,
csvray}@comp.polyu.edu.hk

Abstract. Service discovery is an important and challenging issue in pervasive
computing. To date, many service discovery protocols have been proposed and
new ones are under development. However, pervasive computing involves
applications running in heterogeneous environments and application developers
must cope with diversity of network infrastructures, middleware platforms, and
hardware devices. There is a need for integrating or bridging these service
discovery schemes in order to support the discovery of the services available in
different environments. In this paper we study how to provide service discovery
across different environments supported by different service discovery systems,
which may use standard protocols as well as tailor-made mechanisms. We
propose the Universal Adaptor (UA) approach, which consists of two major
components: the Universal Adaptor Primitives (UAP) and the Universal Adaptor
Mapping (UAM). UAP is the universal set of primitives used by the user to
discover the services across different environments, while UAM provides the
mapping between the Universal Adaptor Primitives to the primitives used in
various service discovery systems. We have developed a prototype of the
proposed approach and we describe the implementation issues and the
experiment results.

Keywords: Pervasive computing, Service discovery, Heterogeneous
environments.

1 Introduction

Along with the advances in pervasive computing technologies, users are no longer
constrained to only a single computing environment but can work across different
environments, meeting with a diversity of software, hardware devices, and network
infrastructures. Heterogeneity of the environments brings significant problems that

684 J.I. Siebert et al.

application developers must cope with. For instance, devices must be able to discover
and share services among each other. However, manual configuration may require
special skills together with long time to set up. Therefore, service discovery is an
important, challenging task in pervasive computing.

Many service discovery protocols have been proposed. Examples include UPnP,
SLP, and Jini [1, 2, 3]. They allow automatic detection of hardware devices, software,
and other resources in a computing environment along with services offered by the
various kinds of entities. Existing service discovery protocols differ in the way service
discovery is performed, and no single protocol is suitable for all the environments. Due
to the differences in the service discovery approaches implemented, a user working in
one environment may not be able to search for the services available in another
environment that suits the user’s need. To support service discovery across different
environments, new techniques are needed to integrate or bridge the service discovery
protocols used in a diversity of environments.

Works can be found on providing interoperability of service discovery protocols [11,
12, 13, 14, 15, 16]. In this paper, we study how to provide service discovery across
different environments supported by different service discovery systems, which may use
standard protocols such as SLP and Jini, as well as tailor-made mechanisms that support
multiple protocols within an environment, such as ReMMoC [13].We propose the
Universal Adaptor (UA) approach, which consists of two major components: the
Universal Adaptor Primitives (UAP) and the Universal Adaptor Mapping (UAM). UAP
is the universal set of primitives used by the user to discover the services across different
environments, while UAM provides the mapping between the Universal Adaptor
Primitives to the primitives used in various service discovery systems. The Uniform
Adaptor can be implemented in any environment, independent of the service discovery
system used in that environment. This approach enables users to discover available
services with no knowledge of the service discovery system adopted in an environment.
We have developed a prototype of the proposed approach and we describe the
implementation issues and the experiment results.

Comparing with existing approaches, Universal Adaptor provides a simple and
flexible solution. It provides only a single set of APIs and supports not only all existing
but also future service discovery systems. It is lightweight and easy to implement in
diverse infrastructures and to use by users.

The rest of the paper is organized as follows. In Section 2, we present the related
work. In Section 3, we present architecture overview of proposed system. Section 4
shows the design of Uniform Adaptor Primitives. Section 5 describes how to realize the
Uniform Adaptor Mapping. In section 6, we describe the implementation of a prototype
of the proposed UA approach. We conclude the paper in Section 7 with the discussion of
our future work.

2 Related Work

Many service discovery protocols have been proposed for different applications in
various environments [5, 3, 1, 4, 2]. Survey and comparisons between the existing
service discovery protocols can be found in [6, 7, 8, 9, 10]. New service discovery
protocols targeting at pervasive environments are also emerging [16, 18, 19]. In this

 Universal Adaptor: A Novel Approach to Supporting Multi-protocol Service 685

section, we focus on the works that support interoperability of the service discovery
protocols. Several approaches on supporting multi-protocol service discovery have been
proposed [11, 12, 13, 14, 15, 16].

All the existing service discovery mechanisms realize the concept of client/server
application. Clients are entities that need some functionality (service) and servers are
entities existing in the environment and offering this functionality. Service discovery is
the framework for connecting clients with services. Existing works towards achieving
multi-protocol service discovery use a middleware approach but differ in where the
interoperability support is provided. The middleware can be on the service side, client
side, or intermediate entity.

An example of providing the support on the service side is INDISS [14] designed for
home networks. INDISS provides parsers and composers, which decompose a request
from the source service discovery protocol into a set of events and then compose them
into message understood by target service discovery protocol.

INDISS can also be deployed on the client side. Another example of middleware on
the client side is ReMMoC [13]. In ReMMoC, the client side framework provides the
mappings between all the supported service discovery mechanisms. Abstraction of
discovery protocols to the generic service discovery is achieved by using a generic API
or doing discovery transparently to the client. In this approach, all possible mappings
need to be provided at the client side.

Service side support can also be based on service proxies [16]. When a new service
appears or disappears in one of the environments, the framework detects it and creates or
removes its proxies from other environments. However, this approach requires dynamic
service proxies to be implemented for each environment, which increases developer’s
workload.

Another way of providing interoperability support is to provide an intermediate entity
[12, 11]. In Open Service Gateway Initiative OSGi [12] all the connections and
communications between the devices are brokered by a Java-based platform. An internal
service registry exists in the framework. Interoperability is achieved by providing an
API to map the given service discovery protocol to OSGi and vice versa. Supporting
new service discovery protocols requires defining new APIs for them. Gateway
functionality is also utilized by protocol adapters in the FuegoCore Service broker [11]
designed for mobile computing environments. The service broker registers the mappings
between its internal template and the external templates used by different service
discovery protocols. Extending the FuegoCore service broker to new service discovery
protocols requires creating and deploying additional service discovery protocol
adapters. INDISS [14], mentioned above, can be deployed as an intermediate entity as
well. The intermediate entity approach requires broker to integrate all the adapters into
one system. In a network with a large number of service discovery protocols the
framework may not be scalable.

Another approach is providing service that discovers services across different
environments [15]. In MUSDAC, it registers itself in all the environments, so clients can
use whatever protocol to discover it. However, clients must have the knowledge about
MUSDAC and the process of discovering the service has high processing requirements.

The centralized approach has the scalability problem. In the future pervasive
environment, an unlimited number of service discovery mechanisms will emerge.

686 J.I. Siebert et al.

Providing all possible translations in one middleware would result in a very heavy
system. Our work reported in this paper is based on the analysis of the following
requirements on the interoperability system for pervasive computing:

- no change should be imposed on the existing service discovery mechanisms
- no change should be imposed on the services registered in domains
- no functionality of the environment should be compromised
- the system should be lightweight, scalable, and extendable.
- support both standard and tailor-made service discovery mechanisms

Our approach addresses all of these requirements. In the following sections we
describe design of the system.

3 System Model and Architecture

The aim of our study is to support interoperability between existing as well as yet
unknown service discovery systems.

In this section, we describe the system model of the proposed UA approach. We
define an Environment as a Service Discovery Domain, where a native service discovery
system is able to find a specified resources if they are available in the domain. A native
service discovery system can take the form of an existing service discovery protocol, e.g
SLP, Jini. Moreover, it can be a tailor-made mechanism, e.g. ReMMoC which supports
the interoperability of service discovery within an environment.

Fig. 1. The system model

 Universal Adaptor: A Novel Approach to Supporting Multi-protocol Service 687

Services in an environment can be provided by hardware devices, software, and
other entities. Examples of software services can be weather forecast, stock quotes, and
language translation. Hardware devices can provide services directly or via another
device. For example, the printing service can be provided by a Jini enabled printer, or
by a printer that is attached to computer running Jini software.

Figure 1 shows the major entities in the UA system. There are two major
components: The Universal Adaptor Primitives (UAP) and the Universal Adaptor
Mapping (UAM). UAP acts as uniform interface to the client. The client makes use of
UAP to discover and access services. The main function of UAM, on the other hand, is
to provide the mapping from UAP to the specific primitives of service discovery
protocols (SDP).

The Universal Adaptor (UA) is installed in each environment. On the client side, the
UA provides Universal Adaptor Primitives (UAP) for the communication between the
client and UA. On the service side, UA is a component tailored to the environment,
mapping the UA primitives to those of the native service discovery system and
performing service discovery on behalf of the client.

4 Universal Adaptor Primitives (UAP)

We studied existing service discovery protocols and observed that all the service
discovery systems provide the same functionality for end users and differ only in the
underlying models and operations. We can abstract the common characteristics of
existing approaches and to provide a universal set of primitives that enable service
discovery across diverse environments.

The format of the proposed primitives is the following:

[Return_Values] Primitive_Name [Parameters]

Primitive_Name represents the functionality requested by the client; Parameters is a
set of attributes required in the discovery process; Return_Values is set of values
returned to the client.

Fig. 2. Universal Adaptor Primitives

688 J.I. Siebert et al.

The discovery process starts when the client expresses his interest in a particular
service. Next, the discovery system searches for the service and returns result to the
client. The common feature of all the existing service discovery mechanisms is that they
support the process of looking for service and enable the access to the service.
Therefore, we propose two universal primitives: Discovery and Access. Specific UA
Primitives with parameters are shown in Figure 2.

The Discovery primitive is of the following format:

[RV_ST, RV_F, RV_S] Discovery (Service Type, Filter, Security).

A client requests the specific service by providing its type in the ServiceType
parameter. The attributes of the service are specified by the client in the Filter
parameter. If the authentication of the client for using the service is required, the client
provides the required information in the Security parameter. The Discovery primitive
provides three return values. RV_ST is the return value containing list of the discovered
services of the requested type. Each of the discovered services has a unique ID assigned
by the UA. RV_F provides a list of attributes for each of the discovered services. For
example, for a printing service, an attribute can be specified to indicate whether the
printer supports colour printing or only black&white. RV_S is a return value indicating
the authentication status.

After the successful discovery of the requested service, the client selects one of the
returned services and access the service by using the Access primitive, which is of the
following format:

[RV_status] Access (ServiceID, Service Method, Attributes.)

The client provides the parameter ServiceID, the ID of the selected service. The
ServiceMethod parameter specifies the specific method provided by the service. The
Attributes parameter is a set of attributes specific to the particular service. RV_status is
the return value indicating the status of accessing the service, e.g., success or fail.

5 Universal Adaptor Mapping (UAM)

In this section, we describe UAM, which performs the mapping from UAP to the SDP
specific primitives used in the target environment. As we mentioned before, there is a
number of currently existing service discover mechanisms, including protocols and
interoperability systems. Moreover, new mechanisms are under development.
Therefore, the many-to-many approach providing a mapping between the primitives of
each pair of these mechanisms would result in a heavy system with difficulties in
adapting to the future service discovery mechanisms. Our approach is a one-to-many
approach, providing the tailored mapping between the UAP to each native protocol used
in the target environment.

For the structure of components of the UAM, please refer to Figure 3. More
specifically, the functions of UAM components are described in Table 1.

Recall that to discover or access a service, the client uses the UA primitives
described in previous section. Translator is a component responsible of mapping the
UA primitives to the primitives of the native protocol used in the Environment. The
translation process takes place each time when a client sends a query.

 Universal Adaptor: A Novel Approach to Supporting Multi-protocol Service 689

Table 1. Function of UAM components

Component Function

ESD Description Rules specifying the characteristics of
the service discovery protocol used in
the particular environment, in the
form of the primitives extracted from
the native protocol

Translator Module that translates UA primitives
into native primitives, and outputs an
algorithm for service discovery using
the native primitives

ESDA Agent that uses the algorithm
generated by Translator to perform
service discovery in the target
environment. Depending on the
native service discovery protocol,
ESDA can register for service
advertisements or performs active
service discovery

Translator performs mapping based on the ESD Description (Environment Service
Discovery Description), which is set of rules specifying the characteristics of the
service discovery protocol used in the particular environment. Because different
environments adopted diverse models at the low level, the rules used by ESD
Description are tailored to each environment and are described in the form of the
primitives extracted from the native service discovery protocol. Translator outputs an
algorithm for the service discovery using the native primitives.

Fig. 3. Universal Adaptor Mapping

690 J.I. Siebert et al.

ESDA (Environment Service Discovery Agent) is representing the client in the
process of discovery in the target environment. It uses the algorithm generated by
Translator. From the server’s point of view, ESDA is the same as any other client in
the environment using the native protocol for service discovery. All the
communications take place between the service discovery protocol and ESDA.
Another function of ESDA is to provide the client with the return values from
environment, e.g. information about the attributes.

6 Prototype Implementation and Experience

We have developed a prototype of our proposed UA approach. The system has two
service discovery environments. One uses Jini and the other uses SLP as the native
service discovery protocols. For Jini, we use Jini2_1 [20] which is an implementation
of the Jini technology from Sun Microsystems. For SLP, we use a pure Java
implementation of SLP – jSLP [21].

For each environment, a tailored UA is implemented. The implementation of UA for
each environment consists of two parts – client side UA and service (environment) side
UA, both are written in Java. Client side UA is the same for both Jini specific
implementation and SLP specific implementation. On the service side, the Java UA
listens on a port for the incoming requests. It parses the request, and uses reflection
mechanism to invoke the corresponding service in the local environment, then passes the
result back to the client.

As an example, we implemented a weather information service using Jini and SLP
separately in two environments. We measured the performance of our UA system, in
terms of the overhead in time comparing with the native service discovery protocols.
Experiments are conducted with a desktop computer with CPU Pentium D 2.8GHz, 1G
Memory and a laptop computer with CPU Pentium Mobile 1.6GHz, 512M Memory
connecting to the LAN with 100Mbps Ethernet and 11Mbps 802.11b protocol
respectively.

We first measured the time for service discovery in the two environments using
native service discovery clients (both for Jini and SLP). Next, we compared that with
the discovery time using JiniUA and SLPUA respectively. The results of the
experiments are presented in Table 2.

In the Jini environment, the average service discovery time is 638 milliseconds, and
in the case of using UA, the average time is 743 milliseconds. In the SLP environment,

Table 2. Discovery overhead of UA

 Jini
Environment

SLP
Environment

Service discovery time without UA [ms] 638 152

Service discovery time with UA [ms] 743 197

Overhead [%] 16 30

 Universal Adaptor: A Novel Approach to Supporting Multi-protocol Service 691

the average service discovery time is 152 milliseconds and the average time in the case
with UA support is 197 milliseconds. The overhead that UA imposes on service
discovery time is mainly introduced by the socket setup and request parse.

We also measured the time for service access in the Jini and SLP environments and
compared them with the access time using UA. Results are presented in Table 3.

Table 3. Access overhead of UA

 Jini
Environment

SLP
Environment

Service access time without UA [ms] 832 223

Service access time with UA [ms] 926 268

Overhead [%] 11 20

In the Jini environment, the average service access time is 832 milliseconds, and in
UA client, the average time is 926 milliseconds. In the SLP environment, the average
service invoking time is 223 milliseconds, and the average time in the case with UA is
268 milliseconds. Similar to the discovery time experiments, the overhead that UA
imposes service access time is related to the socket setup and request parse.

In summary, the experiment results show that the discovery and access time
overhead imposed by UA is very small.

7 Conclusion

This paper presents Universal Adaptor, a novel approach towards supporting
multi-protocol service discovery in pervasive computing. UA consists of Universal
Adaptor Primitives and Universal Adaptor Mapping. It provides mapping from UAP to
protocol specific primitives. The client makes use of UAP to discover and access
services. UAM performs mapping from UAP to service specific SDP primitives. From
the point of view of the service side, Universal Adaptor is a tailored component that uses
native SDP and performs service discovery on behalf of the client.

Our contribution to the interoperability of service discovery is providing solution that
in a lightweight manner bridges not only all existing but future service discovery
systems, including standard ones, as well as service discovery mechanisms that support
multiple protocols within the domain. Our implementation has shown that Universal
Adaptor is a simple and flexible solution. It is easy in sense of writing the code,
implementing in diverse infrastructures and using by client.

We will conduct more experiments to investigate the performance of the UA
approach. In our future work, there are many issues to investigate. First, we plan to use
mobile agent to find services in environments on behalf of users. Second, so far, we have
assumed that the client will use UA primitives for service discovery and access, and not
considered how to support clients using existing protocols. We will develop the
mechanisms to provide transparent UA multi-protocol service invocation to these

692 J.I. Siebert et al.

clients. Finally, we will investigate the possibility to let the client take the Universal
Adaptor and dynamically install it to the target environment.

Acknowledgements

This work is supported by Hong Kong University Research Grant Council under the
CERG grant PolyU 5183/04E

References

1. Goland, Y., Cai, T., Leach, P., Gu, Y., Albright, S.: Simple Service Discovery Protocol 1.0.
IETF, Internet-Draft Version 03 (October 1999)

2. Guttman, E., Perkins, C., Veizades, J., Day, M.: Service Location Protocol, Version 2. IETF,
RFC 2608 (June 1999)

3. Jini Technology Core Platform Specification Version1.2 (December 2001)
4. Salutation Architecture 2.1, Salutation Consortium, Specification (1999)
5. Specification of the Bluetooth System, Bluetooth Forum, Specification (February 2001)
6. Bettstetter, C., Renner, C.: A Comparison of Service Discovery Protocols and

Implementation of the Service Location Protocol. In: Proceedings of the EUNICE Open
European Summer School, Twente, Netherlands (September 2000)

7. Marin-Perianu, R., Hartel, P., Scholten, H.: A Classification of Service Discovery Protocols.
Technical Report TR-CTIT-05-25, Centre for Telematics and Information Technology,
University of Twente, Enschede. ISSN 1381-3625 (June 2005)

8. Helal, S.: Standards for Service Discovery and Delivery. IEEE Pervasive Computing 1(3),
95–100 (2002)

9. Zhu, F., Mutka, M.W., Ni, L.M.: Service Discovery in Pervasive Computing Environments.
IEEE Pervasive Computing 4(4), 81–90 (2005)

10. Richard, G.G.: Service Advertisement and Discovery: Enabling Universal Device
Cooperation. IEEE Internet Computing 4(5) (2000)

11. Koponen, T., Virtanen, T.: A Service Discovery: A Service Broker Approach. In:
Proceedings of the 37th Annual Hawaii international Conference on System Sciences (Hicss
2004) - Track 9, January 05-08, 2004, vol. 9, IEEE Computer Society, Washington, DC
(2004)

12. Dobrev, P., Famolari, D., Kurzke, C., Miller, B.A.: Device and service discovery in home
networks with OSGi. IEEE Communications Magazine 40(8), 86–92 (2002)

13. Grace, P., Blair, G.S., Samuel, S.: A reflective framework for discovery and interaction in
heterogeneous mobile environments. SIGMOBILE Mob. Comput. Commun. Rev. 9(1)
(2005)

14. Bromberg, Y.D., Issarny, V.: INDISS: Interoperable Discovery System for Networked
Services. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, Springer, Heidelberg
(2005)

15. Raverdy, P.G., Issarny, V., Chibout, R., de La Chapelle, A.: A Multi-Protocol Approach to
Service Discovery and Access in Pervasive Environments. In: Proceedings of
MOBIQUITOUS – The 3rd Annual International Conference on Mobile and Ubiquitous
Systems: Networks and Services, San Jose, CA, USA (July 2006)

16. Kang, S., Ryu, S., Kim, N., Lee, Y., Lee, D., Moon, K.: An Architecture for Interoperability
of Service Discovery Protocols Using Dynamic Service Proxies. In: Kim, C. (ed.) ICOIN
2005. LNCS, vol. 3391, pp. 786–795. Springer, Heidelberg (2005)

 Universal Adaptor: A Novel Approach to Supporting Multi-protocol Service 693

17. Flores-Cortés, C.A., Blair, G.S., Grace, P.: A multi-protocol framework for ad-hoc service
discovery. In: Proceedings of the 4th international Workshop on Middleware For Pervasive
and Ad-Hoc Computing (MPAC 2006), Melbourne, Australia, November 27 - December
01, 2006, vol. 182, ACM Press, New York (2006)

18. Yu, M., Taleb-Bendiab, A., Reilly, D., Omar, W.: Multi-Standard Service Interoperation
Protocol Through Polyarchical Middleware. In: Processing of 4th Annual Postgraduate
Symposium on The Convergence of Telecommunications, Networking & Broadcasting
(PGNet2003), Liverpool, U.K. (June 2003)

19. Kang, S.H., Ryu, S., Kim, N., Lee, Y., Lee, D., Moon, K.D.: An Architecture for
Interoperability of Service Discovery Protocols Using Dynamic Service Proxies. In: Kim, C.
(ed.) ICOIN 2005. LNCS, vol. 3391, pp. 786–795. Springer, Heidelberg (2005)

20. http://java.sun.com/developer/products/jini/installation_jini1_2_1.html
21. http://jslp.sourceforge.net/

U-Interactive: A Middleware for Ubiquitous

Fashionable Computer to Interact with the
Ubiquitous Environment by Gestures

Gyudong Shim, SangKwon Moon, Yong Song, Jaesub Kim, and Kyu Ho Park

Computer Engineering Research Laboratory,
Department of Electrical Engineering and Computer Science,

Korea Advanced Institute of Science and Technology
{gdshim,skmoon,ysong,jskim}@core.kaist.ac.kr, kpark@ee.kaist.ac.kr

Abstract. In this paper we present a system, called U-interactive, that
provides spontaneous interactions between human and surrounding ob-
jects in heterogenous ubiquitous computing environments. Our
U-interactive system introduces a virtual map, which contains interac-
tive objects around a user in each ubiquitous environment. In the virtual
map, each interactive object is tagged with geographic information and
attributes to interact with. Each user can create interactive objects in
the virtual map corresponding to physical objects. Also the scope of the
map is automatically adjusted according to user’s location (inside build-
ing or outdoors) by location services. U-interactive system runs on both
mobile devices and infrastructures. U-interactive system provides inter-
operability with communication methods, such as UbiSpace, UPnP, and
Web services. We developed our U-interactive system upon a prototype of
ubiquitous environment. U-interactive system contains interactive kiosk,
printer, sensor networks, and users.

Keywords: Middleware, Ubiquitous Fashionable Computer, HCI,
iThrow, Spontaneous Interaction, Service discovery, File Sharing.

1 Introduction

Many researches have been come out to realize ubiquitous computing environ-
ments in the real world. The common philosophy of the researches is to make
a convenient life with surrounding computers. People in the ubiquitous envi-
ronment access any information by multiple interfaces and displays. It is im-
portant to provide easy and comfortable human interfaces in the ubiquitous
environments.

As to realize ubiquitous environments, our research project teams have
developed testbed on KAIST campus called U-TOPIA and a wearable com-
puters named Ubiquitous Fashionable Computer(UFC)[1]. In order to realize
U-TOPIA, we are elaborating the campus-wide infrastructures in KAIST cam-
pus. U-TOPIA has been equipped with indoor and outdoor testbed for location
services which consist of ZigBee and UWB[11] sensor networks. In addition,

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 694–705, 2007.
c© IFIP International Federation for Information Processing 2007

U-Interactive: A Middleware for Ubiquitous Fashionable Computer 695

Wireless Mesh networks in the campus extends WLAN coverage to the outdoor
areas[8].

UFC has been developed as a wearable gadget and cloth as shown in Fig.1
for convenience and portability. In order to interact with the environments user-
friendly, UFC has a gesture recognition device called iThrow [2]. iThrow is a
ring typed intuitive interface device. iThrow has a 3D accelerometer and a 3D
magneto-resistive sensor; thus it can recognize specific commands and two di-
mensional pointing direction of finger from user gestures.

pKASSO, Security Server
µ-ware, Middleware

Testbed(Wi-Mesh [Outdoor])

UFC (Ubiquitous Fashionable Computer)

Testbed(ZigBee, UWB[Indoor])

iThrow Main Module Attachable Modules

Fig. 1. U-TOPIA architecture and UFC components

A UFC user can select a target inside the testbed by finger pointing as shown
in Fig.2-(a). Then the selected target is represented in the display of UFC. After
the user selects a target in the U-TOPIA, the user can throw data such as a
image file to the target as shown in Fig. 2-(c). Through intuitive gestures, users
can interact with objects such as throwing a file, receiving a file, controlling
devices, and querying some information of the target. For example, when a user
throws a file to a printer, the printer will print the file.

We designed an interactive system, called U-interactive, that provides spon-
taneous interaction between UFC users and U-TOPIA. U-interactive system
provides followings.

– location detection from multiple sources
– target selection from the virtual map
– interaction method and command matching upon an interactive object
– communication between UFC and interactive objects

U-interactive system introduces virtual maps and interactive objects. A vir-
tual map contains interactive objects around a user in a specific ubiquitous en-
vironment. The scope of the virtual map is automatically adjusted upon user’s

696 G. Shim et al.

(a) pointing (b) scanning (c) throwing

(d) receiving (e) Ready to receive (f) volume control

Fig. 2. Gesture operation sets of iThrow

TV

Printer UFC1

UFC2

Printer

TV

News-kiosk

UFC2

UFC1

ID : TV_1
Location : RoomA(30, 200)
Interaction : UPnP
Command Mapping

Throwing → Turn on
Rolling right → volume up
….

Throwing after pointing

Interactive object
ID : UFC2
Location : RoomA(500, 200)
Interaction : UbiSpace
Command Mapping

Throwing → File transfer
Hands-up → Set status to ready-to

-receive

File transfer

KIOSK

(a) concept

Object Hash Table

TV1
ID Attributes Map : (key, value)*

TV1 (interaction, UPnP) , (location,
RoomA/11, 25) , …

UFC1 (interaction, UbiSpace) , (location,
RoomA/35, 25) , …

UFC2 (interaction, UbiSpace) , (location,
RoomA/35, 8) , …

•Space filling curve :
vertical line
O(x, y) → rep_xy

•Space name : /RoomA

UFC1

Composite key Value
Object referenceRep_xy ID

3 1 Slot1

9 2 Slot2

11 3 Slot3

Snapshot: B+-tree indexing

UFC2

(b) data structures

Fig. 3. Virtual map and interactive objects

location(inside building or outdoors). In the virtual map, each interactive ob-
ject is tagged with geographic information and attributes to interact with. An
interactive object is an abstraction unit of physical object on the virtual map.
Interactive object contains location, and service attributes to interact with. Fig.3
shows the virtual map and interactive objects. In Fig.3, the UFC1 has informa-
tion about UFC2’s location, interaction method, and the command configuration
that assigns throwing motion as transferring a file.

To support such interactions at indoor areas and outdoor areas, we designed
and implemented U-interactive system. U-interactive system is a customized and
evolved incarnation of µ-ware for U-TOPIA where thousands of clients and hun-
dreds of infrastructures coexist. U-interactive system aims spontaneous interac-
tion via HCI, especially iThrow. U-interactive includes coordination of location
service, automatic virtual map resolution, and interaction through multiple in-
terfaces and commands.

U-Interactive: A Middleware for Ubiquitous Fashionable Computer 697

The remainder of this paper is organized as follows: Section 2 presents related
works. Section 3 describes U-TOPIA and U-interactive system architecture. Sec-
tion 4 specifies interactive object management method, and Section 5 describes
interaction methods such as UbiSpace and UPnP. Section 6 shows implementa-
tion status. Finally we conclude in Section 7.

2 Related Works

Gesture control has been studied by two categories, camera-based and move-
ment sensor-based[5]. Juha at el. presented accelerometer-based gesture recogni-
tion method. They developed the gesture control system for design environment
especially for TV, VCR, and lighting. Our iThrow device is similar to it in
movement sensor-based, but our gesture sets are designed for adaptability and
mobility of users. So UFC users can probe and choose any items in a given
environment.

The concept of virtual map is analogous to the augmented reality. But we
focus on the interactions and efficient target selection mechanism in a specific
scope. In Virtual Information Towers(VIT)[15], mobile users can interact with
visible items on the advertising columns. VIT provides a metaphor to access
information which is assigned to physical location. VIT does not provide the
discovery of VIT-Directory which has a list of VITs. So VIT system can not
provide seamless service and the user should manually set the environment’s
server. In addition, the user interacts with VIT by web-browser interface of the
wearable device.

Tatsuo at el. developed personal home server to support spontaneous in-
teraction in home computing environments [16]. The mobile device works as a
personal home server which contains personal information and preferences to the
services. They utilize inter-operable protocol SOAP for interaction methods. But
U-interactive exploits UbiSpace for easy file transfer between devices and ser-
vices. They aims personalized and secure interaction by RFID tags which store
encryption keys. They designed and implemented the system for home networks
rather than outdoor or large scale networks. Since the services are discovered by
SSDP of UPnP, The system is not scalable for large number of services.

Personal Server[14] is a mobile device that contains personal data which can
be accessed through surrounding displays and keyboards input systems such as
public kiosk or PC monitor and keyboards. Personal Server contains an embed-
ded web server in the mobile device. The discovery of the host is performed by
Bluetooth and UPnP. Actual interactions between the Personal Server and the
host are performed by HTTP and SOAP[13] protocol. However Personal Server
provides only limited interfaces from the infrastructures.

3 U-Interactive System Architecture

U-interactive is a middleware component for ubiquitous interactive services which
can be controlled with a gesture device- iThrow. The device of ubiquitous

698 G. Shim et al.

services consist of various devices such as kiosks and printers. The software on the
devices are built on our middleware framework. The software architecture of our
middleware is shown in Fig.4. Most of the interactive services are implemented
as service bundles over Open Service Gateway initiative(OSGi) Platform[10].
In order to provide location based services, we proposed a ubiquitous con-
text aware middleware framework for campus-wide infrastructures and UFC
in µ-ware[3].

µ-ware is a middleware framework that adapts the runtime environment upon
the location of the client. µ-ware provides JAVA based extensible and config-
urable runtime environment to the applications. µ-ware is composed of following
components.

– KAIST Ubiquitous Service Platform(KUSP) : OSGi based runtime environ-
ments. This framework manages the life time of service bundles.

– USD Protocol: light-weight service discovery protocol. It can discover ser-
vices across the network by multicast.

– UbiSpace: Coordination component like tuple space. It handles publish/ sub-
scribe operation among UFCs.

– Instant Service Loader: it downloads a service bundle from the servers, after
that it installs and executes the bundle.

By these components µ-ware not only gives an efficient computing environ-
ment to upper applications on UFC but helps the applications to exploit various
ubiquitous service modules. [3]. In the previous work, the main target envi-
ronments of µ-ware were indoor smart spaces. To be a foundational middle-
ware framework for U-TOPIA, µ-ware has to be enhanced and customized in
pursuit of UFC’s energy efficiency and interactive functionality even for mas-
sive clients in outdoor areas. In this chapter we describe U-TOPIA environ-
ments, internal architecture of U-interactive, and coordination of location
service.

Virtual Map Repository

GUID manager

Interactive objects directory

Map
images

Persistent storage
DB, File

U
S

D
 protocol

U
biS

pace

C
ontext M

anager

Linux

U
-interactive

TVM

KUSP

UFC

µ-ware

U
S

D
 protocol

U
biS

pace

C
ontext M

anager

OS

U
-interactive

JVM

KUSP

µ-ware

Services

Interactive S
ervice

Fig. 4. U-interactive system architecture

U-Interactive: A Middleware for Ubiquitous Fashionable Computer 699

3.1 U-Interactive Infrastructures on the U-TOPIA

U-TOPIA equips infra structures such as location service, service discovery, and
service provision servers. The servers are constructed with multi-level tree hi-
erarchy for campus wide ubiquitous services. The entire space is divided by
sections of the institute, building, floor of building, and room or hall. In order
to provide information repository and support collaboration storage, we suggest
virtual spaces which are constructed in a hierarchical tree. Each representa-
tive space holds the map and the service list of the region. Physical objects
can be assigned by attributes of services. And they are referenced by a GUID
(Global unique identification). For the management reasons, the GUID manager
exists in the root of hierarchy tree. Objects directory contains a table of GUID,
name, type, service reference, and information to represent image files, video
files, and HTML files. The temporarily available services and location of users
are separated from static information in the object directory. File repository
provides a storage for the system and makes it possible to share files between
UFCs.

Map downloader

Command Interpreter

iThrow Interface (HW)

Location Coordinator

U-interactive

Context Manager GPS

UbiSpace

UPnP

HTTP/SOAP

iObject Selector

Interaction Agent

iThrow HW

GUI Manager

USD protocol

Customized Virtual Map

Command Matcher

Fig. 5. U-interactive internal architecture: U-interactive cooperates iThrow, GPS and
infrastructure services - UbiSpace, Context Manager, an USD protocol

3.2 Internal Architecture of U-Interactive

U-interactive internal architecture is shown in Fig.5. U-interactive utilizes foun-
dational services such as Context Manager, UbiSpace, USD protocol of µ-ware.
Main roles of U-interactive are virtual map management and interaction be-
tween UFC and interactive objects. The virtual map is automatically downloaded
from the map server by location coordinator when the logical address of UFC
is changed. Command Interpreter takes the command and pointing directions
from iThrow hardware. Command Interpreter forwards the command to iObject
Selector or Interaction Agent by the type of ithrow command. Interaction Agent
takes the interaction by the interactive object type. Interaction Agent decides
a proper interface to the interactive object from command matcher which has
ithrow command to iObject service mapping.

700 G. Shim et al.

3.3 Coordination of Location Service

Location is described by longitude, latitude, altitude, and logical address. Logical
address consists of organization, building, floor, room number in hierarchical or-
der, for example ’KAIST/E3-2/3F/Room3217’, ’KAIST/Section1/’. UFC users
can resolve their locations by multiple sources such as GPS, ZigBee sensor net-
work, and UWB sensor networks depending on the place. When UFC users are
located in an indoor area such as a room or a floor, their locations are resolved
from UWB or ZigBee sensor networks. But if they are located in outdoor areas
such as campus road or square, their locations are detected basically by GPS
on UFC. Because GPS has inaccuracy in densely surrounded buildings, ZigBee
beacons of the testbed is used as a hint for more accurate location. The beacon
of Zigbee sensor network holds the longitude, latitude, and logical place de-
scription. The beacon signal is proximity guarantee since the receiver is within
a transmission range from the landmark. If there are more than two beacons
from different positions, Received Signal Strength Indication(RSSI) is used on
the triangulation. U-interactive coordinates the multiple location sources adap-
tively based on predefined source priority(UWB>ZigBee>GPS). When GPS is
the only available location source, it is required reverse geocoding to translate
GPS location to the logical address.

4 Management of Interactive Object

U-interactive assigns physical objects to service and information to construct
smart environments. For instance, electrical devices can contains control service
as UPnP service and bus stop can have bus time schedule information. Complex
building objects can construct logical service hierarchy. As the preceding step to
interactions with smart object in the ubiquitous environments, U-interactive as-
signs GUID(Global Unique Identification) for each objects. Object are grouped
by their information and service source type. Geographical information can be
handled by organizations’ administrator and useful information can be added
by users later. GUID Manager in our system handles issuing of identifications.
GUID has prefix of geographic information and sequential serial number for ser-
vices. GUID could be URI or bar code or RFID depends on the object. Each
UFC has unique PANDA ID(16 bytes) for recognition and authentication.

4.1 Interactive Object Registration

We designed virtual map data structures as shown in Fig.3-(b). For fast spatial
queries the repository maintains a current snapshot of the interactive objects.
The location of interactive object is converted one dimension representative value
by vertical line space filling curve. The snapshot is built by B+-index whose
key is assigned by the converted value and object id. Detail interactive object
information is maintained in an attribute map hash table. When a new object
is registered, a new element is inserted in the object hash table and the location
is inserted the snapshot.

U-Interactive: A Middleware for Ubiquitous Fashionable Computer 701

Our services on the KUSP platform can register themselves in the current
level of their location repository. Since we expect most of services are ported in
OSGi compatible bundle, they can register and deregister by bundle start/stop
phase. As a representative location of the single KUSP platform, Context Man-
ager has default location of the platform. Default location is assigned if the
service doesn’t specify the location. Context manager takes charge of the service
registration of other service bundles. Holding only information objects such as
building information are managed by a central administrative way(such as in-
stitute administrative building) or fully decentralized way(each home appliances
by user administration). Geographic objects such as building, statue and pond
are stored in the Map server conjunction with Geographic Information System.

4.2 Interactive Object Discovery

When UFC detects logical address change, the virtual map repository is resolved
by logical address key lookup in USD protocol[4]. After the infrastructures are
spread out over the same network and the number of users’ discovery requests
increases, the scalability of entire system become worse because of indirect mul-
ticast search algorithm of UPnP[12]. Therefore we add caching mechanism of
service discovery results based on the repository of UFC and infrastructures.
The global infrastructure topology of an institute is maintained by a hierarchi-
cal structure. The virtual map repository stores topology of the infrastructures
in a global view, the discovery of repository from UFC can be resolved readily
by a close repository. When UFC users move around the logical place, they can
adapt their location and intention by instant downloading of information of the
space such as addresses of map servers, available file server.

4.3 Target Selection in a Virtual Map

Basically U-interactive sets the space boundary by logical address scope to UFC.
UFC can see the target in the given boundary space with objects with priorities.
The public and hot services are ranked high priority by usage count and temporal
and moving objects are ranked low priority by reduction of movement. This
priority helps user to select clustered targets in narrow directions. UFC user can
select a target object in user friendly manner by the scanning gesture of iThrow.
Yoo et al, proposed target selection algorithm which is ray based minimum
angle difference and adaptive angle placement of targets [2]. We adopt ray based
minimum difference angle target selection of [2].

When a user in the smart room alone, most of object are stationary and he
keep stationary for a second or more than an hour. Then the objects position
and status are static information. So as to reduce repeated location and object
query to the space repository, UFC selects the target object in own repository
on the stationary state. To simplify target selection operation, the space objects
are modeled as two dimensional points. the origin is the location of UFC and each

702 G. Shim et al.

object calculated in polar coordination system. If the UFC location is (x1, y1)
and the target is (x2, y2) in cartesian, the polar coordination is given by

(r, θ) = (
√

(x2 − x1)2 + (y2 − y1)2, tan−1(
y2 − y1

x2 − x1
)). (1)

As long as the UFC is stationary with a given boundary Dupdate, the calculated
polar coordination positions are reused to reduce complex calculation of sqrt
and tan−1 operation in the UFC. If a new target scanning is performed at the
same position, target object is selected by lookup of given angle difference of
pointing direction in the list of objects sorted by angle and distance.

5 Interaction Methods

U-interactive interacts with interactive objects by multiple interface methods
to various services. The interaction methods are dependant on the interactive
object interfaces. UPnP devices are interacted by UPnP protocol and Ubiquitous
interactive services are communicated by UbiSpace. For the web services, U-
interactive handles commands by SOAP.

5.1 UbiSpace

UbiSpace handles specific commands and file sharing of interactions. In or-
der to reduce the burden of application development in the data sharing, we
choose UbiSpace as a collaborative data sharing service for file and java objects.
UbiSpace provides publish/subscribe event handling system. Furthermore it has
repositories of file sharing in the infrastructures. Each object contains a key to
identify and it is indexed by B+-tree for fast look-up. Each client can subscribe
data for specified the key. UbiSpace derives tuple spaces such as TSpaces[7] and
JavaSpaces[9] in central temporal and time decoupling aspects, but it simplifies
object matching by name key, and supports file publish/subscription operation
for file sharing between clients. The only basic operations are as shown table 1
for limitation of the space.

To support basic simple file transfer, we integrated same API while UbiS-
pace inspects the object whether it is a file. The source file is uploaded the
file repository of server and after that subscribers download the file later by
subscribe or read operation. Because of large file transfer overhead, UbiSpace

Table 1. UbiSpace basic APIs

long insert(String key, java.io.Serializable obj)
Object take (String key)
Object read (String key)
ITuple delete (long itemID)
long publish(java.lang.String key, java.io.Serializable obj)
long subscribe(java.lang.String key, EventHandler callback)
void unsubscribe (long seqNumber)

U-Interactive: A Middleware for Ubiquitous Fashionable Computer 703

exploits network file system to clients. When a UFC joins the UbiSpace server,
it automatically mounts the file system on a given private directory. Large file
operations can be exploited by native distributed file system operations. Most
services are accessible anyone in the place but some administrative information
and restrictive services should be protected from unauthorized access. By using
publish/subscribe data access control of UbiSpace, it can release the burden of
access control list management on the applications.

6 Implementation and Experiment

The testbed and terminal team of our project implemented the UFC show room.
We implemented the indoor U-interactive prototype on the showroom. There are
UWB and ZigBee sensor networks for location service. The location is accurate
on limited region up to 15cm resolution. The outdoor virtual spaces are under
development but they would be installed in months.

As U-services examples, U-Desktop and U-Print service in the room are im-
plemented by OSGi bundles. The U-Desktop service displays multimedia file
on public kiosk by subscription of UFC users in the space. The publish and
subscription of the images and movie files are performed by UbiSpace publish,
subscribe operations both of U-service and UFC. U-print service provides UFC
with customized content generation by UFC’s throwing image files.

The U-Kiosk and U-Print services are implemented as service bundles of OSGi.
To exploit Windows native services and applications, the service bundles connect
dynamic loadable libraries by JNI interface to display and print a file by Execute
function of Windows MFC. As an example codes, the U-Print service can be
easily and concisely implemented as follows.

int printSubscriptionID = us.subscribe(this.FILE_KEY + serviceID,
new EventHandler() {

public void todo(String key, Serializable obj) {
if (obj instanceof File) {

File file = (File)obj;
// JNI interface for Windows Print service
userviceAdaptor.print_process(file);

}
}});

}

The gesture operation sets are shown in Fig.2. File sharing operation (c),(d)
in Fig.2 is performed by UbiSpace publish/subscribe API also. The rest oper-
ations - pointing, scanning, volume control are performed by publish/subscribe
of IThrowCommand object which is published by the UFC.

The performance of UbiSpace is experimented by latency comparison with
T-Space. The latency between the server and the client(PC) is examined when
there are 8000 tuples in the server. The tuple object size is 1KBytes. Fig.6.
shows that our UbiSpace outperforms T-Space for the best case 111% in the

704 G. Shim et al.

0

0.5

1

1.5

2

2.5

read insert take delete update

la
t
e
n
c
y
(m
s
)

Operations

UbiSpace

T-Space

Fig. 6. UbiSpace latency comparison with T-Space

take operation. The reason of fast response comes from efficient tuple indexing
by B+-tree and setting no TCP delay on the socket. The tuples are indexed by
a composite key which consists of the tuple name, the tuple field size, and fields.

7 Conclusions

U-interactive system make it possible for UFC users to interact with interac-
tive objects in ubiquitous environments by intuitive gestures. We propose new
concepts, virtual map and interactive objects. The virtual map scope is auto-
matically resolved by location of a user to be convenient. U-interactive system
provides interoperability by choosing a interaction method adaptively, such as
UPnP, SOAP, and UbiSpace. U-interactive provides learnable and customizable
mechanism to adapt various interactive object types. The standard of command
sets is required to be general and learnable interfaces for iThrow. It is crucial for
the system to tag the location on any physical objects. We are plan to integrate
multiple HCIs in U-interactive such as speech recognition and small keypads.

References

1. Lee, J., Lim, S.-H., Yoo, J.-W., Park, K.-W., Choi, H.-J., Park, K.H.: A Ubiqui-
tous Fashionable Computer with an i-Throw Device on a Location-based Service
Environment. In: PCAC 2007 (2007)

2. Yoo, J.W., Jeong, Y.W., Song, Y., Lee, J.P., Lim, S.H., Park, K.W., Park, K.H.:
iThrow: A New gesture-based wearable input device with target selection algo-
rithm. In: ICMLC 2007 (to be appeared, 2007)

3. Song, Y., Moon, S.K., Shim, G.D., Park, D.Y.: A Middleware Framework for Wear-
able Computer and Ubiquitous Computing Environment. In: PercomW 2007, pp.
455–460 (2007)

4. Moon, S., Kim, J., Park, D.: USD Protocol: Ubiquitous Service Discovery Proto-
col on Infrastructure-based architecture for Ubiquitous Fashionable Computer. In:
MUE 2007, pp. 779–784 (2007)

U-Interactive: A Middleware for Ubiquitous Fashionable Computer 705

5. Kela, J., Korpipaa, P., Mantyjarvi, J., Kallio, S., Savino, G., Jozzo, L., Marca, D.:
Accelerometer-based gesture control for a design environment. Personal Ubiquitous
Comput. 10(5), 285–299 (2006)

6. Park, K.-W., Lim, S.S., Seok, H.C., Park, K.H.: Ultra-Low-Power Security Card,
PANDA for PKI-based Authentication and Ubiquitous Services. In: Proceedings
of Confer-ence on Next Generation Computing, pp. 367–373 (November 2006)

7. Lehman, T.J., Cozzi, A., Xiong, Y., Gottschalk, J., Vasudevan, V., Landis, S.,
Davis, P., Khavar, B., Bowman, P.: Hitting the distributed computing sweet spot
with TSpaces. Computing Networks, 457–472 (2001)

8. KAIST UFC Project, http://core.kaist.ac.kr/UFC
9. Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces Principles, Patterns, and Practice

(1999)
10. OSGi alliance, http://www.osgi.org
11. UbiSense, http://www.ubisense.net
12. UPnP Forum, http://www.upnp.org
13. SOAP:Simple Object Access Protocol, http://www.w3c.org/2002/ws
14. Want, R., Pering, T., Danneels, G., Kumar 1, M., Sundar, M., Light, J.: Changing

the Way We Think about Ubiquitous Computing. In: Borriello, G., Holmquist,
L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, Springer, Heidelberg (2002)

15. Leonhardi, A., Kubach, U., Rothermel, K., Fritz, A.: Virtual Information Tow-
ers - A Metaphor for Intuitive, Location-Aware Information Access in a Mobile
Environment. In: ISWC 1999 (1999)

16. Nakajima, T., Satoh: A software infrastructure for supporting spontaneous and
personalized interaction in home computing environments. Personal Ubiquitous
Comput. 10(6), 379–391 (2006)

http://core.kaist.ac.kr/UFC
http://www.osgi.org
http://www.ubisense.net
http://www.upnp.org
http://www.w3c.org/2002/ws

Towards Context-Awareness in Ubiquitous

Computing

Edwin J.Y. Wei and Alvin T.S. Chan

Department of Computing, The Hong Kong Polytechnic University
{csjwei,cstschan}@comp.polyu.edu.hk

Abstract. Future ubiquitous computing has accelerated the need of
context-awareness that leverages information about surrounding
situation so as to adapt applications. There is considerable interest in
context-awareness, and many prototypes have been proposed, which have
demonstrated the potential of context-aware applications. That notwith-
standing, these kinds of systems are known to be difficult to design,
develop and maintain. This paper considers these difficulties as it dis-
cusses the core issues of context-aware computing, including definition
of context, techniques of acquiring, modeling and adapting to contextual
information. It intends to provide the community with a comprehensive
and detailed view of current state of the art.

Keywords: Context-Awareness, Ubiquitous Computing, Context
Definition, Context Acquisition, Context Modeling, Context-aware Adap-
tation.

1 Introduction

The need for context-awareness, which leverages information about surrounding
situation so as to adapt applications, has been accelerated by the vision of ubiq-
uitous computing. Computing devices in ubiquitous computing environment now
exhibit a high degree of mobility and their computational systems must adapt
to heterogeneous and dynamic surrounding environment where they are within.
At the same time, more and more everyday devices, such as digital cameras and
watches, are now equipped with computing capabilities, so that applications in
ubiquitous computing environment need to take into account the attributes of
different devices, which otherwise will result in unsatisfactory user experience.

Due to the interest of context-awareness, many research works have been
proposed in this area [1][2][3][4][5]. These prototypes have demonstrated the
potential of context-aware applications, but have also shown that designing,
developing and maintaining these kinds of systems are still extremely difficult,
to say the least. Lots of technical challenges remain to be addressed before
even simple context-aware systems can be widely and realistically developed. In
particular, every context-aware application needs to consider four basic issues:
what is context, how to acquire them, how to represent them, and how to adapt
to them. This paper discusses these core issues of context-aware computing, and

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 706–717, 2007.
c© IFIP International Federation for Information Processing 2007

Towards Context-Awareness in Ubiquitous Computing 707

intends to provide the community with a comprehensive and detailed view of
current state of the art.

The remainder of this paper is organized as follows: In section 2, we review
definitions of context and present our own definition from an application point
of view. Section 3 focuses on currently available context acquisition techniques
for context-aware applications. Section 4 discusses several basic technical aspects
of context models including data structure, integrity and manipulation. In sec-
tion 5, we detail various design concerns of context-aware adaptation. Section 6
concludes and summarizes related challenges in context-aware research.

2 Definitions of Context

In order to effectively utilize contexts, we should first understand what contexts
are. Researchers in the context-aware computing community have invariably of-
fered their own definitions of context based on their research background. Schilit
and Heimer [6] first introduced context-aware computing in 1994 and set three
parameters for contexts: the software’s location of use, the collection of nearby
people and objects, and changes to those objects over time. For a long time,
contexts are defined by enumerating examples or choosing synonyms [7][8][9][4].
In 2000, Dey and Abowd [10] proposed a more generic definition:

“Context is any information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including
the user and applications themselves.”

More recently, inspired by social sciences, some researchers argue that contexts
are socially and psychologically constructed outcomes of human activities rather
than stable, and objective sets of features that externally characterize activities
[11][12]. Oulasvirta et al. [13] summarize these definitions of context, and divide
them into two camps which are realism and constructivism. Realism posits con-
texts as existing ontologically, and that they can be correctly recognized and
adapted to if properly instrumented and programmed. Whereas, constructivism
recognizes that contexts are human creations, social and psychological, and that
people should be provided resources to create and maintain these contexts.

No matter realism or constructivism, in their answers to ”what is context”,
user interaction with applications is overly emphasized. Actually, many non-
interactive programs can also make use of surrounding situation. We argue that
considering the issue of context definition from an application point of view
will be a more reasonable way to help developers to construct context-aware
applications. With this in mind, we present here our own definition of context:

Context is application specific, and context of an application is any external
information which can be utilized to adapt the data, behavior or structure of this
application.

Our definition of context indicates three important features of context. First of
all, context is application specific. Contexts of one specific application may make

708 E.J.Y. Wei and A.T.S. Chan

no sense to others. Secondly, context is external to applications. Only informa-
tion outside one application can be regarded as the context of that application.
Finally, context can be used to adapt not only behavior of applications, but also
their data, or even structures.

3 Acquiring Contexts

In practice, the information from three categories of context may be used to
adapt applications, which are physical contexts, computing contexts and user
contexts. Physical contexts are physical circumstances of an application like
noise level and temperature. Computing contexts refer to an application’s own
execution conditions such as host computing resources, available peripheral de-
vices, network capacity and connectivity, and so on. Finally, user contexts are
anything regarding users such as their location, presence, identities, abilities, ac-
tivities, etc. The vision of future ubiquitous computing paradigm requires these
contexts to be captured without user interaction. In this section, we review
various techniques that have been used to implicitly acquire these contextual
information.

3.1 Acquiring Physical Contexts

Physical contexts are primarily obtained through specially designed physical
sensors, which convert physical properties or phenomena, such as light and noise,
into a corresponding measurable data. For example, the TEA project [4] uses
photodiode, accelerometers, and other sensors to measure various contextual
information such as light level, tilt and vibration, proximity of humans or other
heat-generating objects, and so on. Further sensor progress in the development
and manufacture of sensors will allow more and greater varieties of physical
contextual information to be captured and used. Table 1 provides a summary of
some common types of sensors for context-aware applications.

3.2 Acquiring Computing Contexts

Computing contexts are normally collected by software routines. Most main-
stream operating systems provide primitives for developers to get related runtime
information about the device hardware, and reduce the work involved in devel-
opment. For example, in most Unix/Linux operating systems, one can employ
commands like iostat, vmstat, and netstat to report statistics for I/O devices,
virtual memory, and network condition. Symbian OS also provides a compre-
hensive software development toolkit for developers to monitor CPU, memory
and storage usage, etc. In addition to using OS primitives, it is also possible to
leverage user-level modules to sense computing contexts. For instance, applica-
tions can obtain device management information of most network devices like
routers and firewalls by sending SNMP requests, and applications base on [14]
or [15] can be notified of change of network bandwidth via upcalls.

Towards Context-Awareness in Ubiquitous Computing 709

Table 1. Common Types of Sensors

Type of Sensor Context Sensed Sensor Examples
Temperature Sensor Temperature Thermometer, Thermocou-

ple, Thermistor

Heat Sensor Heat Bolometer, Calorimeter

Magnetism Sensor Orientation Magnetic Compass, Flux-
gate, Compass

Pressure Sensor Altitude, Atmospheric Pres-
sure, Speed

Altimeter, Barometer

Gas/Liquid Flow Sensor Velocity of the Wind, Rate
of Fluid Flow

Anemometer, Mass Flow
Sensor

Mechanical Sensor Acceleration, Position, An-
gle, Deformation

Acceleration Sensor, Posi-
tion Sensor, Selsyn

Chemical Sensor Proportion of Gas Carbon Monoxide Detector,
Ion-Selective Electrode

Light Sensor Light Phototubes, Photodiode

Sound Sensor Audio Microphone, Hydrophone,
Seismometer

Motion Sensor Speed, Acceleration Radar Gun, Speedometer,
Odometer

Orientation Sensor Orientation Gyroscope, Artificial Hori-
zon

3.3 Acquiring User Contexts

It is difficult to directly sense user context through dedicated hardware sensors
or software routines. Rather, they have to be derived from original measurements
by software programs where original measurements are processed collectively. In
the followings, we discuss in some detail on the techniques used to acquire user
contexts especially location information.

Location. The most commonly acquired attribute of user context is location. In
this section, we describe four most frequently used techniques for the acquisition
of location information, which are trigonometry, signature matching, cellular
proximity and computer vision.

Trigonometry, including trilateration and triangulation, leverages the geome-
try of triangles to determine the positions of objects. Trilateration utilizes the
measured distance between the subject and three or more reference points,
as well as the known locations of these reference points, to compute the sub-
ject’s location. Differently, triangulation uses angle measurements and at least
one known distance to complete the computation. In order to measure the re-
quired distances and angles for trigonometry, time of arrival/time difference of
arrival (TOA/TDOA) [16][17], received signal strength (RSS) [18] and angle
of arrival (AOA) [19] of various communicational signals are most frequently
used. Trigonometric approaches are fine-grained localization techniques, fre-
quently used outdoors. However, due to rough wall surfaces and obstacles

710 E.J.Y. Wei and A.T.S. Chan

between emitters and receivers, communication signal propagation in indoor
environment suffers from multipath, non-line-of-sight (NLOS), and local shad-
owing, which result in unreliable measurements of location metrics such as TOA,
TDOA and AOA. Therefore trigonometric approaches fail to provide adequate
location accuracy indoors.

The positioning process based on signature matching consists of two phases:
an off-line phase of collecting data, and a real-time phase of inferring the users’
location [20]. In the off-line phase, necessary information of the entire zone of
interest is collected to produce signatures, and the latter are then stored as a
function of user’s location. In the real-time phase, incoming data is analyzed and
compiled into a unique signature which is compared with the recorded signatures
to identify the closest record and then the location is inferred. In order to produce
a unique signature for each location, several types of communicational signal
information such as received signal strength (RSS), signal noise ratio (SNR),
angular power profile (APP) and power delay profile (PDP) can be utilized.
Another interesting information frequently used to construct distinct signatures
is the ground reaction force (GRF) gathered by pressure sensors. GRF refers to
the reaction force supplied by the ground in response to the weight and inertia
of a body exerted on the ground. For example, the Smart Floor [21] sets load
cells under floor tiles to gather GRF profile, and choose ten profile features,
including the mean value, standard deviation, length of the profile and so on,
to use as signatures for each GRF profile. Signature matching approaches can
effectively counteract the problems of signal propagation in indoor environment.
The major drawback of these approaches is that developers have to collect a great
quantity of data to generate the signature database. Furthermore, changes to the
environment may require reconstruction of the predefined dataset or retrieval of
an entirely new dataset. Consequently, it is not suited for ad hoc deployment
scenarios [22].

Cellular proximity location sensing techniques determine the location of a
subject when it is near a known access point. In a cellular network, each fixed
access point, with known location, owns its sensing cell. Whenever the subject
enters the cell, it is sensed by the access point, and its location is therefore
pinned down to the resolution of a cell. Cellular proximity approaches can be
used both indoors and outdoors, and also requires no collection of off-line data.
However, they are coarse-grained localization techniques. Since the subject’s
location information is sensed by judging whether the subject is in the range of an
identified area, the sensing accuracy is determined by the radius of the identified
area. Moreover, they also incur significant installation and maintenance costs.
Using cellular proximity techniques, the cellular network must provide thorough
coverage through adequate placement and density of access points.

Location information can be also derived from analysis of data from visual
images. Visual processing techniques like depth and color segmentation, blink
detection, and color histogram matching can be used to analyze visual streams
from cameras, and recognize one or several objects, together with their 2D po-
sitions in the image or 3D positions in the scene. By combining these positions

Towards Context-Awareness in Ubiquitous Computing 711

with knowledge of camera’s relative location, fields of view, and heuristics on
the movements of objects, the final location of objects can be computed. For in-
stance, Microsoft’s Easyliving [23] uses two color stereo cameras each connected
to a PC to track multiple people in a living room. Vision based location sensing
techniques are the most flexible approaches. They can be used either indoors or
outdoors, and do not require any sort of devices to be worn by users. However, as
scene complexity increases and more occlusive motions occur, more works have
to be done to maintain analysis accuracy [24].

Other User Contexts. Other user contexts can also be acquired via a number
of novel ways. MIT’s Office Assistant [25] uses pressure sensors to detect visitors.
Schmidt et al. [26] make use of load sensing technique to explore more pervasive
augmentation of surfaces in everyday environment including floors, tables and
other high interactive spaces, and from these load-sensitive surfaces extract three
context primitives: weight, position and type of interaction. Moore et al. [27]
measure image-, object-, and action-based information from videos to recognize
human activities such as reading, coffee break and washing dishes, and objects
like winding road and parking car.

4 Modeling Context

Context modeling is concerned with representing, structuring and organizing
contextual data and relationships between them, in order to facilitate the storage
and operations of them. A well-designed context model needs to consider three
basic technical aspects: data structure, integrity and manipulation.

4.1 Data Structure

The underlying data structure used to exchange context information inside and
between applications is the first basic issue for context models. An appropriate
data structure for contextual information will facilitate not only the representa-
tion of contextual data, but also their storage, validation, modification, retrieval,
and even reasoning. Currently, tuples, objects and markup schemes are three
most popular data structures used to represent contextual information.

The simplest structure to represent contextual information is key-value pair
(2-tuple). Every pair describes one aspect of the surrounding situation of an
application. A set of these pairs describes the whole environment where applica-
tions are actively deployed. Early works in context-awareness, [28] for instance,
frequently used tuples as the underlying context structures. Tuples are easy to
implement and manage. Most programming languages provide direct support to
construct tuples. For example, as a fundamental data type, Lisp provides list,
which is a finite ordered sequence of elements. Eiffel also has a built-in type of
tuple. However, tuples lack structure and formality. As a result, they can not
effectively express sophisticated contextual information and relationships.

Contexts can also be modeled as a set of related objects. Contextual informa-
tion is embedded as the states of these objects, accessed and modified through

712 E.J.Y. Wei and A.T.S. Chan

accessor and mutator methods. Object-oriented context models’ encapsulation
and reusability cover parts of the problems arising from the dynamics of con-
texts [29]. The major drawback of object-oriented models is that context objects
are programming language dependent, which will affect their portability among
different applications and platforms. Although there do exist some techniques
advocating language- and platform- independent implementation, in this area
much work remains to be done.

Various markup languages can be also used to model context data, which
use a hierarchical data structure consisting of markup tags with attributes and
content. Among them, XML schema languages, like DTD, XML Schema and RE-
LAX NG, are the simplest ones. We can also model contexts using other more
expressive and formal data representation markup languages. Resource Descrip-
tion Framework (RDF) is such an alternative. Using RDF, contexts are modeled
as a set of statements about resources and can be exchanged between appli-
cations without loss of meaning. RDF also provides a vocabulary description
language, RDF Schema (RDF-S), to help modeling not only structures of re-
lated resources, but also relationships between them. The capability of modeling
context relationships enables context-aware applications to reason with contex-
tual information. Another powerful data modeling markup language is the Web
Ontology Language (OWL), which provides more vocabularies for expressing
meaning and semantics than XML, RDF, and RDF-S. Using OWL, contextual
information is modeled as a set of ontologies for specific application domains.
Markup scheme context models can be used to represent complex contexts and
relationships like object-oriented models. Moreover, they enable a high degree
of context sharing. Contextual information can be share among different appli-
cations across different platforms. However, markup based syntax is redundant
or large compared to binary representations of similar data.

4.2 Integrity

A well-designed context model needs to support the validation of structure and
data integrity of contextual information. In an extra dynamic environment, con-
textual information may be partially lost and become incomplete, so they must
be validated before used. Integrity validation can be performed at two levels:
structure and data. The purpose of structure validation is to check whether the
information acquired is complete in structure. For example, whether they have a
predefined ending or the necessary components exist. Data validation is a more
meticulous examination and attends to the data type, range, and even semantics
of the information to be validated. What kinds of integrity validation a context
model can support, to some extent, depends on the data structure it employs.
When using tuples as the underlying data structure, limited structure integrity
validation can be applied due to their lack of structure and formality; With the
help of compilers and programming interfaces, object-oriented models can be
validated in terms of context structure and data integrity; For markup scheme
context models, there exist many tools and specifications available for validating
structure and data integrity.

Towards Context-Awareness in Ubiquitous Computing 713

4.3 Manipulation

A comprehensive context model also needs to define operators which can be ap-
plied to the data structure. Except for the basic C.R.U.D. operations, another
especially important operator for contextual data is context reasoning. Effective
context reasoning can introduce more new contextual information derived from
other types of contexts to improve user experience. For example, given contex-
tual information like Jack’s location is in the presentation room, his posture is
sitting and the projector is on, the application may infer that Jack is now in-
volved in a presentation, and automatically turn Jack’s cell phone to vibration
mode. Furthermore, context reasoning helps to resolve context inconsistency and
conflict, and provide more exact context query results. Similar to integrity vali-
dation, context manipulation also depends on the underlying data structures of
context models. For example, tuple-based contexts are easy to modify, however
tuples support only simple context queries and reasoning, and are not easy to
use with other efficient context retrieval and reasoning algorithms. By contrary,
there are many techniques available for querying and reasoning with markup
context information, but markup schemes suffer from its operational difficulties.

5 Adapting to Contexts

After acquiring raw contextual data, representing fine-grained contexts, context-
aware applications have to struggle with the issue of adaptation. In particular,
developers need to consider three adaptation-related questions: what to adapt,
how to adapt, and when to adapt.

5.1 What to Adapt

There are three kinds of adaptations which applications may use in order to
adapt to contexts: data adaptation, behavioral adaptation and structural adap-
tation. By data adaptation we mean that applications may change their oper-
ating data in some ways such as changing the quality of data to be accessed,
transforming data form to a more suitable one, or accessing a different set of
data. For example, in Odysssey, the server can select the most appropriate data
at runtime from several pre-generated versions with different fidelity level ac-
cording to the available resources or even energy [30]. By behavioral adaptation
we refer to the fact that applications may behave differently in different contexts.
For instance, a context-aware video player may pause when the audience leave
and resume when they return. By structural adaptation we mean that applica-
tions may modify their internal structures or processing sequences to counteract
contexts yet retain the same functions. For example, to adapt to poor computing
resource, a compiler may unload the code optimization module.

5.2 How to Adapt

Two general approaches have been used to realize context-aware adaptation: trans-
formational adaptation and compositional adaptation [31]. In transformational

714 E.J.Y. Wei and A.T.S. Chan

adaptation, applications directly modify related specifications and/or implemen-
tations to suit changing contexts. Compositional adaptation, in contrast, does not
directly modify. Rather, it responds to contexts through adding, removing, replac-
ing, or even changing the interconnections of application algorithmic or structural
parts. For example, to adapt web contents to resource-constrained devices, appli-
cations may directly transcode the original data by transformational adaptation,
or replace the original data with a new version by compositional adaptation.

To use transformational adaptation, some crucial variables to describe
context-aware aspects of applications are usually defined and tuned to adapt
to contextual information. Although transformational adaptation is easier to
implement than compositional adaptation, it suffers from two major drawbacks:
first, it is hard to realize structural adaptation, which usually requires adding
or removing structural parts of applications. Moreover, unimplemented versions
of data and behavior cannot be introduced into applications during runtime. In
transformational adaptation, everything should be designed and implemented in
advance.

Compositional adaptation is more flexible. It is applicable for all types of adap-
tation, including data adaptation, behavioral adaptation and structural adap-
tation, and it allows new data, behavioral or structural parts to be adopted to
address unforeseen concerns after the original construction of applications. On
the downside, compositional adaptation is more complex than transformational
adaptation. Developers need to pay attention to synchronization and state migra-
tion between different components [32]. For example, in the case of a streaming
player which can replace various encoders and decoders using various algorithms,
if the encoder at the sender side is replaced before the decoder is replaced at the
receiver side, the video content may be decoded incorrectly. Thus, synchroniza-
tion among components is required while adding, removing or replacing com-
ponents. At the same time, in order to keep state consistence, when replacing
components, state migration is necessary to correctly initialize the new version
of a component.

5.3 When to Adapt

Context adaptation may occur throughout almost the entire lifetime of an appli-
cation, from compile time, to load time, to run time. Generally speaking, later
adaptation time supports more powerful adaptation methods, but also compli-
cates the problem of ensuring consistency in adapted programs [33]. In compile
time, context-aware applications can be adapted to contexts, especially comput-
ing contexts, with the help of compilers. For example, programs are expected to
use various compiler flags for various target machine models when using GNU
Compiler Collection (GCC). Another example is aspect-oriented programming
(AOP). In AOP, during compilation, an aspect weaver can be used to weave
different crosscutting concerns of the program together to form a program with
new behavior. Context-aware applications can also defer the adaptation decision
until the application load time, enabling developers to configure applications
in respond to current environment after compile time. The simplest load time

Towards Context-Awareness in Ubiquitous Computing 715

adaptation implementation is to use command-line parameters. Another more
flexible way is to use external configuration files. Apart from these two general
methods, there are particular languages that provide primitives to support load
time adaptation. For example, using Java, developers can design their own class
loaders, and decide which classes are to be loaded according to current contexts,
hence adapting applications. The most powerful adaptation takes place in appli-
cation run time so that context-aware applications can be dynamically adapted
while it is being used. Examples of techniques to implement runtime adaptation
include computational reflection and dynamic weaving of aspects.

6 Challenges for Context-Awareness in Ubiquitous
Computing

We have discussed the core issues of context-awareness in ubiquitous computing.
During this process, we can observe that research into context-aware computing
is still at its early stage and there exist several central research challenges in
context-aware computing.

First of all, there is still a fundamental lack of understanding of context.
Many definitions are available but none is satisfactory to most people. As a
result, almost all current context-aware applications are built on their own un-
derstandings to contexts. This case makes it impossible to exchange context
information between different applications. Secondly, more contexts wait to be
sensed and used. Currently, most of the focus in context-aware research is on
location and lots of location-sensing approaches have been explored but there
have been few attempts to enhance applications by applying other contextual in-
formation, such as human emotions and activities. Finally, more comprehensive
context-aware middlewares need to be provided. Early context-aware research
efforts directly interact with the underlying network and operating systems to
extract contextual information, process it, and adapt to it entirely at the applica-
tion layer. These approaches were hard to be reused, and application developers
have to ”re-invent the wheel” each time a new context-aware application being
developed. Moreover, the complexity of communicating with various sensors,
modeling and reasoning raw contextual data, and adapting application behav-
ior tends to distract developers from implementing real application logic, and
this will slow down productivity and compromise product quality. Mechanism
and primitives must be provided to conceal the complexity of these issues from
context-aware application developers, and to facilitate the development process.
However, although most of the existing middlewares provide software abstraction
and management facilities for sensor devices, they do not provide off-the-shelf
context acquisition components or underlying supports for communication with
sensors. Additionally, the task of context-aware adaptation is seldom addressed
at the middleware layer and just left as an application concern, and few of the
works in context-aware middlewares support all needs of context acquisition,
modeling, and adaptation.

716 E.J.Y. Wei and A.T.S. Chan

References

1. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System.
ACM Transactions on Information Systems 10(1), 91–102 (1992)

2. Abowd, G.D., Atkerson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.:
Cyberguide: A Mobile Context-Aware Tour Guide. Wireless Networks 3(5), 421–
433 (1997)

3. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Developing A
Context-Aware Electronic Tourist Guide: Some Issues and Experiences. In: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems, pp.
17–24 (April 2000)

4. Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Laerhoven, K.V., de Velde,
W.V.: Advanced Interaction in Context. In: Proceedings of the 1st International
Symposium on Handheld and Ubiquitous Computing, pp. 89–101 (1999)

5. Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A., Moraveji, N., Reiger, K.,
Shaffer, J., Wong, F.L.: SenSay: A Context-Aware Mobile Phone. In: Fensel, D.,
Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, Springer, Hei-
delberg (2003)

6. Schilit, B.N., Heimer, M.M.: Disseminating Active Map Information to Mobile
Hosts. IEEE Network 8(5), 22–32 (1994)

7. Schilit, B.N., Adams, N., Want, R.: Context-Aware Computing Applications. Mo-
bile Computing Systems and Applications, 85–90 (1994)

8. Long, S., Kooper, R., Abowd, G.D., Atkeson, C.G.: Rapid Prototyping of Mobile
Context-Aware Applications: the Cyberguide Case Study. In: International Con-
ference on Mobile Computing and Networking, pp. 97–107 (1996)

9. Brown, P.J., Bovey, J.D., Chen, X.: Context-Aware Applications: From the Labo-
ratory to the Marketplace. IEEE Personal Communications 4(5), 58–64 (1997)

10. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. In: CHI 2000 Workshop on the What, Who, Where, When, and How
of Context-Awareness (2000)

11. Dourish, P.: What We Talk About When We Talk About Context. Personal and
Ubiquitous Computing 8(1), 19–30 (2004)

12. Tamminen, S., Oulasvirta, A., Toiskallio, K., Kankainen, A.: Understanding Mobile
Contexts. Personal and Ubiquitous Computing 8(3), 135–143 (2004)

13. Oulasvirta, A., Tamminen, S., Höök Comparing, K.: Two Approaches to Context:
Realism and Constructivism. In: Proceedings of the 4th Decennial Conference on
Critical Computing: Between Sense And Sensibility, pp. 195–198 (2005)

14. Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn, J., Walker,
K.R.: Agile Application-Aware Adaptation for Mobility. In: Proceedings of the 6th
ACM Symposium on Operating Systems Principles, pp. 276–287 (1997)

15. Andersen, D., Bansal, D., Curtis, D., Seshan, S., Balakrishnan, H.: System support
for bandwidth management and content adaptation in Internet applications. In:
Proceedings of 4th Symposium on Operating Systems Design and Implementation,
pp. 213–226 (October 2000)

16. Ward, A., Jones, A., Hopper, A.: A New Location Technique for the Active Office.
IEEE Personal Communication 4(5), 42–47 (1997)

17. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The Anatomy of a
Context-Aware Application. Wireless Networks 8(2-3), 187–197 (2002)

Towards Context-Awareness in Ubiquitous Computing 717

18. Small, J., Smailagic, A., Siewiorek, D.P.: Determining User Location for Context
Aware Computing Through the Use of a Wireless LAN Infrastructure, Project
Aura Report, Carnegie Mellon University (2000),
http://www.cs.cmu.edu/∼aura/publications.html

19. Aitenbichler, E., Muhlhauser, M.: An IR Local Positioning System for Smart Items
and Devices. In: Proceedings of the 23rd International Conference on Distributed
Computing Systems Workshops, pp. 334–339 (May 2003)

20. Nerguizian, C., Despins, C., Affes, S.: Geolocation in Mines With an Impulse
Response Fingerprinting Technique and Neural Networks. IEEE Transactions on
Wireless Communications 5(3), 603–611 (2006)

21. Orr, R.J., Abowd, G.D.: The Smart Floor: A Mechanism for Natural User Iden-
tification and Tracking. In: Proceedings of International Conference on Human
Factors in Computing Systems, pp. 275–276 (2000)

22. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less Low-Cost Outdoor Localization
for Very Small Devices. IEEE Personal Communication 7(5), 28–34 (2000)

23. Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-Camera
Multi-Person Tracking for EasyLiving. In: Proceedings of the 3rd IEEE Interna-
tional Workshop on Visual Surveillance, pp. 3–10 (July 2000)

24. Hightower, J., Borriello, G.: Location Systems for Ubiquitous Computing. IEEE
Computer 34(8), 57–66 (2001)

25. Yan, H., Selker, T.: Context-Aware Office Assistant. In: Proceedings of the 5th
International Conference on Intelligent user Interfaces, pp. 276–279 (2000)

26. Schmidt, A., Strohbach, M., van Laerhoven, K., Friday, A., Gellersen, H.W.: Con-
text Acquisition Based on Load Sensing. In: Proceedings of the 4th International
Conference on Ubiquitous Computing, pp. 333–350 (2002)

27. Moore, D.J., Essa, I.A., Hayes, M.H.: Exploiting Human Actions and Object Con-
text for Recognition Tasks. In: Proceedings of IEEE International Conference on
Computer Vision 1999 (ICCV 1999) (March 1999)

28. Schilit, B.N., Theimer, M.M., Welch, B.B.: Customizing Mobile Applications. In:
Proceedings of USENIX Symposium on Mobile and Location-Independent Com-
puting (USENIX Association), pp. 129–138 (August 1993)

29. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. In: 1st International
Workshop on Advanced Context Modeling, Reasoning and Management, pp. 34–41
(2004)

30. Flinn, J., Satyanarayanan, M.: Energy-aware Adaptation for Mobile Applications.
In: Proceedings of the 17th ACM Symposium on Operating System Principles, pp.
48–63 (December 1999)

31. Tekinerdogan, B., Aksit, M.: Adaptability in object-oriented software development
workshop report. In: Cointe, P. (ed.) ECOOP 1996. LNCS, vol. 1098, Springer,
Heidelberg (1996)

32. Biyani, K.N., Kulkarni, S.S.: Building Component Families to Support Adapta-
tion. In: Proceedings of the 2005 workshop on Design and evolution of autonomic
application software (DEAS 2005), St. Louis, Missouri, USA (May 2005)

33. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing adaptive
software. IEEE Computer 37(7), 56–64 (2004)

http://www.cs.cmu.edu/~aura/publications.html

Real-Time Embedded Software Design for Mobile and
Ubiquitous Systems

Pao-Ann Hsiung�, Shang-Wei Lin, Chin-Chieh Hung, Jih-Ming Fu, Chao-Sheng Lin,
Cheng-Chi Chiang, Kuo-Cheng Chiang, Chun-Hsien Lu, and Pin-Hsien Lu

Department of Computer Science and Information Engineering
National Chung-Cheng University, Chiayi, Taiwan–621, ROC

hpa@computer.org
http://www.cs.ccu.edu.tw/∼pahsiung/

Abstract. Currently available application frameworks that target at the auto-
matic design of real-time embedded software are poor in integrating functional
and non-functional requirements for mobile and ubiquitous systems. In this work,
we present the internal architecture and design flow of a newly proposed frame-
work called Verifiable Embedded Real-Time Application Framework (VERTAF),
which integrates three techniques namely software component-based reuse, for-
mal synthesis, and formal verification. The proposed architecture for VERTAF is
component-based which allows plug-and-play for the scheduler and the verifier.
The architecture is also easily extensible because reusable hardware and soft-
ware design components can be added. Application examples developed using
VERTAF demonstrate significantly reduced relative design effort, which shows
how high-level reuse of software components combined with automatic synthesis
and verification increases design productivity.

Keywords: application framework, code generation, real-time embedded soft-
ware, formal synthesis, formal verification, scheduling, software components,
UML modeling.

1 Introduction

With the proliferation of embedded mobile and ubiquitous systems in all aspects of hu-
man life, we are making greater demands on these systems, including more complex
functionalities such as pervasive computing, mobile computing, and real-time embed-
ded computing. Currently, the design of real-time embedded software is supported par-
tially by modelers, code generators, analyzers, schedulers, and frameworks [1, 2, 3, 4,
5, 6, 7, 8]. Nevertheless, the technology for a completely integrated design and verifi-
cation environment is still immature. Furthermore, the methodologies for design and
for verification are also poorly integrated relying mainly on the experiences of embed-
ded software engineers. Motivated by the status-quo, this work demonstrates how the
integration of software engineering techniques such as software component reuse, for-
mal software synthesis techniques such as scheduling and code generation, and formal

� Corresponding author.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 718–729, 2007.
c© IFIP International Federation for Information Processing 2007

Real-Time Embedded Software Design for Mobile and Ubiquitous Systems 719

verification technique such as model checking can be realized in the form of an inte-
grated design environment targeted at the acceleration of real-time embedded software
construction.

Mobile and ubiquitous systems involve the dynamic reconfiguration of applications
in response to changes in their environments. Middlewares such as network layer mo-
bility support, transport layer mobility support, traditional distributed systems applied
to mobility, middleware for wireless sensor networks, context awareness based mid-
dleware, and publish-subscribe middleware are required for efficient development of
mobile and ubiquitous applications. A user can develop an application using such mid-
dlewares, however it can sometimes be too tedious and complex to consider all the
different possible environments and application features. Examples of environments in-
clude office and domestic spaces, educational and healthcare institutions and in general
urban and rural environments. Examples of applications include domestic and industrial
security applications, education and learning applications, healthcare applications, traf-
fic management, commercial advertising, games and arts, rescue operations, and mil-
itary. Given such complex combinations of environments and applications, one would
desire a higher level of reuse than that allowed by object-oriented design and middle-
wares. We are thus proposing an integrated design framework that allows such higher
level of reuse.

As described below, several issues are encountered in the development of an inte-
grated design framework.

1. To allow software component reuse, how do we define the syntax and semantics of
a reusable component?

2. What is the control-data flow of the automatic design and verification process?
3. What kinds of model can be used for scheduling and verification?
4. What methods are to be used for scheduling and for verification?
5. How do we generate portable code that not only crosses real-time operating systems

(RTOS) but also hardware platforms. What is the structure of the generated code?

Briefly, our solutions to the above issues can be summarized as follows.

1. Software Component Reuse and Integration: A subset of the Unified Modeling Lan-
guage (UML) [9] is used with restrictions for automatic design and analysis.

2. Control Flow: A specific control flow is embedded within the framework, where
scheduling is first performed and then verification because the complexity of veri-
fication can be greatly reduced after scheduling [3].

3. System Models: For scheduling, we use variants of Petri Nets (PN) [5] and for
verification, we use Extended Timed Automata (ETA) [10], both of which are au-
tomatically generated from UML models that follow restrictions and guidelines.

4. Design Automation: For synthesis, we employ quasi-static and quasi-dynamic
scheduling methods [5] that generate program schedules for a single processor. For
verification, we employ symbolic model checking [11] that generates a counterex-
ample in the original user-specified UML models whenever verification fails for a
system under design. For handling complexity, we applied model-based,
architecture-based, and function-based abstractions during verification.

720 P.-A. Hsiung et al.

5. Portable Efficient Multi-Layered Code: For portability, a multi-layered approach
is adopted in code generation. To account for performance degradation due to
multiple layers, system-specific optimization and flattening are then applied to the
portable code. System dependent and independent parts of the code are distinctly
segregated for this purpose.

In summary, this work illustrates how an application framework may integrate all the
above proposed design and verification solutions. Our implementation has resulted in
a Verifiable Embedded Real-Time Application Framework (VERTAF) whose features
include formal modeling of real-time embedded systems through well-defined UML
semantics, formal synthesis that guarantees satisfaction of temporal and spatial con-
straints, formal verification that checks if a system satisfies all properties, and code
generation that produces efficient portable code.

The article is organized as follows. Section 2 described previous related work.
Section 3 describes the design and verification flow in VERTAF along with an illus-
tration example. Section 4 presents the experimental results of an application example.
Section 5 gives the conclusions with some future work.

2 Previous Work

The software in mobile and ubiquitous systems has both traditional features of real-
time embedded systems and also contemporary features such as adaptive resource man-
agement, proactive service discovery, context-aware coordination, multi-agents, and
models for heterogeneous platforms [12]. This is mainly due to the unique require-
ments of such systems including interoperability, heterogeneity, mobility, survivabil-
ity, security, adaptability, ability of self-organization, augmented reality, and scalable
content. Though there are numerous work on the software in mobile and ubiquitous sys-
tems, besides VERTAF, there is practically no design environment that can encompass
the whole design and verification flow of such systems. In the following, we briefly sur-
vey two main areas of research in this domain, including middleware and frameworks.

Middleware design is important for ubiquitous systems because it is through this
software that an application connects to the network and exchanges data with other
applications. Typical examples include the OSA+ middleware architecture [13], the
Reconfigurable Context-Sensitive Middleware (RCSM) [14], and the T-Engine archi-
tecture [15]. The OSA+ middleware facilitates the development of distributed real-
time applications in a heterogeneous environment. Some essential features of OSA+
include quality of service information requirement for each service, explicit support
for asynchronous communication, real-time memory services, and small memory foot-
print. OSA+ has been applied to e-health management services including patient iden-
tification, location monitoring, remote checking, and continuous accurate monitoring
of patient’s vital signs. The RCSM architecture facilitates the development of real-
time context-aware software in ubiquitous computing environments. This architecture
mainly combines CORBA and FPGA such that CORBA allows mobility and FPGA
allows dynamic reconfiguration (ubiquity). RCSM has been applied to sensor networks
such that object interactions are context-triggered. The T-Engine architecture is an open,
real-time embedded systems platform aimed at improving software productivity. The

Real-Time Embedded Software Design for Mobile and Ubiquitous Systems 721

T-Engine consortium includes computer hardware and software vendors, telecommuni-
cation carriers, and computer-using companies. T-Engine adopts a layered architecture
including application, middleware, kernel, monitor, and hardware layers.

There are several either fixed architectures or variable frameworks that have been
proposed in the literature for mobile and ubiquitous systems. Typical examples include
the Connected Multimedia Services (CMS) framework [16], the Earl Gray JVM-based
Component (EGC) framework [17], and the Static Composition Framework (SCF) of
service-based real-time applications [18]. The CMS framework is based on SIP and
X.10 protocols and allows multimedia sessions to be preserved when a user moves
from one computing environment to another. The EGC framework analyzes component
dependencies using a component-based JVM called Earl Gray. The SCF framework al-
lows to announce services, to discover services, and to select services for an application.

3 Design and Verification Flow in VERTAF

As shown in Figure 1, VERTAF provides solutions to the various issues introduced
in Section 1. The control and data flows of VERTAF are represented by solid and
dotted arrows, respectively. Software synthesis is defined as a two-phase process: a
machine-independent software construction phase and a machine-dependent software
implementation phase. This separation helps us to plug-in different target languages,
middleware, real-time operating systems, and hardware device configurations. We call
the two phases as front-end and back-end phases. The front-end phase is further di-
vided into three sub-phases, namely UML modeling phase, real-time embedded soft-
ware scheduling phase, and formal verification phase. There are two sub-phases in the
back-end phase, namely component mapping phase and code generation phase. We
will now present the details of each phase illustrated by a running example called En-
trance Guard System with Mobile and Ubiquitous Control (EGSMUC). EGSMUC is a
real-time embedded system that controls any entrance with a programmable electronic
lock installed. Two ways of control accesses are allowed: (a) registered users can be
authenticated locally at the entrance itself, and (b) guest users may obtain a remote au-
thentication through master acknowledgment. Here, a master could be the owner of the
building to which the entrance system is protecting and he or she can have mobile and
ubiquitous control access to EGSMUC. The master can grant entry access to the guest
user irrespective of how he or she is connected to EGSMUC (mobile access) and also
irrespective of where he or she is located (ubiquitous access). We will model EGSMUC
and VERTAF will automatically synthesize and verify the code for the system.

3.1 UML Modeling

Three UML [9] diagrams are extended for real-time embedded software specification
as follows.

– Class Diagrams with Deployment: A deployment relation is used for specifying a
hardware object on which a software object is deployed. Two types of methods:
event-triggered and time-triggered are used for modeling real-time behavior.

722 P.-A. Hsiung et al.

UML Model

Extended Timed

Automata

Generation

Real-Time

Petri-net Generation

Schedulable

Scheduler

Generation

Yes

No

No

Class Diagram

with

Deployments

Timed

Statecharts

Extended

Sequence

Diagrams

Display un-

schedulability

information

Display counter-

example in UML

model

Front End

Back End

Yes

Model Check

Specification

satisfied

Schedule

Component

Mapping

Code Generation

Embedded

Real-Time

Software

Fig. 1. Design and Verification Flow of VERTAF

– Timed Statecharts: UML statecharts are extended with real-time clocks that can be
reset and values checked as state transition triggers.

– Extended Sequence Diagrams: UML sequence diagrams are extended with control
structures such as concurrency, conflict, and composition, which aid in formalizing
their semantics and in mapping them to Petri net models for scheduling.

For our running EGSMUC example, the system class diagram with deployment is
shown in Figure 2. Other diagrams are omitted due to page limit.

3.2 Real-Time Embedded Software Scheduling

There are two issues in real-time embedded software scheduling, namely how are mem-
ory constraints satisfied and how are temporal specifications such as deadlines satisfied.
Based on whether the system under design has an RTOS specified or not, two different
scheduling algorithms are applied to solve the above two issues.

Real-Time Embedded Software Design for Mobile and Ubiquitous Systems 723

Input

CheckerDBMS

Display

Controller

-GetData1

-SendData1

-GetResult1

-SendResult1

Actuator

1

-Control1

-Display

1

1

1

-SendData 1

+reset() : bool

+init() : bool

+write() : bool

+clear() : bool

LCD

+reset() : bool

+init() : bool

+read() : int

Keypad

+reset() : bool

+init() : bool

+write() : bool

LED

+reset() : bool

+init() : bool

+soundAlarm() : bool

+stop() : bool

+read() : unsigned char*

+write() : bool

Audio

1

-DisplayData1

-control

11-control

1 1

11

1 1

+reset() : bool

+init() : bool

+read() : unsigned char*

+write() : bool

FlashRom

1

1

1

1

1

1

1

1

1

1

MediaCenter

GetData

SendData

Codec

1

1

+reset() : bool

+init() : bool

Network Adapter

1

1

SocketHandler

1

1

-GetData1

-SendData1

Camera

1

1

InputInterface

11

Fig. 2. Class Diagram with Deployment for Entrance Guard System with Mobile and Ubiquitous
Control

– Without RTOS: Quasi-dynamic scheduling (QDS) [5] is applied, which requires
Real-Time Petri Nets (RTPN) as system specification models. QDS prepares the
system to be generated as a single real-time executive kernel with a scheduler.

– With RTOS: Extended quasi-static scheduling (EQSS) [19] with real-time schedul-
ing [20] is applied, which requires Complex Choice Petri Nets (CCPN) and set
of independent real-time tasks as system specification models, respectively. EQSS
prepares the system to be generated as a set of multiple threads that can be sched-
uled and dispatched by a supported RTOS such as MicroC/OS II or ARM Linux.

To apply the above scheduling algorithms, we need to map the user-specified UML
models into Petri nets, RTPN or CCPN, which are generated automatically from user-
specified UML sequence diagrams, through a case-by-case construction. It is out-of-
scope here. The set of RTPN or CCPN is then input to QDS or EQSS, respectively, for
scheduling. Details on the scheduling procedures can be found in [5], and [19].

For systems without RTOS, we need to automatically generate a scheduler that con-
trols the system according to the set of transition sequences generated by QDS. In
VERTAF, a scheduler is constructed as a separate class that observes and controls the

724 P.-A. Hsiung et al.

status of each object in the system. Temporal constraints are monitored by the scheduler
class using a global clock.

For our running EGSMUC example, a single Petri net is generated from the user-
specified set of statecharts, which is then scheduled using QDS. In this example,
scheduling is required only for the timers associated with the actuator, the controller,
and the input object. After QDS, we found that EGSMUC is schedulable.

3.3 Formal Verification

VERTAF employs the popular model checking paradigm for formal verification of real-
time embedded software. In VERTAF, formal ETA models are generated automatically
from user-specified UML models by a flattening scheme that transforms each state-
chart into a set of one or more ETA, which are merged, along with the scheduler ETA
generated in the scheduling phase, into a state-graph. The verification kernel used in
VERTAF is adapted from State Graph Manipulators (SGM) [8], which is a high-level
model checker for real-time systems that operate on state-graph representations of sys-
tem behavior through manipulators, including a state-graph merger, several state-space
reduction techniques, a dead state checker, and a TCTL model checker. There are two
classes of system properties that can be verified in VERTAF: (1) system-defined prop-
erties including dead states, deadlocks, livelocks, and syntactical errors, and (2) user-
defined properties specified in the Object Constraint Language (OCL) as defined by
OMG in its UML specifications. All of these properties are automatically translated
into TCTL specifications for verification by SGM.

For our running EGSMUC example, the ETA for each statechart were generated
and then merged with the scheduler ETA. There are seven other ETA in this system
example. All ETA were input to SGM and AGR was applied. Reduction techniques
were then applied to each state-graph obtained from AGR. OCL constraints were then
translated into TCTL and verified by the SGM model checker kernel.

3.4 Component Mapping

This is the first phase in the back-end design of VERTAF and starts to be more hard-
ware dependent. All hardware classes specified in the deployments of the class diagram
are those supported by VERTAF and thus belong to some existing class libraries. The
component mapping phase then becomes simply the configuration of the hardware sys-
tem and operating system through the automatic generation of configuration files, make
files, header files, and dependency files. The corresponding hardware class API will be
linked in during compilation.

An issue in this phase is the possible conflicts among hardware devices specified in
a class diagram such as interrupts, memory address ranges, I/O ports, and bus-related
characteristics such as device priorities. Users are warned in this case.

3.5 Code Generation

There are basically three issues in this phase including hardware portability, software
portability, and temporal correctness. We adopt a multi-tier approach for code genera-
tion: an operating system layer, a middleware layer, and an application with scheduler

Real-Time Embedded Software Design for Mobile and Ubiquitous Systems 725

System_Call() { }

Interrupt Handler() {

Pop_Signal; // !Signal

}

Operating System
System Model

Invk_IO

?Signal

System Model

! Signal

?Other
Events ? Signal

System Model

Fixed
Memory
Location

Hardware
Device

Every 0.5ms/
Poll()

Additional
Statechart

Fig. 3. I/O Delegation, Invocation, and Polling

layer, which solves the above three issues, respectively. Currently supported underlying
hardware platforms include dual core ARM-DSP based, single core ARM, StrongARM,
or 8051 based, and Lego RCX-based Mindstorm systems. For hardware abstraction,
VERTAF supports MicroHAL and the embedded version of POSIX. For operating sys-
tems, VERTAF supports MontaVista Linux, MicroC/OS, Embedded Linux, and eCOS.
For middleware, VERTAF is currently based on the Quantum Framework [7]. For
scheduler, VERTAF creates a custom ActiveObject according to the Quantum API. In-
cluded in the scheduler is a temporal monitor that checks if any temporal constraints
are violated.

Each ETA that is generated either from UML statecharts or from the scheduled Petri
nets (sequence diagrams) is implemented as an ActiveObject in the Quantum Framework.
The user-defined classes along with data and methods are incorporated into the corre-
sponding ActiveObject. The final program is a set of concurrent threads, one of which is
a scheduler that can control the other objects by sending messages to them after observing
their states. For systems without an OS, the scheduler acts as a real-time executive kernel.

During code generation and the validation of automatically generated code, we dis-
covered a peculiar problem as described in the following. UML statecharts have run-to-
completion (RTC) semantics, that is, all actions within a state will complete execution,
even if a new event or signal is received, before transiting to another state. However, in
real-time embedded systems, I/O actions are usually infinite loops that poll hardware
devices for data. If such I/O related high-latency low-priority events are modeled into a
statechart with user-defined low-latency high-priority events, then due to RTC seman-
tics a class object will deadlock during execution if there is no data from an I/O device
that is polled. High-priority events cannot be handled. We observed this problem after
code was automatically generated for our running EGSMUC example. As solutions,
three methods are proposed for synthesizing the I/O interface between a user class and
an I/O device. The methods are illustrated in Figure 3 and described as follows.

1. I/O Delegation: The deadlock can be removed from a user-defined statechart by
introducing an additional statechart, as shown in the leftmost part of Figure 3, which
has only one state and one self-loop transition. I/O devices are polled in that state
and whenever data is available, an event or signal is broadcast. This statechart never
receives any events or signals from other statecharts. The original statechart only
waits for events from this statechart. However, while waiting, it can also handle
high-priority low-latency events. Thus, there is no deadlock and the RTC semantics
is also not violated.

726 P.-A. Hsiung et al.

Table 1. Mapping Devices and I/O Handling Mechanisms

I/O Device OS support
Type Interrupt Buffer AIO BIO NBIO
WI Yes Yes D, I D D, P
WB No Yes N/A D D, P
NB No No N/A D D, P

AIO: Asynchronous I/O, BIO: Blocking I/O, NBIO: Non-Blocking I/O,

WI: With Interrupt, WB: With Buffering, NB: No Buffering, D: Delegation, I: Invocation, P: Polling.

2. I/O Invocation: If the operating system supports asynchronous I/O operations,
the infinite polling loops can be replaced by invoking asynchronous I/O opera-
tions through system calls, as shown in the middle part of Figure 3. After invoking
an asynchronous I/O operation, the statechart can continue with other operations.
When an I/O device has finished an invoked I/O operation, it interrupts the pro-
cessor. The corresponding interrrupt handler then broadcasts an event, which is
received by the original system statechart.

3. I/O Polling: This approach assumes that the I/O data will be stored in a fixed
memory location such as the buffers in a hardware controller or OS. We can use
a timer to poll the I/O device periodically instead of polling it in infinite loops, as
shown in the rightmost part of Figure 3. Thus, the statechart will not be blocked in
an infinite loop and can handle other events or signals between two timer periods.

One of the above proposed methods can be selected for automatic interface synthesis
during code generation by identifying the type of I/O device. In general, I/O devices can
be classified into three types: (1) WI: with buffering and interrupt support, (2) WB: with
buffering but no interrupt support, and (3) NB: with neither buffering nor interrupt sup-
port. Examples include hard disk drives with interrupt support, infra-red remote controller
with only buffering and no interrupt, and touch or light sensors with neither buffering nor
interrupt support. The I/O delegation, invocation, and polling methods that are applica-
ble for the three types of devices are given in Table 1 under different conditions of OS
support. Normally, an OS might support asynchronous I/O (AIO), blocking I/O (BIO),
and non-blocking I/O (NBIO). Table 1 can be read as follows. For example, for an I/O
device of the WI type, if the OS supports only BIO, then only the I/O delegation method
can be used to synthesize the interface between that device and a user-defined statechart.

As observed from Table 1, the I/O delegation method is a universally applicable
method, except for cases where no interface is possible such as AIO with WB and with
NB devices. For our running EGSMUC example, the interfaces for infra-red remote
controller, for the network adaptor, and for the keypad were all synthesized using the
I/O delegation method. We also implemented the I/O invocation and polling methods
for the network adaptor, which is of the WI type. All three implementations for the
network adaptor were functionally equivalent, except for performance differences.

For our running example, the final application code consisted of 9 activeobjects de-
rived from the statecharts and 1 activeobject representing the scheduler. Makefiles were
generated for linking in the API of the 8 hardware classes and configuration files were
generated for the ARM-DSP dual microprocessor platform called DaVinci from Texas

Real-Time Embedded Software Design for Mobile and Ubiquitous Systems 727

Instruments with MontaVista Linux as its operating system on the ARM processor and
DSP/BIOS real-time kernel as the operating system on the DSP TMS6646DSP proces-
sor. There were totally 2,340 lines of C code for the full EGSMUC system, out of which
the system designers had to write only around 263 lines of C code, which is only 11.2%
of the full system code.

4 Analysis and Evaluation

For the running example EGSMUC, we now analyze why VERTAF is capable of gener-
ating a significant part of the system implementation code, thus alleviating the designer
from the tedious and error-prone task of manual coding. Due to its application frame-
work architecture, VERTAF supports software components that are commonly found
in mobile, ubiquitous, real-time, and embedded application domains. We classify the
components supported by VERTAF into the following.

– Storage and I/O Devices: This class includes all the storage and I/O devices that
are supported by VERTAF and required for implementing a real-time embedded
system. Examples from the EGSMUC system include FlashRom, Keypad, LCD,
Audio, LED, and Camera.

– Communication Interfaces: This class includes all the interface components that
allow connection with the external world, for example, wired and wireless net-
work connection, Bluetooth, and GSM/GPRS. Network adapter is an example from
EGSMUC system.

– Multimedia Processing: This class includes all the components providing API for
multimedia encoding and decoding through codecs specific to hardware platforms
such as the codecs provided by TI for DaVinci multimedia platform. The DSP class
in the EGSMUC system is an example.

– Control and Management Interfaces: This class includes all the components for
controlling and managing system components, such as the socket handler in the
EGSMUC example.

To implement mobile and ubiquitous control access in a real-time embedded system,
a user normally, without VERTAF, would have to install a web server, write multi-
media processing code, write network code, and integrate everything together, along
with application-specific context awareness or publish-subscribe middlewares. With
VERTAF, most of these tedious work are not required as long as the user configures
the correct components from the framework for use in his or her application.

For illustration purposes, we show how the Media Center class in the EGSMUC
example was implemented using VERTAF. The Media Center class is responsible for
getting acknowledgment from a mobile master ubiquitously, which means whenever a
guest wants to enter the building that the EGSMUC system is guarding, the Media Cen-
ter notifies the DSP class to use the Camera to capture an image of the guest and then
send the guest image to a master (the owner of the building or house). The master can
send an acknowledgment through the web after which the guest can enter the building.
A password is setup by a guest so that the guest can enter the building within the span
of time set by the master beforehand.

728 P.-A. Hsiung et al.

The architecture of the code generated by VERTAF consists of three parts, namely
a web server, a QF activeobject, and an image processing interface. The web server
allows a master to connect to EGSMUC using a web browser that can run Java applets.
The applet opens a socket connection between the media center and the client machine
of the master. The image of the guest requesting entrance is captured and processed
through the image processing interface. When a master acknowledges, the guest is noti-
fied through the input class. The control and data flows of the media center are automat-
ically generated by VERTAF and the user has to merely specify the sequence diagrams
and deploy the related classes to hardware or software components in the class diagram
as shown in Figure 2. Hence, VERTAF can save a lot of coding and design efforts.

There were totally 18 objects in the final application generated by VERTAF, out
of which the user or designer had to only model 7 classes. The remaining 11 classes
included components from all the four categories as described at the start of Section
4. Empirical results obtained from comparing two different implementations of the
EGSMUC system, one using VERTAF, and one without using VERTAF, showed that
not only the user written code reduced to 11.2% and the number of objects reduced to
41%, but the total time required to develop the application also reduced by more than
60%. The average learning time for each designer using VERTAF was approximately
0.1 day. The experimental and empirical results all show that VERTAF is beneficial to
designers of real-time embedded software with mobile and ubiquitous control access.

By employing various construction guidelines for design and several reduction tech-
niques for verification as described in Section 3.3, VERTAF is scalable to large and
complex applications. Since VERTAF was constructed in a component-oriented way,
one can also easily extend its features by plug-and-play of new components. The flow
of VERTAF can also be easily modified to incorporate the changes.

5 Conclusions and Future Work

An object-oriented component-based application framework, called VERTAF, was pro-
posed for the development of real-time embedded system applications with mobile
and ubiquitous control access. It was a result of the integration of three different tech-
nologies: software component reuse, formal synthesis, and formal verification. Starting
from user-specified UML models, automation was provided in model transformations,
scheduling, verification, and code generation. VERTAF can be easily extended by inte-
grating new specification languages and scheduling algorithms.

Future extensions will include support for share-driven scheduling algorithms. VER-
TAF will be enhanced by considering more advanced features of real-time applications,
such as: network delay, network protocols, and on-line task scheduling. Performance re-
lated features such as context switch time and rate, external events handling, I/O timing,
mode changes, transient overloading, and setup time will also be incorporated.

References

1. Amnell, T., Fersman, E., Mokrushin, L., Petterson, P., Yi, W.: TIMES: a tool for schedulabil-
ity analysis and code generation of real-time systems. In: Proceedings of the 1st International
Workshop on Formal Modeling and Analysis of Timed Systems (September 2003)

Real-Time Embedded Software Design for Mobile and Ubiquitous Systems 729

2. Douglass, B.: Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frame-
works, and Patterns. Addison Wesley, USA (1999)

3. Hsiung, P.: Embedded software verification in hardware-software codesign. Journal of Sys-
tems Architecture - the Euromicro Journal 46(15), 1435–1450 (2000)

4. Hsiung, P., Cheng, S.: Automating formal modular verification of asynchronous real-time
embedded systems. In: Proceedings of the 16th International Conference on VLSI Design
(VLSI 2003), pp. 249–254. IEEE CS Press, Los Alamitos (2003)

5. Hsiung, P., Lin, C.: Synthesis of real-time embedded software with local and global dead-
lines. In: Proceedings of the 1st ACM/IEEE/IFIP International Conference on Hardware-
Software Codesign and System Synthesis, pp. 114–119. ACM Press, New York (2003)

6. de Niz, D., Rajkumar, R.: Time Weaver: A software-through-models framework for embed-
ded real-time systems. In: Proceedings of the International Workshop on Languages, Com-
pilers, and Tools for Embedded Systems, pp. 133–143 (June 2003)

7. Samek, M.: Practical Statecharts in C/C++ Quantum Programming for Embedded Systems.
CMP Books (2002)

8. Wang, F., Hsiung, P.: Efficient and user-friendly verification. IEEE Transactions on Comput-
ers 51(1), 61–83 (2002)

9. Rumbaugh, J., Booch, G., Jacobson, I.: The UML Reference Guide. Addison Wesley Long-
man, Reading (1999)

10. Alur, R., Dill, D.: Automata for modeling real-time systems. Theoretical Computer Sci-
ence 126(2), 183–236 (1994)

11. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
12. Niemelä, E., Latvakoski, J.: Survey of requirements and solutions for ubiquitous software.

In: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia,
pp. 71–78. ACM Press, New York (2004)

13. Brinkschulte, U., Bechina, A., Keith, B., Picioroaga, F., Schneider, E.: A middleware archi-
tecture for ubiquitous computing systems with real-time needs. In: Proceedings of the IAR
Workshop, Institute for Automation and Robotic Research, France (November 2002)

14. Yau, S.S., Karim, F.: Context-sensitive middleware for real-time software in ubiquitous
computing environments. In: Proceedings of the 4th International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), pp. 163–170. IEEE CS Press, Los
Alamitos (2001)

15. Sakamura, K., Koshizuka, N.: T-Engine: the open, real-time embedded-systems platform.
IEEE Micro 22(6), 48–57 (2002)

16. Kwak, J.Y., Sul, D.M., Ahn, S.H., Kim, D.H.: An embedded software architecture for con-
nected multimedia services in ubiquitous network environment. In: Proceedings of the IEEE
Workshop on Software Technologies for Future Embedded Systems, pp. 61–64. IEEE CS
Press, Los Alamitos (2003)

17. Ishikawa, H., Ogata, Y., Adachi, K., Nakajima, T.: Requirements for a component frame-
work of future ubiquitous computing. In: Proceedings of the IEEE Workshop on Software
Technologies for Future Embedded Systems, pp. 9–12. IEEE CS Press, Los Alamitos (2003)

18. Estevez-Ayres, I., Garcia-Vails, M., Basanta-Val, P.: Static composition of service-based real-
time applications. In: Proceedings of the 3rd IEEE Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems, pp. 11–15. IEEE CS Press, Los Alamitos (2005)

19. Su, F., Hsiung, P.: Extended quasi-static scheduling for formal synthesis and code generation
of embedded software. In: Proceedings of the 10th IEEE/ACM International Symposium on
Hardware/Software Codesign (CODES 2002), pp. 211–216. ACM Press, New York (2002)

20. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard-real time envi-
ronment. Journal of the Association for Computing Machinery 20, 46–61 (1973)

Schedulable Online Testing Framework for

Real-Time Embedded Applications in VM

Okehee Goh and Yann-Hang Lee

Computer Science and Engineering Department
Arizona State University, Tempe AZ, USA

{ogoh,yhlee}@asu.edu

Abstract. The paper suggests a VM-based online testing approach in
which software testing is piggybacked at runtime on a system that op-
erates to serve actual mission. Online testing in VM is facilitated with
a framework that uses persistence service to initialize the testing opera-
tion with a consistent system state. The testing operation then runs in
an isolated domain which can be scheduled independently of the operat-
ing version. Thus, testing operation cannot cause unbounded pause time
nor spoil the normal operation. We evaluate the feasibility of schedula-
ble online testing with a prototype developed in MONO CLI (Common
Language Infrastructure) and the experiment on the prototype.

Keywords: Online Testing, Virtual Machine, Real-Time Embedded
Applications.

1 Introduction

Nowadays, the applications of real-time embedded systems have proliferated
from industrial controls to home automation, communication consumer gadgets,
medical devices, defense systems and so forth. The apparent trends of the sys-
tems include sophisticated features and a short production cycle. The trends
have sought solutions more in software rather than in hardware and also have
led to the application of virtual software execution environment (VM) as a run-
time environment. VM, populated with JVM [10] and CLI1 [5], features high
portability from using intermediate code, high productivity and reusability of
object-oriented languages, and a safe runtime environment. The features are
beneficial to the development of real-time embedded systems as the production
cycle and cost can be reduced.

As software plays an increasingly significant role in embedded systems, the
demands of upgrading software are anticipated for bug fixing and for extended
functionality. In fact, most embedded systems, which have long lifetimes and re-
quire high availability, are generally passive on software upgrade because upgrad-
ing software requires to restart the systems, and the newly upgraded software
1 CLR (Common Language Runtime), which is a CLI’s implementation by Microsoft

and an integral part of Microsoft .NET framework, is more popularly known than
CLI.

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 730–741, 2007.
c© IFIP International Federation for Information Processing 2007

Schedulable Online Testing Framework 731

can introduce new types of bugs and faults. Research work on online upgrade
[12,4], and reconfigurable systems [14], has been focusing on providing facilities
to accomplish the software upgrade at runtime. In the meanwhile, there is no
doubt as to the importance of software testing to verify the correctness, the
completeness, and security, especially for mission- or safety-critical software in
which even minor changes of the software require extensive testing [15].

Software testing is generally conducted in off-line environment with test cases
generated by predetermined inputs. The weakness of the predetermined inputs,
particularly derived from a model-driven formal system specification, is that the
testing results are restricted to the correctness and completeness of a given model.
Furthermore, an off-line testing environment for embedded software means that
the software is tested in a simulation mode and does not participate in an actual
mission. However, the testing of embedded software should be able to deal with
external interferences and unexpected behavior of the target application environ-
ment. All possible inputs may not be known ahead, and the generation of complete
test cases for all execution conditions is very problematical.

To overcome the aforementioned limitations, we suggest an online testing en-
vironment for software upgrades as a supplementary approach of an off-line test-
ing. The testing of software upgrades is piggybacked at runtime on the systems
that operate to serve an actual mission. Hence, the execution of the software
dedicated to the actual mission coexists with the execution of the software to be
tested. The apparent benefit of online testing is that testing undergoes not in a
limited runtime environment but in an actual target environment connected to
physical world. That is, the software testing is conducted by using actual inputs.
To simplify terminologies to be used hereafter, the software for an actual mis-
sion, and the software to be tested are called software under operation (SUO),
and software under test (SUT), respectively.

Most embedded applications run periodically with long lifetimes. At each pe-
riod, they conduct computation by taking external input data, and then the
computation results, represented as output data, is used to activate the target
hardware. Some embedded applications’ computation at each period is based
on the state that has been accumulated from computations of preceding peri-
ods as well as the newly sampled input data. For online testing of this type of
applications–stateful software, SUT must be able to start with the accumulated
computation state of SUO, and since then, gets applied with the same inputs
that SUO receives. Furthermore, if SUO is characterized by time constraints,
whose virtue includes timely correctness, the online testing piggybacked has to
be nonintrusive: the latency and pause time that SUO encounters due to on-
line testing must be predictable and controllable. Certainly, any faulty behavior
caused by SUT must be isolated to prevent SUO operations from any impact.

In this paper, we aim at a framework of schedulable online testing (SOTF)
for real-time embedded software in VM. With the advent of an online testing
request, the framework provides facilities to enable a testing mode where both
SUO and SUT are executed concurrently. On the termination of testing, the
system returns back to an operation mode of executing SUO only. It achieves

732 O. Goh and Y.-H. Lee

fault isolation by executing SUT in a separate partition. By checkpointing the
accumulated computation state of SUO, SUT begins to execute from a consis-
tent state. In addition, the framework logs the external input data which SUO
receives, and reconstructs the logs for the execution of SUT. Finally, SOTF
employs a preemptible mechanism for checkpointing and recovery of persisted
states and provides the flexibility to resume the testing anytime. Hence, the
timely correctness of SUO can be ensured.

In the following section, we give a discussion of related works. The target
application model of online testing is introduced in Section 3. Then, the ap-
proaches and designs of the proposed schedulable online testing framework on
CLI (Common Language Infrastructure)[5]’s open source platform, MONO [17],
are presented in Section 4. In Section 5, the experiment on the prototyped SOTF
is used to show the space overhead incurred by the testing framework. The over-
head and the source of latency of online testing with SOTF are identified. Finally,
Section 6 draws a conclusion.

2 Related Works

One of well-known research areas with a key role of checkpointing and/or logging
is log-based rollback recovery [6]. Logging-based recovery protocol, especially on
.NET framework [2,1], is tuned at component oriented distributed applications
The work was motivated with the problems that process-based recovery proto-
col cannot detect the failure of components, and checkpointing/recovery in a
process level is very heavy. The prototype employs .NET’s Object Serialization
and Context to support checkpointing/recovery and to enable interceptions of
messages (to aid logging) on persistent components, respectively. The rebinding
of recovered components is done through .NET Remoting’s registry so that other
stable components can access the recovered components.

Simplex architecture[13] is to support the evolvability of dependable real-time
computing systems. The architecture adopts analytical redundant logic: running
a trusted version (a fault-proof component) and an upgrade version (a not-yet-
fault-proof component) in parallel as separate software. The architecture has de-
cision logic that monitors the behavior of an upgrade version. If a faulty action
is detected from the version, the control of the system is switched to the trusted
version. Resource isolation is emphasized to prevent a trusted version from being
corrupted due to the faulty behavior of an upgrade version. Lee et al.[9] extended
the Simplex architecture for online testing and upgrade of industrial controller in
the Linux OS environment by applying the technique of Process Resurrection [8].

RAIC (Redundant Arrays of Independent Components) [11] is a technology
that uses groups of similar or identical components to provide software depend-
ability and allows component hot-swapping; the architecture allows addition or
removal of components at runtime. When a component is swapped, the state
transfer from an old component to a replaced component is supported, if the
component is stateful. If the components are faulty, as examined using built-in

Schedulable Online Testing Framework 733

testing code on the controller, the controller handles the faulty exceptions and
recovers the application state so that the fault is not exposed to the applications.

The primary difference of our work from the previous works is that our frame-
work aims a testing facility in VM that allows preemption to reduce blocking
delays. Thus, flexible scheduling of testing can be carried out while ensuring the
timeliness of regular service.

3 Target Application Model

The target application model we envision for SOTF is a closed-loop control sys-
tem. The systems basically include sensors, control processes, and actuators, and
the control tasks run concurrently and periodically to control a target plant. A
simplified view of the system can be described by three application-level objects
for the three system components: InputData, ControlProcess, and OutputData.

Figure 1 is a simplified closed-loop control system applying the schedulable
online testing. In the figure, InputData indicates the data collected from sensors
and taken by a control process, and OutputData are the computational results
generated by the process and passed to actuators. We assume that a control
process demands upgrades to meet performance enhancement or new business
requirements. The upgrade version’s control process has to access the same In-
putData as the operation version; that is, the upgrade version maintains the
same frequency and format for the access to InputData as the operation version
does. It is a reasonable assumption because InputData, which is generated by
a sensor as a result of monitoring the target plant, does not get changed unless
the sensor or the target plant gets replaced or upgraded. The same assumption
is applied to OutputData with respect to the actuator.

Consider a stateful control process where the computation result of each pe-
riodic operation depends on not only the InputData obtained at the current
period but also the accumulated state from the computations of the preceding
periods. An upgrade version’s control process can start online testing by be-
ing initialized with the state of an operation version’s control process at the

Sensor Plant Actuator

ControlProcessInputData OutputData

ControlProcessInputData OutputData

SW under
Operation

SW under
Test

Checkpoint/RecoveryLogging/Reconstructing

Fig. 1. Target application model of Online Testing

734 O. Goh and Y.-H. Lee

moment that online testing is triggered, and by accessing the same InputData
as the operation version.

The concern of online testing with real-time applications is to ensure time
constraints of regular service while online testing is under way. An approach
to address this issue is to schedule the testing as a background task, which
runs when no real-time task is ready. One of the problems that arise under this
scheduling approach is the availability of InputData. When an upgrade version is
ready to run, InputData that primarily stimulates the operation version’s control
process, may not be available any more. Also, the initial state must be preserved
until the upgrade versions start to execute. The foremost important issue is that
the testing operation, the logging of Inputdata, and the preservation of the initial
state must be preemptible. Thus, the testing process would not block the regular
service of the target system.

4 Online Testing Service

To enable schedulable online testing, we present the approaches in VM-based
real-time embedded system. Although the approaches are applicable to both CLI
and JVM, we built a prototype of SOTF in MONO CLI and, in the subsequent
text, refer to specific technologies and standard class library of CLI.

4.1 Online Testing Framework

SOTF consists of three tasks (in the application layer) to drive online testing,
and two subsystems (in the VM layer) to aid online testing: three tasks including
OTTestManager, OTRecordDriver (OTRecordDrv), and OTReconstructDriver
(OTReconstructDrv), and two subsystems including a preemptible persistence
system and a logging/reconstructing system.

Figure 2 illustrates the architecture of the framework of schedulable online
testing. The roles of the three tasks are as follows. OTTestManager is responsible

Logging/Reconstructing

Native code interface

Verification

Exception Handler

Garbage Collection

OTTestManager

OTRecordDrv OTReconstructDrv

Class Loader

JIT

Multi-Threading

Operation Partition Test Partition

Control
Process Input/Output Data

Control
Process

Input/Output Data

Checkpoint/Recovery
VM-layer

Application-layer

Fig. 2. Online Test Framework

Schedulable Online Testing Framework 735

for triggering online testing when software to be tested is ready. As a response
of the commands from OTTestManager, OTRecordDrv interacts with SUO to
checkpoint a consistent state of SUO and log input data sampled from sensors.
Correspondingly, OTReconstructDrv interacts with SUT to direct the recovery
and reconstruction operations of the persisted state and the logged input data. In
the figure, SUO and SUT are represented with a composition of ControlProcess,
InputData, and OutputData, as a simplified model suggested in Section 3.

4.2 An Isolated Testing Environment

As SUT concurrently runs with SUO, the possible faulty behavior of SUT can
affect the operation of SUO. To contain the faulty behavior of SUT, it should
reside in a runtime environment separated from that of SUO. We employ Applica-
tion Domain [3] in CLI as a facility to provide an isolated runtime environment.
The application domain is a lightweight address space designed as a model of
scoping the execution of program code and the ownership of resources. Sharing
objects between different domains is prohibited: that is, objects in one domain
cannot access objects in other domains. Creating multiple application domains
by starting assembly2 with a main entry, is supported at runtime. Addition-
ally, CLI facilitates unloading an application domain at runtime. This allows a
dynamically created SUT domain when a testing operation is requested.

4.3 Preemptible Checkpointing and Recovery

If SUO’s accumulated state from the computations of preceding periods is pre-
served, then SUT can start with the known initial state. To transfer the state
from SUO to SUT across the domain boundary, we adopt the approach of check-
pointing SUO’s state and recovering the state for SUT. The challenge of the
approach, especially for real-time applications, is that the pause time due to the
checkpointing/recovery operation may be unbounded. The unpredictable latency
from checkpointing can hinder the timeliness of SUO if SUO is blocked until the
checkpointing operation finishes entirely.

To make it possible to bound the pause time due to checkpointing and recov-
ery, our prior work, schedulable persistence system (SP system) [7] is adopted
with which the persistence service runs concurrently with real-time tasks. The
minimal length of the pause time, i.e. the minimal non-preemptible region in the
persistence service, can be adjusted to meet the scheduling needs of real-time
application tasks.

When the persisted state is deserialized, there may be a question whether the
state objects can be useful directly by the SUT. If the state objects of the control
process in SUT is the same object of SUO, i.e. the names of persistent classes
and persistent fields in SUT is identical to these in SUO, then the persisted
objects generated from SUO can be used to initialize SUT. Otherwise, we can
apply a transformation script to reconstruct the state objects for SUT based on
the persisted SUO objects.
2 Assembly is a minimal unit of reuse, versioning, and deployment in CLI.

736 O. Goh and Y.-H. Lee

4.4 Logging and Reconstructing

After being initialized with the checkpointed state of SUO, SUT is ready to exe-
cute. It should receive the sampled input data similar to the one applied to SUO
since the checkpoint. As a solution, the access to InputData by SUO’s Control-
Process is logged and then the access to InputData by SUT’s ControlProcess
is sufficed with the logs. This logging/reconstructing requires to intercept the
method calls on InputData objects. That is, the method calls by SUO’s Con-
trolProcess to read InputData is post-processed to log the sampled data, and
the method call by SUT’s ControlProcess to read InputData is pre-processed to
reconstruct the sampled data based on the logs. The post- and pre-processing on
InputData objects are done through the Context in CLI which provides an object
with an execution scope. Additional services can be augmented during incom-
ing/outgoing method calls on context-bounded objects which are derived from
the System.ContextBoundObject. This feature has been employed in a logging-
based recovery protocol on .NET framework [2,1] to enable the interceptions of
messages (to aid logging) on persistent components.

5 Experiments

The experiment of the SOTF prototype on MONO CLI is performed to under-
stand the source of latency on a testing sequence and to examine the concerns of
scheduling online testing in an example system. It is conducted with C# bench-
marking applications on a PC workstation with 1.5GHz Pentium IV processor
and 256MB memory. To have a high resolution timer and preemptive kernel,
TimeSys’ Linux/RK (real-time kernel v4.1.147) [16] is used. For time measure-
ment, a standard class library System.DateTime.Now.Ticks is used, which gives
100ns resolution. The C# language supports five levels of thread priorities, High-
est, AboveNormal, Normal, BelowNormal, and Lowest. The priorities, are imple-
mented using TimeSys RK’s POSIX real-time FIFO scheduling policy.

5.1 Cost Analysis for Testing Sequence

SOTF is implemented by integrating a wide range of facilities to satisfy the
requirements of online testing such as an isolated testing environment, inter-
ceptions of method calls, checkpointing/recovery, and logging/reconstructing.
Using the facilities leads to some overhead. Although the amount of overhead
or cost depends on the techniques employed, these types of overhead or cost
are inevitable. In this experiment, we analyze the cost incurred in every stage
constituting the testing sequence.

The benchmarking application, SUO, used in this experiment is a seismic
event monitor, which computes the rate of seismic events by using both seismo-
metric data newly obtained and seismometric data accumulated from a preceding
duration. The seismic event monitor (SUO) runs periodically every 3ms for 1ms
WCET (Worst Case Execution Time) with AboveNormal priority. The seismo-
metric data read from its InputData object is 20Bytes. The seismometric data

Schedulable Online Testing Framework 737

accumulated from prior computations, a persistent state of SUO’s ControlPro-
cess, will be checkpointed to aid for online testing. The size of the persistent state,
consisting of about 1000 composite objects including primitive types’ fields, is
about 20000Bytes. Its upgrade version, SUT, embodies a slightly different com-
putation approach but generates basically the same results with the operation
version SUO. When online testing starts, SUT runs every 1ms with Lowest pri-
ority. To just observe the overhead of the operation in a testing sequence, we
allow the checkpointing on SUO and the recovery of persisted data on SUT to
perform in a nonpreemptible mode. Additionally, the termination condition of
testing is set to 300 periods of SUO’s operation.

Table 1. Time line of a testing sequence

Stages Time (ms)

(1) Receive a testing request 0

(2) Turn on checkpointing on SUO 10

(3) Start checkpointing/logging on SUO 12

(4) Complete checkpointing 25

(5) Start SUT 29

(6) Complete initialization for testing on SUT 686

(7) Start recovery on SUT 691

(8) Complete recovery, and start testing on SUT 699

(9) Complete logging on SUO 862

(10) Complete testing on SUT 1015

(11) Start unloading of SUT 1044

(12) Complete unloading of SUT 1109

Table 1 shows the cost incurred in every stage constituting the testing se-
quence. The result is chosen as one with the longest completion time (e.g. the
moment that the unloading of SUT completes since the advent of a testing re-
quest) from 20 runs. The time specified at each stage is the elapsed time since
OTTestManager received the testing request. We speculate the costs involved
to carry out three functions: (1) coordinating SOTF tasks (OTTestManager,
OTRecordDrv, and OTReconstructDrv) and transferring information between
two different application domains, (2) conducting checkpointing and recovery,
and (3) starting and unloading software at runtime.

The cost in function (1) attributes to the coordination of SOTF tasks in
different application domains. For instance, the OTTestManager task, receiv-
ing an event for testing, informs OTRecordDrv to prepare for testing. What is
carried out in this step is that one task fires an event to wake up a dormant
thread, and the data specification for testing is transferred from one application
domain (where OTTestManager runs) to the other application domain (where

738 O. Goh and Y.-H. Lee

OTRecordDrv runs). To enable the communication between tasks in different ap-
plication domains, CLI’s AutoResetEvent class and AppDomain class are used.
The result, leading to about 10ms delay, which is quite expensive and mostly
comes from marshaling (to pass objects between the domains), indicates that
the efficient communication mechanism between different domains is desired.

Checkpointing and recovery operations take 13ms ((4)-(3)), and 8ms ((8)-(7)),
respectively. The size of final persisted data, including metadata for the serial-
ization protocol, is 33125Bytes. Compared to the experiment results (186ms and
69ms for serialization and deserialization respectively) by standard serialization
library, the schedulable persistence system (SP system) in [7] substantially out-
performs the standard serialization class libraries.

In Table 1, we also notice the cost for starting and unloading testing software
in a new domain at runtime. The operations are implemented using AppDomain
class’s CreateDomain, ExecuteAssembly, and Unload methods. The delay reaches
to 657ms((6)-(5)) to start a new software, and 65ms((12)-(11)) to unload the
software, respectively. This noticeable delays comes from loading and compiling
not only user classes of the new assembly but also a large portion of system
classes referenced by the user classes.

5.2 Scheduling Online Testing and Space Overhead

In SOTF, it is imperative that the timeliness of applications (SUO and other
real-time tasks) has to be guaranteed while testing is in progress. The simplest
scheduling approach is to treat the testing as a background job so that the testing
operations would have a minimal interference to the applications’ timeliness. One
of the concerns with the background testing job is the nonpreemptible regions
caused by SOTF. The other concerns is the overhead of space that is reserved
to save the logs. Logs produced by SUO have to remain until they are consumed
by SUT. The issue of space overhead also attributes to the characteristic of
embedded software testing, which requires to be exposed to the physical world
for a long period. Thus, it can encounter all possible input data sets. Here, we
consider a schedule example and use it to examine the space overhead in a testing
process.

In this experiment, the SUO (a seismic event monitor) and its corresponding
SUT (an upgrade version of the seismic event monitor) are same with ones in the
previous experiment so that the size of persistent data for checkpointing/recov-

Table 2. Task Sets (CU: CPU Utilization, time unit: ms)

CU T1 T2 T3 T4

0.5 0.5/5 1.6/8 1/10 1.5/15

0.6 0.5/5 1.6/8 2/10 1.5/15

0.75 1/5 2/8 2/10 1.5/15

Priority AboveNormal Normal Normal BelowNormal

Schedulable Online Testing Framework 739

ery, and the size of each log are same with the previous experiment. Addition-
ally, service launched in an operation partition includes three more tasks besides
SUO; that is, an operation partition consists of four tasks. Table 2 specifies
three different task sets, and their scheduling parameters according to varying
CPU utilization (CU), 0.5, 0.6, and 0.75. The table also specifies WCET, pe-
riod, and priority of each task, which runs periodically; for example, T1 in the
CPU utilization set 0.5 has 0.5ms WCET and 5ms period, and runs with the
AboveNormal priority. Among the tasks, T1 is SUO which has a correspondent
SUT. SUT, which is not specified as a task in the table because it does not
account for CPU utilization, runs as a background task (with the Lowest pri-
ority). Checkpointing and recovery are carried out in a preemptible mode with
the Highest priority–3ms period, and 2ms WCET. That is, when checkpointing
or recovery is initiated, it runs 2ms every 3ms until it completes the requested
service. In this experiment, we focus on understanding space overhead during
online testing so that we ignore the testing overhead including checkpointing
and recovery although it affects the schedulability of the task sets. To ease the
termination condition of testing, the testing duration is limited to 300 periods
of SUO operation.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

2000

4000

6000

8000

10000

12000

Time elapsed since logging starts (ms)

S
iz

e
of

 L
og

 D
at

a
(B

yt
es

)

CU 0.50
CU 0.60
CU 0.75

Fig. 3. Space for logs according to varying load

Figure 3 shows the space size of log data for three task sets over time un-
til testing on SUT completes since logging on SUO started. According to the
graph, the execution of SUT, conducting testing by actually consuming the logs,
starts at around 1122ms, 1257ms, 1342ms for CU 0.5, CU 0.6, and CU 0.75,
respectively. This start time is influenced from higher priority tasks’ loads and
also the overhead of online testing: as we see in the second experiment, SUT
can start once the completion of checkpointing by SUO, the launch of SUT
by OTTestManager, and the completion of recovery by SUT are accomplished,
which take approximately 700ms. Regarding the space for logs, if the duration of
SUO logging (producing logs) is not overlapped with the duration of SUT testing
(consuming logs), the space for logs including metadata is 16500Bytes. In fact,

740 O. Goh and Y.-H. Lee

the result shows that the maximum space size for logs reaches to 9407Bytes,
10727Bytes, 11057bytes for CU 0.5, CU 0.6, and CU 0.75, respectively. The ex-
periment shows that the space for logs reaches to the maximum during the initial
stage of testing; once testing by SUT starts by consuming the logs, the space
required for logs becomes less than during the initial stage. It indicates that
testing can be conducted for long duration without a severe burden of space if
the system can guarantee the maximum space needed in the initial stage.

Besides the space issue, conducting checkpointing and recovery in a pre-
emptible mode shows that it can keep the maximum pause time 2ms and then
their response times become 18ms, and 11ms on average, respectively, due to the
execution of interleaved mutators. It indicates that checkpointing and recovery
do not stop application tasks for 13ms and 8ms as its nonpreemptible mode of
the second experiment.

Conclusively, predicting the upper bound of memory space reserved for logs
has to consider the cost and overhead of online testing and the workload of
applications.

6 Conclusion

In this paper, we depict a VM-based schedulable online testing framework for
testing software upgrade of real-time embedded applications. The testing can un-
dergo with actual input data in a target runtime environment. The framework
is built by integrating a wide range of mechanisms of VM, including an iso-
lated partition for testing, preemptible checkpointing/recovery, and logging/re-
constructing the sampled input data. Meanwhile, in order to prevent the testing
from causing adverse effects on the ongoing regular services of the target sys-
tems, the testing task runs in the background mode and read in sampled data
via a log buffer. The experiment with the prototype of the framework, developed
on MONO, demonstrates the feasibility of online testing in VM environment as
well as the required capacity of the log buffer.

References

1. Barga, R., Chen, S., Lomet, D.: Improving logging and recovery performance in
phoenix/app. ICDE 00, 486 (2004)

2. Barga, R., Lomet, D., Paparizos, S., Yu, H., Chandrasekaran, S.: Persistent appli-
cations via automatic recovery. IDEAS 00, 258–267 (2003)

3. Box, D., Sells, C.: Essential.NET vol. 1: The Common Language Runtime, 1st edn.
Addison-Wesley, Reading (2002)

4. Dmitriev, M.: The first experience of class evolution support in PJama. In: Proc.
of The 8th International Workshop on Persistent Object Systems (POS-8) and
The 3rd International Workshop on Persistence and Java (PJW3), pp. 279–296.
Morgan Kaufmann Publishers, San Francisco (1998)

5. ECMA. Ecma-335 common language infrastructure (2002)
6. (Mootaz) Elnozahy, E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of

rollback-recovery protocols in message-passing systems. ACM Computing Sur-
veys 34(3), 375–408 (2002)

Schedulable Online Testing Framework 741

7. Goh, O., Lee, Y.-H., Kaakani, Z., Rachlin, E.: Schedulable persistence system for
real-time embedded applications in VM. In: EMSOFT, pp. 101–108 (2006)

8. Lee, K., Sha, L.: Process resurrection: A fast recovery mechanism for real-time
embedded systems. In: Real Time and Embedded Technology and Applications
Symposium, pp. 292–301 (2005)

9. Lee, K., Sha, L.: A dependable online testing and upgrade architecture for real-time
embedded systems. In: RTCSA, pp. 160–165 (2005)

10. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.
Addison-Wesley, Reading (1999)

11. Liu, C., Richardson, D.J.: RAIC: Architecting dependable systems through redun-
dancy and just-in-time testing. In: ICSE 2002 Workshop on Architecting Depend-
able Systems (2002)

12. Malabarba, S., Pandey, R., Gragg, J., Barr, E., Fritz Barnes, J.: Runtime support
for type-safe dynamic Java classes. In: Bertino, E. (ed.) ECOOP 2000. LNCS,
vol. 1850, pp. 337–361. Springer, Heidelberg (2000)

13. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001)
14. Soules, C.A.N., Appavoo, J., Hui, K., Wisniewski, R.W., Da Silva, D., Ganger,

G.R., Krieger, O., Stumm, M., Auslander, M.A., Ostrowski, M., Rosenburg, B.S.,
Xenidis, J.: System support for online reconfiguration. In: USENIX Annual Tech-
nical Conference, General Track, pp. 141–154 (2003)

15. Stankovic, J.A.: Misconceptions about real-time computing: a serious problem for
next generation systems. Computer Magazine, 10–19 (1988)

16. TimeSys Corporation. Timesys linux/real-time user’s guide, version 2.0 (2004)
17. Ximian. MONO, http://www.go-mono.com

http://www.go-mono.com

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 742–753, 2007.
© IFIP International Federation for Information Processing 2007

Scalable Lossless High Definition Image Coding on
Multicore Platforms

Shih-Wei Liao2, Shih-Hao Hung2, Chia-Heng Tu1, and Jen-Hao Chen2

1 Graduate Institute of Networking and Multimedia
2 Department of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan 106

{liao,hungsh,d94944008,r94125}@csie.ntu.edu.tw

Abstract. With the advent of multicores in all processor segments including
mobile, embedded, desktop and server ones, we are in the new era of multiplying
computing power via scaling the number of cores. The multicore approach is
more versatile and programmable than the ASIC approach. For instance, the same
multicore product can be adapted to the ever-improving potpourri image
processing standards. Developing ASIC modules for each standard would pose
million-dollar start-up cost and time-to-market disadvantage. However, the
multicore approach is a two-edge sword: Unleashing its multiplying power
presents significant programming challenges. The harmony between the
multiplying power and programming productivity is the holy grail in this field.
This paper addresses the challenge in the Digital Cinema domain. This paper
presents an oblivious parallelization paradigm in both compressing and
decompressing images via JPEG2000 on multicore platforms with maximum
productivity. This approach dramatically reduces compression and
decompression time in performing JPEG2000 lossless encoding and decoding
algorithms on high definition images in almost real time without any extra
hardware acceleration. By boosting parallelism coverage, the high resolution
images could be compressed and decompressed in near real time: 15 images
decoded/encoded per second. To the best of our knowledge, we are the first to
propose a software-based coding solution using commodity multicores to
achieve near real-time performance result for JPEG2000. This cost-effective
approach could be applied to digital cinema on devices with multicores.

Keywords: JPEG2000, Lossless, Multicore SoC, Parallelization, Digital
Cinema, Embedded System, Image Compress, Image Decompress.

1 Introduction

Full HD is the standard for the next generation digital TVs. The 2K and 4K digital
cinema are also on their way. This kind of huge data flow poses difficult challenges
on both storage space and transmission bandwidth. Therefore, compression is a
necessity. Furthermore, while consumer product users can tolerate minor image
quality distortion, professional production and military and medical customers cannot.

 Scalable Lossless High Definition Image Coding on Multicore Platforms 743

As a result, their compression schemes must be lossless. Several new standards have
been proposed including H.264/AVC for motion picture, JPEG2000 for still image,
and AAC for audio. These standards have better compression ratio compared to
previous standards, and also support lossless coding scheme. Among these standards,
JPEG2000 has been adopted by DCI (digital cinema initiative) for future distribution
of movies. Therefore, JPEG2000 is taken as case study in this paper. JPEG2000,
compared to previous lossless compression standards such as JPEG-LS, has a average
of 30% advantage in compression ratio [1]. But it requires about four times
computing power in both encoding and decoding [2]. Hardware (ASIC) and software
(multicore) based approaches have been proposed to addressing these complexities.
Our paper advocates the latter approach.

1.1 Motivation for the Multicore Approach

The adoption of multicores in all product segments including mobile, embedded,
desktop and server is an inevitable trend. The market has witnessed many multicore
products such as Sun’s UltraSPARC T1 and Intel’s Xeon 5100/5355/7100 in the high-
end market and ARM’s MPCore in the embedded market. More computing power can
be obtained for a single task if we can utilize more cores to achieve that. Another
incentive for utilizing more cores is that energy per core is more efficient and price
per core is cheaper when we move to more cores. For instance, Xeon 5300 series has
twice the number of cores as Xeon 5100, yet both the price point and the power
consumption are about the same.

In contrast to the ASIC approach, multicore solutions present time-to-market
advantages. For instance, multicore solutions do not impose additional hardware
development time for each fixed function. In addition, the multicore approach is more
flexible in adapting to new standards and configurations. The same hardware
resources can be shared among different functions. Thus, better resource utilization
across different functions can be achieved. On the other hand, ASIC solutions pose
million-dollar start-up cost and time-to-market disadvantage on each standard they
would support. Each independent IP can only process one kind of application,
resulting poor resource utilization and busy bus traffic among IPs. Furthermore, the
energy consumption may increase.

Multicore solutions, as we will show in this paper, are powerful enough to support
mainstream applications in the Digital Cinema domain, and the performance scales
with the increased number of cores. Thus, the multicore approach brings about a
promising platform to support the increasing compute demand and operating modes in
embedded environment such as mobile phone and digital TV/Cinema.

1.2 Studying Digital Cinema Solutions

To address the high compute and storage demands of Digital Cinema standard, people
have proposed hardware (ASIC) and software (multicore) based solutions. Both
approaches use parallelization to speed up processing. The JPEG2000 standard can be
roughly divided into three levels of parallelization paradigms.

The highest level is the oblivious parallelization paradigm. In such scheme the
image is divided into several segments and coded independently. The middle level is

744 S.-W. Liao et al.

the tile level parallelization paradigm, in which image is segmented into tiles, and
coded altogether into single JPEG2000 code stream. The lowest level is the embedded
block coding level parallelization paradigm, which partition each sub-band result
from DWT (Discrete Wavelet Transforms) into separate code blocks.

Among hardware solutions, Shirai et al. [3] adopt the oblivious parallelization
paradigm to build a system based on the JPEG2000 acceleration boards. There are in
total four acceleration boards in the system, connected via PCI-X bus. Each
acceleration board is responsible for a quarter of the image; each color component is
further delegated to four JPEG2000 ASICs. Using these systems, real-time 4K SHD
(4096x2160) quality international conference has been held between Kyoto, Japan
and San Diego, USA. Literature [4] shows that embedded code blocking is the most
time consuming part of JPEG2000 process. There are several hardware
implementations that focus on this portion [5, 6, 7].

Software solutions such as Jasper [8, 9], JJ2000 [10], and Kakadu [11], mostly run
in a single process. Threading techniques, used in [11] and [12], are deployed to
parallelize embedded code blocking process as hardware solutions do. In this paper,
we evaluate Jasper [8] and Kakadu [11] performance with high resolution, real-world
pictures. As the result in Figure 1 shows, Kakadu [11] outperforms Jasper in single
process with multithreading performance. Furthermore, both coders fail to
encode/decode in real-time, 15 frames per second. Based on this result, we hereafter
choose Kakadu [11] as our baseline software-based JPEG2000 encoder/decoder. Note
that the hardware specification will be given in Section 4.

1.3 Scaling State-of-the-Art Software Solution

Kakadu uses threading to parallelize time-consuming portions. In this paper we
investigate Kakadu's scalability in detail. As the figure in Section 0 shows, Kakadu
fails to scale beyond three times speedup even on an 8-core machine with 32
CoolThreads. This poor scalability makes Kakadu unsuitable for meeting real-time,
high-resolution performance requirements. This motivates us to propose a software
implementation of oblivious parallelization paradigm on multicore architecture.

Our multicore implementation has three distinct advantages: First, it has time-to-
market productivity advantage. It takes less than three man-months to deploy. Second,
performance scales with increased number of processor cores. Our result shows that
the multicore approach can meet real-time Full HD constraints. Even 2K SHD can be
processed in real time. Third, the high parallelism coverage of our implementation
removes the limitation induced by the 20% sequential portion in the Kakadu
encode/decode process.

In summary, the paper demonstrates the feasibility of multicore solutions in the
Digital TV/Cinema domain which was traditionally dominated by proprietary ASICs.
In addition, we are the first to propose the software-based oblivious parallelization
paradigm on commodity multicores and provide comprehensive evaluation of such
scheme for Digital Cinema.

The paper is organized as follows. Section 1 describes the motivation, related
works, and overview of the results. Section 2 illustrates the basics of JPEG2000 and

 Scalable Lossless High Definition Image Coding on Multicore Platforms 745

Fig. 1. Performance result of Jasper and Kakadu against Real-Time Criterion, 15 frames per
second, on a 1600x1200 image

the traditional approaches to parallelize JPEG2000. We present our approach in
Section 3 and its experimental results in Section 4. Section 5 concludes the paper.

2 Traditional Parallelization Approach in JPEG2000

We present the JPEG2000 flow in Section 2.1 and the traditional approaches to
parallelize JPEG2000 in Section 2.2.

2.1 JPEG2000 Flow

JPEG2000, as a state-of-the-art image coding system, is a wavelet-based image compr-
ession and decompression standard created by Joint Photographic Experts Group
committee. Since detailed descriptions of JPEG2000 features, internal algorithms, and
functionality set are duly presented in the literature [13], here we only outline the core
system and possible applications of JPEG2000 for the completeness.

The fundamental building blocks of JPEG2000 are as follows: pre-processing
(component transform), discrete wavelet transform, quantization, tier-1 coding (entropy
coding or arithmetic coding), and tier-2 coding (output code-stream creation). These
building blocks are mainly processing logical structures of components, tiles, sub-bands,
and code-blocks. Now, let us describe the encoding flow of JPEG2000 as an example to
understand the relationships among those keywords above. First, the image data is
decomposed into components (for example, Red, Green and Blue) and then, the
components are further partitioned into (rectangular or non-overlapping) equal-sized
tiles. Note that each tile could be coded independently later. Second, the tiles are broken
into coefficients for sub-bands by wavelet transform. Each intra-tile’s frequency
characteristics are kept in the coefficients. Third, wavelet transform is followed by
quantization, which is responsible for quantizing and partitioning the coefficients into
code-blocks. Quantization is also the stage making decision of rate control (distortion).
Fourth, code-blocks, the fundamental entities of tier-1 coding, are independent coded
and the result, compressed data, is fed into next stage. Finally, those compressed data
generated by previous stage is organized as packets (code-stream) by tier-2 coding.

746 S.-W. Liao et al.

Due to the diverse functionalities that JPEG2000 have, especially in that JPEG2000
provides both lossless and lossy coding scheme, there are many applications that could
benefit from its nature capabilities, such as image distribution through internet, security
systems over network, digital photography and medical imaging. From the applications
above, we could know that JPEG2000 is an image coding technology for the higher
quality and smaller data size. Thus, as long as the demands in seeking for perfect image
quality exist, the need for JPEG2000 will not stop.

2.2 Traditional Approach in Parallelizing JPEG2000 Coding

Much work has been done in the literature in either parallelizing or optimizing the
performance of JPEG2000 coding [12]. They take advantage of the multi-level
parallelization opportunities in JPEG2000 standard, such as tiles, sub-bands, and
code-blocks. In this section we would discuss about how far as they go and where the
obstacles are. One typical obstacle is the poor scalability with respect to the number
of cores.

Based on the literature and our experiments below [12, 14], the maximum speedup
obtained from previous work is 3. Also, previous work typically does not focus on
high resolution images or real-world images. Thus, we first run tests on our machines
and compare the performance of two JPEG2000 coders, Jasper and Kakadu. Next, we
determine the maximum speedup we could get from these software implementations
and choose the better one as our baseline. Note that the detailed information about the
machine environment and tested images will be given in Section 4.

Performance comparison between Jasper and Kakadu is presented in Figure 2.
Apparently, Kakadu outperforms Jasper in the entire spectrum of images ranging
from 300 mega to 100 mega pixels. Single process and single thread are used in both
runs. We will only experiment with Kakadu in the remaining paper, since Jasper is
slower.

Fig. 2. Performance comparison between Jasper and Kakadu on real world images ranging
from 300 to 1000 Mega Pixels

Figure 3 and 4 show the speedup of encoding an image by Kakadu on both HP
DL380 with 4 logical processors and SUN Fire T2000 with 32 CoolThreads,
respectively. The resolution of the image is 3648x2736. The speedup trend shown in
Figure 3 and 4 demonstrates the parallelism coverage of Kakadu is not high enough.

 Scalable Lossless High Definition Image Coding on Multicore Platforms 747

That is why speedup shown in Figure 3 remains below 3 while the number of tiles
increases. As we introduce more threads, run on SUN Fire T2000 with 32
CoolThreads enabled, the speedup shown in Figure 4 remains below 1.15. It is worthy
to note that the speedup trend of decoding the image on both machines shares the
same characteristics with Figure 3 and 4, respectively.

From the experiments, we conclude that due to low parallelism coverage the
performance will not scale even with more hardware resources. In the next section,
we propose an oblivious parallelization paradigm to boost parallelism coverage and
scale with the increasing number of cores.

Fig. 3. Kakadu Encode Speedup on HP
DL380. (A 3648x2736 image)

Fig. 4. Kakadu Encode Speedup on SUN Fire
T2000 (A 3648x2736 image)

3 Oblivious Parallelization Paradigm

Traditional approach employs hierarchical parallelization from different stages, tiles,
sub-bands, and code-blocks. Amdahl’s Law states that the speedup from running a
program in parallel is limited by the percentage of the program executed in parallel.
We call such percentage the parallelism coverage. Section 2 indicates that while the
traditional approach may be fine on a uni-processor with rich ILP (Instruction-Level
Parallelism) and vector units, it does not scale with the increasing number of cores.
Our profile data shows that about 80% of time is spent on decoding an input image
into internal code stream. That means the ideal speedup is 5 when only this portion of
the code is being parallelized in the traditional approach. This limitation on the
traditional JPEG2000 parallelization approaches motivates the oblivious parallelization
paradigm.

3.1 Illustration and Rationale

Our proposed approach aims at boosting the parallelism coverage yet helping
programmer’s productivity at the same time. Intuitively, the speedup would be N if
we could process N pieces of the original image in parallel rather than the whole
image in serial. Figure 5 illustrates the concept of oblivious parallelization paradigm.
Note that the nature of JPEG2000 supports such style of parallel coding.

In comparison, although it is a common and effective way to process image coding
in parallel, tiling may lead to the block effect in the resulting image. Besides, the

748 S.-W. Liao et al.

Fig. 5. Oblivious Parallelization Paradigm

parallelism coverage is lower than our oblivious parallelism scheme. To alleviate the
block effect, researchers also propose other parallelized regions such as wavelet
transform and tier-1 coding. However, the coverage is still lower.

The overhead of dividing and merging data in Figure 5 would be negligible, since
the encoding operation (ppm format to jp2 format) occurs mostly when the image
capturing device reads out the raw data and stores (transforms) them into memory
card or embedded memory in a compressed format, say jp2, and the decode operation
(jp2 format to ppm format) takes place mostly when the compressed file are going to
be displayed on the machine where the jp2 file located. On either circumstance, the
proposed approach will mainly stress the memory system and file system. Oblivious
parallelism paradigm will overlap the CPU and memory/file accesses better than the
CPU-focused tiling approach.

Intermediate file size in jp2 format is another possible issue. However, as our
experiment in Section 4 shows, only less than 10% space overhead results, even if we
divide an image of 2048x1036 into 140 pieces.

Finally, the division and blocking effect would not be a concern if we only focus
on lossless JPEG2000 coding. The essence of reversible transformation is that either
encoded or decoded data would be the same, regardless of the number of pieces we
process concurrently.

3.2 Modeling the Computation Power of Platform

To bound the JPEG2000 coding time for different images, we propose a Random-
Generated Image Algorithm. The algorithm generates an image with the same
resolution specified at input. Due to the random nature, each pixel is independent of
its surrounding pixels. This requires more computation during encoding and
decoding. Thus, these images serve to predict how much time it takes to
encode/decode images with certain resolutions in the worst case.

It is worth noting that this algorithm provides compute power estimation with
respect to JPEG2000 processing power before any input image is used. Finally, we
predict speedup using this model while oblivious parallelization paradigm is applied.
The model also implies how many sub-images are needed to start with. More results
in the next section demonstrate the use of this model.

 Scalable Lossless High Definition Image Coding on Multicore Platforms 749

Algorithm 1. Random-Generated Image Algorithm.
Input: Resolution, X and Y, of the image to be generated, where X represents width and

Y represents height of the image.
Output: The image, I, with resolution, X and Y, where each pixel is generated based on

Uniform Distribution.

for each unit px in X

for each unit py in Y
Red component of pixel in coordinate (px, py) is set to a random number with
uniform distribution.
Green component of pixel in coordinate (px, py) is set to a random number with
uniform distribution.
Blue component of pixel in coordinate (px, py) is set to a random number with
uniform distribution.

end for
end for

4 Experimental Results

This section presents the performance results, including the upper-bound execution
time from random-generated images, execution time from real-world images,
performance speedup on both environments, the performance trend with increasing
number of processors, and the size overhead of proposed paradigm. Also, two main
contributions, real time capability and scalability, are provided in this section.

Note that throughout this paper, real-world images represent the images captured
by different digital cameras with different resolution. Here, we use real-world images
as an example to exhibit performance results of oblivious parallelization paradigm
because of wide spread use of digital camera in recent years. Our work might not only
contribute to digital devices that perform image coding, but also extend to other field,
such as medical image coding.

Table 1. Experiment environments

Machine Model HP DL380 SUN Fire T2000
CPU Xeon 3.2GHz x 2 UltraSPARC T1 @ 1.0GHz x 8
Main Memory 2048MB 16376 MB
Operating System Linux 2.6.19 Solaris 11
Threading 4 logical processors 32 CoolThreads

We first describe the experimental setups and the input images. Table 1 outlines
our environments, which are commodity main stream machines on the market. Note
that the experiments done on HP DL380 machine are all run with 4 logical processors,
while the experiments run on SUN Fire T2000 are with either 32 CoolThreads, or
varied CoolThreads, to observe the relationship between the number of cores and
speedup. The mapping between tasks and execution units in multicore is handled
either by user level library or operating system, where the tasks refer to sub-images to
be encoded or decoded. Table 2 listed the resolution of real-world images used in this

750 S.-W. Liao et al.

Table 2. Testing images information (captured by different digital cameras)

Resolution Image size (.ppm) Pixels
3648x2736
3488x2616
3264x2448

29,241 KB
29,388 KB
25,735 KB

9,980,928
9,124,608
7,990,272

3072x2304 20,736 KB 7,077,888
3008x2000 17,211 KB 6,016,000
2816x2112
2592x1944
2400x1800
2272x1704
2048x1536

17,051 KB
14,416 KB
12,359 KB
11,342 KB
9,000 KB

5,947,392
5,038,848
4,320,000
3,871,488
3,145,728

Fig. 6. Performance trend on both Real-
World and Uniform Distributed images

Fig. 7. Linear Regression Functions of encod-
ing Real-World and Uniform Distributed
Images on HP DL380

paper. All the images, ranging from 300 mega to 1000 mega pixel (MP), are
transformed into ppm file format before the experiment.

Figure 6 depicts the trend while the image resolution increases. It is obvious that
the higher the image resolution is the longer execution time it needs to process
(decode/encode) the image. As expected, random-generated images (uniform-
distributed images) cost more time than the real-world images do. Unrelated pixels
result in extra processing time. Also, this leads to larger size of compressed file, jp2
file, than that of the original ppm file. This property could help us analyze the
computing power of certain hardware and software combination. In our example, the
combination is HP DL380 and Linux operating system. In order to quickly achieve
what we have done above rather than testing random-generated images one resolution
by one resolution, we model the patterns from the results we have. Interestingly, we
obtain a linear curve in Figure 7 and the curve passes most of the points in Figure 6.
This suggests that we could gain the upper-bound execution time by simply running
few random-generated images instead of those in whole spectrum.

In the remaining paper, we use the smallest image, 2048x1536. Larger images
would give better results. Average speedup of each image being coded on HP DL 380
is shown in Figure 8. Furthermore, the speedup of real-world images and random-
generated images are shown. Note that this diagram shows significant speedup on a

 Scalable Lossless High Definition Image Coding on Multicore Platforms 751

random-generate images (about 50 to 60 times) faster than the sequential mode run by
Kakadu. In contrast to a flat line at 100 sub-images of encoding/decoding real-world
images, the speedup of random-generated images continues to increase. Note that the
results suggest that the best sub-image size to perform oblivious parallelization
paradigm for real-world images is about 90KB (9,000/100 KB). Furthermore, the
result shows that real time encoding/decoding, 15 frames per second, is possible if the
hardware resources are available. While it takes about 2.05 second to encode the
2048x1536 image in serial, the oblivious parallelization paradigm yields a speedup of
29 in the case of 44 sub-images. In addition, it takes about 0.04 second to encode the
image when the speedup of 100 sub-images is 51.25.

To show the performance speedup with different number of CoolThreads
（ ）Virtual Processors , in SUN Fire T2000, we use minimum and maximum number
of sub-images. As shown in Figure 9, the speedup remains at 6 while 140 sub-images
are used. Alternatively, the speedup rises while the numbers of Virtual Processors

Fig. 8. Average execution time speedup on Encoding/Decoding 2048x1536 images, Real-
World and Random-Generated images, on HP DL 380

Fig. 9. Speedup on Encoding/Decoding a 2048x1536 image with Different Virtual Processors
on HP DL 380 and SUN Fire T2000

752 S.-W. Liao et al.

increase. This shows that our paradigm is ready for multicore environment and with
the maximum productivity.

The size overhead is shown in Figure 10. Apparently, the diagram shows that little
overhead is introduced by our paradigm. Only less than 10% extra size is required
while the numbers of sub-image are 140.

Fig. 10. Size overhead introduced by Oblivious Parallelization Paradigm

5 Conclusion and Future Work

This paper presents an oblivious parallelization paradigm to boost parallelism
coverage in high definition image compression and decompression for Digital Cinema
domain. To the best of our knowledge, we are the first to propose a pure software-
based solution on JPEG2000 image coding. Near real-time performance could be
obtained from proposed method.

The contributions of this paper are three-fold. First, we show that images for 2K
Digital Cinema could be compressed or decompressed in real-time, 24 frames per
second, if the hardware resources are adequate. Second, the potential scalability and
overhead of oblivious parallel paradigm are well presented. Finally, we have also
proposed the Random-Generated Image Algorithm to predict image coding performance
for specific hardware and software combination. Furthermore, according to our results,
this modeling could be done faster by running few numbers of random-generated
images. This could help to shorten the time for finding upper-bound execution time of
image coding on specific platform.

In the future, we plan to set up an environment to do real-time video streaming
system based on proposed algorithm. Also, we would like to extend our work to
medical image coding, since lossless image coding is vital in medical image area.
Finally, we would like to add hand-held devices into our system to play real-time
video streaming films.

Acknowledgments. We would like to thank Dr. Chung-Jr Lian for his valuable
comments and suggestions, Yu-Hong Liao and Yi-Di Lin for technical support on this
project and to the unknown referees for their valuable suggestions to improve the
quality of this work.

 Scalable Lossless High Definition Image Coding on Multicore Platforms 753

References

1. Novosel, D., Kovac, M.: Still image compression analysis. In: International Symposium
Electronics in Marine, pp. 567–572 (2004)

2. Santa-Cruz, D., Grosbois, R., Ebrahimi, T.: PEG 2000 performance evaluation and
assessment. Signal Processing: Image Communication 17, 113–130 (2002)

3. Shirai, D., Yamaguchi, T., Shimizu, T., Murooka, T., Fujii, T.: 4K SHD Real-Time Video
Streaming System With JPEG 2000 Parallel Codec. In: IEEE Asia Pacific Conference on
Circuits and Systems, pp. 1855–1858 (2006)

4. Lian Jr., C., Chen, K.-F., Chen, H.-H., Chen, L.-G.: Analysis and architecture design of
block-coding engine for EBCOT in JPEG 2000. IEEE Transactions on Circuits and
Systems for Video Technology 13, 219–230 (2003)

5. Chang, Y.W., Cheng, C.C., Chen, C.C., Fang, H.C., Chen, L.G.: 124 MSamples/s Pixel-
Pipelined Motion-JPEG 2000 Codec Without Tile Memory. IEEE Transactions on Circuits
and Systems for Video Technology 17, 398–406 (2007)

6. Fang, H.-C., Chang, Y.-W., Wang, T.-C., Lian Jr., C., Chen, L.-G.: Parallel embedded
block coding architecture for JPEG2000. IEEE Transactions on Circuits and Systems for
Video Technology 15, 1086–1097 (2005)

7. Andra, K., Chakrabarti, C., Acharya, T.: A high-performance JPEG2000 architecture.
IEEE Transactions on Circuits and Systems for Video Technology 13, 209–218 (2003)

8. Adams, M.D., Kossentini, F.: JasPer: a software-based JPEG-2000 codec implementation.
In: IEEE International Conference on Image Processing, pp. 53–56 (2000)

9. JasPer JPEG2000 codec. http://www.ece.uvic.ca/ mdadams/jasper
10. JJ2000, A JAVATM implementation of JPEG 2000. http://jj2000.epfl.ch
11. Kakadu JPEG2000 codec. http://www.kakadusoftware.com
12. Meerwald, P., Norcen, R., Uhl, A.: Parallel JPEG2000 Image Coding on Multiprocessors.

In: IEEE International Parallel and Distributed Processing Symposium, pp. 2–7 (2002)
13. Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG 2000 still image compression

standard. IEEE Signal Processing Magazine 18, 36–58 (2001)
14. Hong Man, A.D., Kossentini, F.: Performance Analysis of the JPEG 2000 Image Coding

Standard. Multimedia Tools and Applications 26, 27–57 (2005)

T.-W. Kuo et al. (Eds.): EUC 2007, LNCS 4808, pp. 754–766, 2007.
© IFIP International Federation for Information Processing 2007

Self-stabilizing Structure Forming Algorithms for
Distributed Multi-robot Systems

Yansheng Zhang, Farokh Bastani, and I-Ling Yen

University of Texas at Dallas
 {yxz037000,bastani,ilyen}@utdallas.edu

Abstract. Object transportation is an important emerging application of multi-
robotic swarm systems. It requires a large number of robots to be dynamically
coordinated in real-time to form structures around any given rigid body that is
to be lifted and transported. This paper systematically investigates the major
issues that need to be addressed in methods of dynamically forming robust
transportation structures. Two self-stabilizing algorithms are developed to
enable a swarm of robots to form a structure to handle object transportation.
Even with only a limited localized view of the environment, the algorithm
enables individual robots to cooperatively form a safe structure. The stability
and fault-tolerance properties of the algorithms are formally proven. The
performance of the self-stabilizing algorithms, in terms of their efficiency of
convergence, is evaluated via experimental studies and the results show that the
system can achieve the goals in real-time.

Keywords: Swarm robotic systems, self-organizing, self-stabilizing systems.

1 Introduction

A robotic swarm system is a collective multi-agent system composed of multiple
autonomous robots, interacting and cooperating with each other to accomplish some
specified task. In recent years, a lot of research efforts have been devoted to the
development of swarm system models and techniques [4]. Many application systems,
such as large-scale unmanned space exploration, underwater missions [2], etc. can
potentially take advantage of swarm system techniques. Compared to the traditional
individual robot control approach, the swarm robot system has better potential in
achieving more complicated tasks and can better adapt to failures or unexpected
situations.

One major direction in swarm systems investigates the transportation of large
objects, which is frequently required in many robotic applications. For example, in
space exploration task, thousands of mobile robots may be launched into asteroid belt
to collect data for further analysis. Some interested big object need to be transported
by multiple robots back to the spaceship. Another example is pathway clearing. There
may be some large trash that can only be removed by group of robots through tight
cooperation. To build such a system, we usually divide the whole task into smaller
subtasks. The first task is the coalition formation [3] which requires multiple robots
form a group to accomplish a common goal. Specifically, the group of robots need to

 Self-stabilizing Structure Forming Algorithms for Distributed Multi-robot Systems 755

form a suitable structure [5] with which the weight of the load can be distributed
evenly on the robots and the balance of the rigid body can be easily maintained in
spite of some disturbance during the transportation. Thus the structure should be
flexible such that it can be easily adjusted under different situations during the
mission.

Self-organizing or self-assembling is the fundamental technique in swarm robotic
systems for achieving structure formation. Assume that a group of robots are initially
located randomly in an environment. They should automatically assemble to form
desired structures to facilitate object movement. The structure should be adjusted
dynamically and autonomously during the execution of the transportation tasks. The
coordination should be implicit, i.e., the behavior of an individual robot is based only
on its local information and interactions with neighboring robots while achieving the
desired behavior of the system. Moreover, individual robots should be allowed to
dynamically join or leave the group without significantly affecting the emergent
system behavior. Thus, self-organizing approach achieves better reliability,
extensibility, robustness, and fault tolerance.

Many self-organizing techniques have been developed in the literature. One major
approach is to apply artificial evolution techniques to synthesize the individual robot
controller so as to achieve a collective behavior of the system. In [5], a group of
mobile robots are trained to approach a prey, self-assemble into structures and pull or
push the prey towards a target location. The system is capable of coping with different
structures and shapes of the prey. But it takes a long time to evolve a good controller.
Moreover, the neural network controller may result in multiple structures given the
same initial prey shape and robot’s position. In some of these structures, all the robots
aggregate at one side of the rigid body, which make the robot improperly hold and
support the body. Another approach is based on the concept of force field [6]. The
attractive potential and repulsive potential are used to manipulate the robots to move
toward the target and/or to distribute evenly around a rigid body. Though the system
can form flexible structures, every robot is required to get the other robots’ position
information periodically to calculate the potential. This is not practical since most of
the robot being used in the swarm system only have local and limited sensing and
communication abilities. Moreover, it takes a long time for these algorithms to
converge.

In this paper, we design self-stabilization algorithms [1] for a swarm of robots to
form a structure to handle object transportation. We focus on efficient convergence of
the algorithm such that the system can fulfill the specified tasks in real-time. Also, the
constraint on the number of robots is carefully studied to ensure a safe structure that
helps the rigid body keep balance in transportation. Moreover, in the process of
transportation, the self-stabilization algorithm supports autonomous structure
adaptation to cope with failures or environment changes. Hence, the system is robust
and can tolerate failures of individual robots.

The rest of the paper is organized as follows: In Section 2, we present our model
for individual robots as well as the problem specification. Section 3 presents two
algorithms for the lower level planners to cooperatively form a safe structure. Section
4 describes simulation result and Section 5 summarizes the paper and outlines some
future areas of research.

756 Y. Zhang, F. Bastani, and I-L. Yen

2 System Model and Problem Specification

Here we discuss the system model for object transformation by a swarm of robots. A
detailed description about the robot capabilities is discussed in Section 2.1. Section 2.2
defines some basic definition about the rigid body and system configuration. Problem
specification and the constraint on the formed structure are discussed in Section 2.3.

2.1 Mobile Robot Model

We consider mobile robots with sensors and actuators and wireless communication
devices (as shown in Fig. 1). Initially, we assume that n robots form a coalition as one
group. Let ri denote the i’th robot. To transport a rigid body, the robot should have the
following capabilities and properties.

1) The robot has two wheels and their relative positions to the center of the robot
are fixed. Each wheel can move independently at the user specified speed.
Positive speed yields forward move and negative speed yields backward move.
Rotation can be achieved by assigning different speed to two wheels.

2) The robot maximum linear speed is denoted byϖ.
3) Each robot has a set of sonar and color sensors, which can detect obstacles

and other robots around it. Furthermore, the robot can determine the distance
of an object and can differentiate an obstacle from other robots in the group.

4) Each robot is equipped with a GPS device which allows it to obtain its
current position.

5) Each robot is equipped with a gripper that allows the robot to grasp and lift the
rigid body at all angles. The gripper can be used to enforce a fine-grained
coordination to a certain extent. Slightly uncoordinated behaviors from some
individual robots due to physical discrepancies will be forcefully adjusted to
the desired behaviors by the force feedbacks from the grippers. Thus, we
assume that during motion, the relative positions of the robots are maintained.

 Fig. 1. Structure of Each Individual Robot Fig. 2. An Example of Unsafe State

2.2 Basic Definitions

Let O denote the object to be transported. Assume that O is a convex polygon and let
graph G = (V, E) denote the polygon, where V is the set of vertices and E is the set of
edges. Let gc denote the center of gravity and rad the radius of O, i.e. rad = Max {dist
(gc, vi) | for all vi in V}, where dist is the distance between two points.

 Self-stabilizing Structure Forming Algorithms for Distributed Multi-robot Systems 757

As discussed earlier, there are n mobile robots in the system. For simplicity, each
robot is considered as a dot. Let pi represent robot ri’s angular position relative to the
center of gravity. The system state or configuration can be defined by vector cf = [p1,
p2, …, pn]. Configuration vector cf is time variant, so sometimes we use cf(t) to denote
the system state at time t.

2.3 Problem Specification and Analysis

We consider the problem of n robots, r1… rn, distributing themselves around the rigid
body O to support the transportation of O in a balanced manner. The most basic
requirement to maintain the balance is: when we arbitrarily draw a line that crosses
the center of gravity (gc) of the rigid body, there must exist some robots on either side
of the rigid body or simply on the line. To allow strengthening the balance
requirement and make it flexible, we require that for a given θ, when we arbitrarily
draw an angle of size θ with the tip on gc, there always exists at least one robot
within the angle. Here θ can be specified by the system designer to control how
evenly the robots should distribute. In the following we give a formal definition for
the safe state based on θ .

Definition 1. Safe State S: ∀ϕ, there always exists a robot that is within the angle
range [ϕ, ϕ+θ] of the rigid body. �

When θ = π, the safe state constraint becomes the most basic requirement. Also, θ
should always be less than or equal to π. In Fig. 2, we give a counter example to
illustrate an unsafe state. In this configuration, there exists an angular range [ϕ, ϕ+θ]
that does not have any robot.

Generally, the system is expected to not only converge to a safe state, but also
remain in the safe state in spite of some individual robot failures so that the group of
robots can keep transporting the rigid body without stopping for structure
reformation. This is especially important for time-critical rigid body transportation
tasks. Thus, it is necessary to consider additional system requirements beyond the safe
state requirement. Consider a rigid body that requires at least 3 robots to safely
transport it (due to its weight). Thus, the safety requirement have θ = 2π/3. Assume
that the system actually has 7 robots which form a structure as shown in Fig. 3(a).
Note that the system satisfies the safe state constraint. However, if robot 7 fails, the
system will no longer be in a safe state since the angle between robot 1 and robot 6 is
greater than 2π/3. But if the robots form a structure as shown in Fig. 3(b), then even if
one robot fails, the system still stays in the safe state.

(a). Distribution That Cannot Tolerate Failure. (b) Distribution That Can Tolerate Failure.

Fig. 3. Two Examples of 7 Robots Distributing around a Circle

758 Y. Zhang, F. Bastani, and I-L. Yen

The above analysis leads to a general model of the desired system design. The
system is expected to converge to a goal state which always implies the safe state.
When failure occurs, the system may no longer be in the goal states, but should
remain in the safe states (for example in Fig. 4, the system is driven from state 3 to
state 4). Since the system continuously adjusts its state, it will automatically recover
and transfer back to a goal state (state 4 back to state 3). Continuous failures may
finally bring the system from a safe state to an unsafe state (for example in Fig. 4, the
system is driven from state 1 to state 2), but the desired system design is to let this
happen with a very small probability.

Fig. 4. Desired State and Safe State (f=fault, r=recovery)

Mapping the general system design model to our object transportation problem, the
goal state is to have robots evenly distributed around the rigid body. When a robot
fails, the remaining robots still form a structure that satisfies the safe state constraint.
The robots will quickly recover to the goal state and during the recovery process, the
system is always in the safe state. In a rare case when the system, after multiple robot
failures or do not have a sufficient number of robots, may go into an unsafe state. In
this case, if the system can still recover to a safe state, the robot will have to release
the rigid body and reform a safe structure and, then, continue the transportation task.

Here we need to define the goal state of the system. The ideal goal state is to have
robots evenly distributed around the rigid body. Specifically, the angular distance
between any two adjacent robots, denoted by α, should have α = 2π/n (n is the total
number of robots). But this will not be possible in physical systems. Thus, we need to
define a tolerance bound without sacrificing safety even under robot failures.

Definition 2. Goal state G: The angular distance between any two adjacent robots, α,
should satisfy α ≤ 2π/n + δ. �

Here δ is the tolerance bound and it is the control parameter of the goal state. Smaller
δ indicates better robot distribution (more even) structure and potentially better
system fault tolerance. In the case of the safe state, we have α = θ.

The problem we consider is that n robots, r1… rn, should distribute themselves
around the rigid body O such that the goal state is satisfied. When failure occurs, the
system should still satisfy the safe state constraint if there is a sufficient number of
working robots. When a robot is in motion, in case it cannot coordinate properly with
other robots due to partial failures or some obstacles, we assume that the robot fails.
The continuous execution of the algorithm should guarantee that the system
converges to the goal state after failures.

 Self-stabilizing Structure Forming Algorithms for Distributed Multi-robot Systems 759

The system, either starting from an initial state, or being in an intermediate state
after failure, should converge to a goal state. This stability requirement is given in the
following.

Definition 3. Stability property: If there exists a time t, such that cf(t) ∉ G, then,
there exists a time t’ < t + T, such that cf(t’) ∈ G. �

The stability property requires that, from any state, the system will converge to the
goal state G in a bounded time T.

3 Self-stabilizing Structure Forming Algorithms

In a self-stabilization system, the system may start from an arbitrary state and will
converge to a goal state within a bounded time. Self-stabilization concept is very
suitable for the design of swarm systems so that the system can converge from an
arbitrary state (potentially an unsafe state due to the initial condition or after failures)
to a goal state. We apply the self-stabilization principle to the design of the rigid body
transportation algorithm for a swarm of robots. In Subsection 3.1, we first try to unify
the problem of considering different rigid body shapes by mapping any convex
polygons to a circle. Two algorithms for the rigid body transportation problem are
presented in Subsections 3.2 and 3.3. For each algorithm, the stability property is
analyzed.

3.1 Shape Mapping

As defined in Section 2.2, we consider a group of robots, r1, …, rn, transporting a
rigid body, O, that has a convex polygon shape. For structure formation, we first map
O to a circle, then compute the robot movements on the circle, and finally map the
movements to polygon positions.

Let C=(gc, rad) denote the circle that encloses the polygon O in which gc is the
center and rad is the radius of C. We project a robot ri next to O to the circle C (with a
light source on gc) and call the projection of ri the shadow robot sri. Fig. 5. gives an
example to illustrate the mapping of a polygon to a circle and mapping of robots next
to the polygon to shadow robots (or vise versa).

Fig. 5. Rigid body and robot mapping Fig. 6. Robot speed mapping

760 Y. Zhang, F. Bastani, and I-L. Yen

We use angular coordinates to represent robot positions and movement speeds.
Note that the definition of the safe state and goal state are also based on the angular
coordinates. As can be seen, sri and ri has the same angular position. Thus, a safe
shadow structure implies that the corresponding real structure is safe. So, we only
need to consider the movement of the shadow robot for the structure formation
problem. Assume that a shadow robot only has two types of simple movements, move
around C clockwise or anticlockwise. Also assume that clockwise speed is positive
and anticlockwise speed is negative. Here we discuss how to map the shadow robot
angular speed back to the real robot translational speed.

Without loss of generality, consider that a real robot ri at position A and ri is
moving along EF, the edge of the rigid body (as shown in Figure 6). Let γ denote the
angle of the intersection between rigid body edge E-F with the circle radius gc-B. Let
si denote the angular speed of ri and ssi denote sri. Note that the real robot and the
shadow should have the same angular speed, i.e. si=ssi. Also, let tsi denotes the
translational speed of ri along edge EF. We have: tsi × sin(γ) = si × dist(gc, A). Thus,
the speed of the real robot is tsi = si /(rad× sin(γ)). For convenience, we only consider
si in the algorithms and tsi can be computed accordingly. Similarly, the maximum
translational speed of the robots, ϖ defined in Section 2 can be transformed into
maximum rotational speed τ, where τ = ϖ/rad.

3.2 First Algorithm

The simplest strategy for the robots to distribute evenly around the rigid body is to let
each robot move to the relative center of its two neighbors. Assume that robot ri is the
current robot. After determining the LR and RR angles, the robot will rotate
anticlockwise to reduce the angular difference between LR and RR. However, it is
well known that this strategy can result in oscillation. Thus, it is necessary to control
the speed of the robots in order to assure system convergence. Also, we consider an
ideal physical system here and make the following assumptions to ensure the steady
convergence to a goal state.

1) We assume that sensors of the robots are accurate and sensitive. It can
provide the individual robots with the global information, including all the
individual robot positions and the exact shape and position of the rigid body.

2) The planning process of each robot is assumed to be instantaneous.
3) The actuator of each mobile robot is accurate. It can move to any location

precisely as the planner specifies. Moreover, speed acceleration and
deceleration of each robot is instantaneous.

Assume that the robots are numbered sequentially based on their positions (in
clockwise order), i.e., the immediate neighbors to the right and left of robot ri are ri−1
and ri+1, respectively. Let ξi represent the angular interval between ri and ri+1. ξi can
also be viewed as the angle formed by ri, gc, and ri+1 and ξi = pi+1−pi. ξn is the angular
interval between rn and r1. Robot ri and ri+1 are considered as the boundary robot of
interval ξi. For robot ri, ξi and ξi−1 are the left and right angular intervals of ri. Given
any two robot ri and rj, i > j, rj is considered as the (i−j)th right neighbor of ri, denoted
by LNi(i−j). Similarly RNj(i−j) denotes that robot ri is the (i−j)th left neighbor of rj.

 Self-stabilizing Structure Forming Algorithms for Distributed Multi-robot Systems 761

Specially, LNi(0)=RNi(0)=ri. Each robot has a local state. Let statei denote the state of
robot ri. statei can be either UnEven (UE), when the robot’s left and right angular
intervals are different, or LocalEven (LE), when the intervals are equal. If all the
robots are in the local even state, then the system is in a global even state. The self-
stabilizing structure forming algorithm for the robots is given as follows:

Algorithm 1
 Robot ri:
 statei = UE;
 Periodically execute the following command;

obtain ξi−1 and ξi from the sensors;
if (ξi > ξi−1) move the robot clockwise at speed τ;
else if (ξi < ξi−1) move the robot anticlockwise at speed −τ;
else //ξi = ξi−1

 { statei = LE;
 minL = smallest k such that LNi(k)’state is UE; //if no robot in UE, set to −1
 minR = smallest k such that RNi(k)’state is UE; //if no robot in UE, set to −1
 sL ← speed of LNi(minL); // set to 0 if minL equals −1
 sR ← speed of RNi(minR); // set to 0 if minL equals −1
 si = (minL×sR + minR×sL) / (minL+minR);
 }

Theorem 1. Given any initial state, Algorithm 1 can stabilize within time π/τ.

Theorem 2. The system can reach a safe state if θ ≥ θi,, 1 ≤ i ≤ n, that is n ≥ 2 × π/θ.
Theorem 3. The system can reach a goal state.

3.3 Second Algorithm

In Algorithm 1, idealistic assumptions were made. In practice, robots generally do not
have powerful sensors that can provide global system information. Also, due to
physical constraints, it takes some time for the robots to execute the planned
command. For example, it takes some time for a robot to accelerate to the computed
speed. To address these limitations, we revise some assumptions in Algorithm 1 and
design the second algorithm. The assumptions for the second algorithm are as
follows.

1) Each robot maintains a clock, which initially is synchronized and accurate
throughout the self-stabilization algorithm.

2) The planning task takes a fixed number of clock ticks and the clock tick is an
atomic timing unit, denoted by λ. Planning task a periodical task. Different
robots may have different periods and their initial phase may vary.

3) We consider that sensor reading and planning takes almost no time compared
with command execution.

4) Each robot is going through a loop: first detecting the environmental
changes, planning, and adjusting the robot position. Let Δt denotes the
maximum time interval between robot sensor detecting and robot actuator
actuating. Let ψ denote the angle difference threshold and its value satisfies
the following constraint: ψ>4×τ×Δt. This assumption is based on empirical
data from analysis of the real system. From our empirical experience with

762 Y. Zhang, F. Bastani, and I-L. Yen

multi-robot systems, sensor reading and planning consume negligible time
compared with executing a command since command execution phase
involves adjusting the real actuator speed and keep moving for a time period.
Thus, we assume that reading sensors and the planning phase start at the
beginning of each round and their execution time is zero.

Oscillation may occur due to the local view of the environment. Thus we consider
the angle threshold in the process of determining the robot execution command. The
robot’s state transition is triggered only when the environmental variation has
exceeded some threshold.

The self-stabilizing structure forming algorithm for the robots is given as follows:

Algorithm 2
Robot ri:

Periodically execute the following command.
 obtain ξi−1 and ξi from the sensors;
 if (ξi > ξi−1+ ψ) move the robot clockwise at speed τ;
 else if (ξi < ξi−1+ ψ) move the robot anticlockwise at speed −τ;
 else robot stops.

 if (robot is moving) Wait(Δt)
 else Wait(λ).

From Algorithm 2, it’s necessary for the planner to wait Δt time for the actuator to
adjust its speed and move before next round of planning.

Lemma 1. For any robot ri, if ξi (t)>ξi+1(t) + ψ, then for any t0, t0<Δt, ξi (t+t0)> ξi+1(t0)
Proof. To prove this, we only need to show that the difference between a moving
robot’s left angle and right angle will not change in one round once this robot plans to
move. Assume that at the start of round k, robot ri does the planning and moves in the
clockwise direction. This means: ξi (k)> ξi+1(k)+ ψ.

With adversary strategy, we consider robot ri+1 and ri−1 cooperating to maximally
reduce the angular difference between ξi and ξi+1, trying to make ξi+1 larger than ξi at
some time within round k of robot ri. It is easy to see that in the worse case, robot, ri+1
and ri−1 should move anticlockwise throughout round k. Then we have the following
fact:

ξi(k+1) ≥ ξi (k) − 2×τ×Δt. ξi+1(k+1) ≤ ξi+1 (k) + 2×τ×Δt.
Thus, we have the following fact:
ξi(k+1) − ξi+1(k+1) ≥ξi (k) −2×τ×Δt−ξi+1 (k) −2×τ×Δt>0 �

Similarly, we can proof that if ξi (t)<ξi+1(t) + ψ, then for any t0, t0<Δt, ξi (t+t0)< ξi+1

(t0).

Lemma 2. Given any number of robots and initial state, Algorithm2 can successfully
terminate.

Proof. To analyze the property of the algorithm, we first define vari as vari = (ξi−ε)2
.

Then we can obtain the the summation of all the vars, denoted by var as follows:

 2

1

2

1

22

1

2

1

)2()(varvar εξεεξξεξ n
n

i
i

n

i
ii

n

i
i

n

i
i −=+−=−== ∑∑∑∑

====

 Self-stabilizing Structure Forming Algorithms for Distributed Multi-robot Systems 763

Since self-stabilization phase occurs after member recruiting phase, n and ε are
constant when the self-stabilization algorithm starts running. Thus, var’s value only
depends on the summation of the square of ξi. Similarly, in the following paragraph,
we will show that var keep decreasing until the self-stabilization algorithm
terminates. We consider the situation in which some robots are moving during time
slot k in the process of self-stabilization.

In Fig. 7, at time k−1, we assume that robot rm1, rm2, …, rml (m1, m2…ml∈[1,n])
are moving. Since each robot’s period time is an integer of clock ticks, these robots
will keep moving throughout the time slot k. Let [p1…pm1…pm2…pml…,pn] denotes
the system configuration at time k−1 and [p1…p’m1…p’m2…p’ml…,pn] the
configuration at time k. Then, we can transform the concurrent robots movement at
time slot k into sequential movement as follows:

Consider a moving robot rmi in Fig. 8. From the above property, we can see that its
movement is consistent with the environment within time slot k, independent of its
neighbor’s movement. Assume that the left angle and right angles of robot rmi are ξmi
and ξmi+1 in the sequential configuration that robot rmi will move. Without loss of
generality, we assume that ξmi is greater than ξmi+1. Then, after robot rmi moves, the
angles will be changed as follows:

ξ’mi=ξmi−η ξ’mi+1=ξmi+1+η.

where η is the minimum angle change of robot rmi in one clock tick, i.e equals τ×γ.
Then, the impact of the robot rmi’s movement on the var is as follows:

var’–var = ξ’mi
2 + ξ’mi+1

2−ξmi
2 − ξmi+1

2

 = ξ’mi
2 + ξ’mi+1

2 − (ξ’mi+η)2 + (ξ’mi+1−η)2 = = 2η (ξ’mi+1−ξ’m−η).

Fig. 7. System configuration Fig. 8. System configuration decomposition

From 0, we know that ξ’mi+1−ξ’mi<0, so we have var’ −var<−2η2. Thus, after clock
ticks k, var will decrease at least by 2×l×η. Since the largest period of all the robots is
Δt, it is easy to see that the self stabilization algorithm will terminate if the robots stay
stationary within time period 2Δt. Thus, the algorithm will terminate. �

Let κmax denote the maximum task period of the robot and κmin denote the minimum
period. Then for any time interval [t, t+κmax×γ], every robot planning task is triggered

764 Y. Zhang, F. Bastani, and I-L. Yen

at least one time. Hence, if all the robots stay stationary, the algorithm terminates.
Thus we have the following theorem:

Theorem 4. Given any initial state, Algorithm II can successfully stabilize within
time 2(κmax+κmin)π2/(κmin×τ2×γ).
Proof
 Omitted.

The introduction of the threshold in the process of determining the robot movement
may make the stable distribution uneven. The worst case is as follows:

 ξ2=ξ1+4×τ×Δt ξ3=ξ2+4×τ×Δt
 tnn Δ××+=

−
τξξ 4

1
22

 tnn Δ××−=
+

τξξ 4
2

1
2

 …..

Thus, the system can reach a safe state if θ ≥ t
n

n
Δ×××+ τπ

4
4

2 . Consequently, the

following theorems hold.

Theorem 5. The system can reach a safe state if
t

t
n

t

t

Δ
Δ−+≤≤

Δ
Δ−−

τ
πτθθ

τ
πτθθ

2

82

2

82 22
.

Theorem 6. The system can reach a goal state if δ > tn Δ××τ .

4 Experimental Study

To illustrate the effectiveness of the proposed approach to the self-organizing
behavior of the multi-robot system, we test the algorithm in different cases. The
algorithm is performed on a conventional 2G RAM, Intel Core 2 Duo 7600 PC with
Windows XP.

The case study considers the even distribution of groups of homogeneous robots
around a circle. The radius of the rigid body is 2m (meters). The parameters of the
mobile robot are as follows:

Table 1. Parameter of the robot (m=meter, s=second)

Maximum
translational speed (ϖ)

Maximum
rotational speed (τ)

Clock Tick Task period Threshold
(ψ)

0.2m/s 0.1 0.1s 5 (0.5s) 0.2

We test the Algorithm II in 100 rounds. In each round, a unique random seed is
selected to generate the initial distribution for the robot group of size 0 to 39.
Convergence time is illustrated in Fig. 9. The x axis denotes the number of rounds; the
y axis denotes the convergence time for each distribution. Note, for each round, we
generate 40 distributions with same random seed and all the distributions have
successfully converged.

There are 89.625% initial distributions that converge within the time interval [8s-
18s]. Comparing with the maximum convergence time 25 seconds, the upper bound
of convergence time is π/τ=31.4s from algorithm I. The convergence time comparison
between different numbers of robots is illustrated in Fig.10. The x axis denotes the

 Self-stabilizing Structure Forming Algorithms for Distributed Multi-robot Systems 765

Simulation Result

0

5

10

15

20

25

0 20 40 60 80 100 120

Test Round

C
o
n
v
e
r
g
e
n
c
e

T
i
m
e

(
S
e
c
o
n
d
)

Series1

Fig. 9. Convergence Time

Simulation Result

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45

Number of Robots

A
v
e
r
a
g
e

T
i
m
e

(
S
e
c
o
n
d
s
)

Series1

Simulation Result

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25 30 35 40 45

Number of Robot

D
e
v
i
a
t
i
o
n

Series1

Fig. 10. Average Time and Standard Deviation

number of robots; the y axis denotes the time (seconds). Series 1 is the average
convergence time and Series 2 is deviation of the average time.

From Fig. 10, we can conclude that 92.106% distributions converge within time
interval [120, 140] in our test. Also the convergence time is irrelevant with the
numbers of robot when the latter is above 5. For a general case, assume that the
convergence time follows the normal distribution and the average convergence time is
less than 14 and standard deviation is less than 0.5. Then 99.8% of the distributions
converge within 15.5 seconds.

5 Conclusion

We have presented two self-organizing algorithms to adaptively form a safe structure
for multiple robots transporting rigid objects. The algorithms are developed based on
a safe self-stabilization model, where failures of some robots may bring the system to
a non-goal state but the system will always stay in the safe states. The convergence of
the algorithms has been formally proven and the convergence speed has been
analyzed. The simulation study shows that our algorithm can efficiently converge and
the convergence speed is independent of the number of robots. This is especially
useful in real-time swarm-robot application since the timing property of the system
behavior is predictive.

Our approach is an attempt in forming a structure for swarm-robotic rigid body
transportation system. Following this paper, there are several research directions that
can be investigated. We will consider more complex structure formation for other real
time applications. Also, new self-organizing algorithms which deal with obstacles

766 Y. Zhang, F. Bastani, and I-L. Yen

during rigid body transportation will be developed. Moreover, we plan to test the
algorithms using real robots to experimentally validate our approach.

References

[1] Dolev, S.: Self-stabilization. The MIT Press, Cambridge, Massachusetts, London, England
(2000)

[2] Valavanis, K.P., Gracanin, D., Matijasevic, M., Kolluru, R., Demetriou, G.A.: Control
Architecture for Autonomous Underwater Vehicles. IEEE Contr. Syst. 48–64 (1997)

[3] Vig, L., Adams, J.A.: Multi-Robot Coalition Formation. IEEE Transactions on
Robotics 22(4) (2006)

[4] Parker, L.E: Current Research in Multi-Robot Systems. Journal of Artificial Life and
Robotics (2003)

[5] Dorigo, M., Trianni, V., Sahin, E., Groß, R., Labella, T.H., Baldassarre, G., Nolfi, S.,
Deneubourg, J.-L., Mondada, F., Floreano, D., Gambardella, L.M.: volving Self-
Organizing Behaviors for a Swarm-bot. Auton, Robots 17(2-3), 223–245 (2004)

[6] Wang, Y.F., Chirikjian, G.S.: A new potential field method for robot path planning. In:
Proceedings of IEEE International Conference on Robotics and Automation, San
Francisco, USA, pp. 977–982

Author Index

Abderazek, Ben A. 196
Álvarez, Manuel 466
Anagnostou, Miltiades 565
Anderson, Jonathan S. 247

Bae, Byung-Dueg 113
Bastani, Farokh 754
Bellas, Fernando 466
Brønsted, Jeppe 294

Cacheda, Fidel 466
Canedo, Arquimedes 196
Cao, Jiannong 283, 650, 683
Chan, Alvin T.S. 706
Chang, Ben-Jye 367
Chang, Li-Yuan 444
Chang, Ming-Feng 123
Chang, Rong-Guey 64
Chang, Yue-Shan 432
Chen, Chao-Lieh 389
Chen, Hung-Yu 531
Chen, Jen-Hao 742
Chen, Jheng-Ming 33
Chen, Ling-Jyh 87, 101
Chen, Ping-Chieh 87
Chen, Shih Wen 541
Chen, Xiangqun 170
Cheng, Kuan-Wei 64
Cheng, Ray-Guang 379
Chiang, Cheng-Chi 718
Chiang, Kuo-Cheng 718
Chiang, Mei-Ling 146
Chien, Hung-Chi 400
Chien, Hung-Yu 333, 422
Cho, Seong-Rak 113
Cho, Yookun 346
Chou, Cheng-Fu 101
Chu, Chang-Lueng 379
Chu, Shih-Min 45
Chu, Slo-Li 234
Chu, Weikuo 25

de Mello, Rodrigo F. 493
De Poorter, Eli 610
De Turck, Filip 479

Demeester, Piet 479, 610
Dhoedt, Bart 479
dos Santos, Matheus L. 493
Duh, Dyi-Rong 444

Feng, Yulin 650
Fohler, Gerhard 219
Fors, David 294
Fu, Jih-Ming 718

Gerla, Mario 87
Goh, Okehee 730
Grönvall, Erik 294
Gu, Tao 553
Guo, Yan 321

Habib, Sami 635
Hanaoka, Kensuke 182
Heo, Junyoung 346
Ho, Tsung-Yu 531
Hong, Jiman 346
Hsiung, Pao-Ann 718
Hsu, Ming-Tsung 432
Hu, Dexter H. 309
Hua, Bei 321
Hua, Guochen 1
Huang, Chen-Wei 422
Huang, I-Hsuan 45
Huang, Ing-Jer 531
Huang, Man-Lin 507
Huang, Shih-Hsu 507
Huang, Shih Hao 541
Huang, Yu 650
Hung, Chin-Chieh 718
Hung, Shih-Hao 55, 742

Ishikawa, Hiroo 182
Islam, Shariful 517
Isovic, Damir 219

Jensen, E. Douglas 247
Jian-Sheng, Xing 134
Jin, Beihong 283, 577, 650
Juang, Tong-Ying 432

768 Author Index

Kalasapur, Swaroop 671
Kanda, Wataru 182
Kim, Daeyoung 587
Kim, DongKu 261
Kim, Jaesub 694
Kumar, Mohan 671
Kuo, Yau-Hwang 389

Lai, Hong Feng 271
Latré, Benôıt 610
Lee, Bih-Hwang 400, 623
Lee, Dongkon 113
Lee, Dongman 587
Lee, Gwo-Chuan 123
Lee, Jaeheung 346
Lee, Jeng-Wei 389
Lee, Yann-Hang 730
Li, Long-Sheng 123
Li, Xin 321
Li, Ying 598
Liang, Nia-Chiang 87
Liang, Ying-Hsin 367
Liao, Shih-Wei 742
Lin, Chao-Sheng 718
Lin, Frank Yeong-Sung 432
Lin, Kuan Jen 541
Lin, Ming-Ham 33
Lin, Shang-Wei 718
Lin, Shu-Yu 367
Lin, Tzong-Yen 64
Liu, Hui 1, 209
Liu, Junxiang 134
Liu, Kai 356
Liu, MeiLin 75
Loh, Peter K.K. 661
Loke, Seng W. 598
Lu, Chun-Hsien 718
Lu, Pin-Hsien 718

Men, Chaoguang 410
Min-Allah, Nasro 134
Moerman, Ingrid 610
Moon, SangKwon 694
Murata, Yu 182

Nakajima, Tatsuo 182

Pai, Hung-Ta 623
Paik, Bu-Geun 113
Pan, Alberto 466

Park, Beom-Jin 113
Park, Jaemin 346
Park, Kyu Ho 694
Park, Minkyu 346
Pederson, Thomas 456
Perng, Nei-Chiung 55
Pung, Hung Keng 553

Ramakrishna, M.V. 598
Ran, Rong 261
Raposo, Juan 466
Ravindran, Binoy 247
Raychoudhury, Vaskar 683
Rizvanovic, Larisa 219
Rodrigues de la Rocha, Fábio 158

Safar, Maytham 635
Senthivel, Kumaravel 671
Seo, Jong-Soo 261
Sha, Edwin H.-M. 75
Shang, Yi 321
Shao, Zili 1, 75, 209
Shen, Bor-Yeh 146
Shim, Gyudong 694
Siebert, Joanna Izabela 683
Silva de Oliveira, Rômulo 158
Song, Yong 694
Sowa, Masahiro 196
Sun, Guangzhong 650
Sun, Kai 209
Sun, Tony 87
Sung, Jing-Tian 623
Sung, Jongwoo 587
Suri, Neeraj 517
Surie, Dipak 456
Sygkouna, Irene 565

Takada, Hiroaki 13
Tan, Y.K. 661
Teng, Qiming 170
Tomiyama, Hiroyuki 13
Tseng, Cheng-Long 101
Tseng, Yu-Chee 25
Tu, Chia-Heng 742

Vlaeminck, Koert 479

Wang, Chih-Chun 45
Wang, Cho-Li 309

Author Index 769

Wang, Chu-Liao 507
Wang, Chun-dong 356
Wang, Dongsheng 410
Wang, Hua 170
Wang, Huai-bin 356
Wang, Kuochen 33
Wang, Meng 1, 209
Wang, Miaomiao 683
Wang, Tianmiao 209
Wang, Tsang-Yi 444
Wang, Wei-Jun 379
Wauters, Tim 479
Wei, Edwin J.Y. 706
Wei, Hongxing 209
Wong, Chi-Ming 400
Wu, Jeng-Yang 444

Xu, Dong 170
Xu, Jian 261

Xu, Zhenpeng 410
Xue, Chun Jason 1, 75

Yang, Cheng-Zen 45
Yang, Jia-Ming 389
Yang, Laurence T. 493
Yeh, Tse-Chen 531
Yen, I-Ling 754
Yong-Ji, Wang 134
Yu, He-feng 356
Yue, LiHua 321
Yun, Jong-Hwui 113

Zeng, Gang 13
Zhang, Daqing 553
Zhang, Liang 283, 577
Zhang, Yansheng 754
Zhou, Yu 683
Zhuge, QingFeng 75

	Title Page
	Preface
	Organization
	Table of Contents
	Real-Time Loop Scheduling with Energy Optimization Via DVS and ABB for Multi-core Embedded System
	Introduction
	Motivational Examples
	Models and Concepts
	Power Model
	Rotation Scheduling

	The Energy Optimization Loop Scheduling with DVS and ABB Algorithm
	Experiments
	Conclusion

	A Software Framework for Energy and Performance Tradeoff in Fixed-Priority Hard Real-Time Embedded Systems
	Introduction
	Related Work
	Proposed DEPS Framework
	System Model
	Problem Formulation for Static Application of DEPS
	Decision Algorithm for Selecting Candidate DEPS Configurations
	Implementation of Static DEPS

	A Case Study
	Simulation Environment Setup
	Experimental Results

	Conclusion
	References

	A Shortest Time First Scheduling Mechanism for Reducing the Total Power Consumptions of an IEEE 802.11 Multiple Rate Ad Hoc Network
	Introduction
	The Shortest Time First Scheduling
	Performance of the STFS
	Conclusions

	Energy Efficient Scheduling for Real-Time Systems with Mixed Workload
	Introduction
	Related Work
	Aperiodic Real-Time Task Scheduling Schemes
	On-Line Inter-task DVS Strategies for Period Tasks
	Dynamic Reclaiming Algorithm
	Existing Inter-task DVS Algorithm for Mixed Workload Real-Time Systems

	System Model, Assumptions and Notations
	Proposed SS-DVS Algorithm
	Simulation Results
	Simulation Model
	Effect of the Workload of Aperiodic Tasks on Energy Consumption and Response Time
	Effect of BCET/WCET Ratio of Periodic Tasks on Energy Consumption

	Conclusion
	References

	Function-Level Multitasking Interface Design in an Embedded Operating System with Reconfigurable Hardware
	Introduction
	Related Work
	Functional-Level Multitasking Interface Design
	Prototype Implementation and Experimental Results
	Conclusions

	Task Scheduling for Context Minimization in Dynamically Reconfigurable Platforms
	Introduction
	Problem Definition
	Problem Properties
	\mathcal{NP}-Complete Subproblems
	Subproblems in \mathcal{P}

	Conclusion

	Compiler Support for Dynamic Pipeline Scaling
	Introduction
	Related Work
	The Proposed Approach
	Basic Idea
	Evaluation Model for Switching Pipeline Modes
	DPS Enabling

	Experimental Results
	System Configuration
	Experimental Results

	Conclusions

	Parallel Network Intrusion Detection on Reconfigurable Platforms
	Introduction
	Architecture
	Basic Concepts and Data Structures
	Algorithms
	Implementation
	Conclusion

	Evaluating Mobility Support in ZigBee Networks
	Introduction
	Overview
	IEEE 802.15.4
	ZigBee Network Layer

	Mobility Support in ZigBee Mesh Topology
	Mobile End Device
	Mobile Router

	Mobility Support in ZigBee Tree Topology
	Mobile End Device
	Mobile Router

	Evaluation
	Scenarios with Varying Percentage of Mobile Nodes
	Scenarios with Mobile Nodes of Varying Speed

	Conclusion

	On Using Probabilistic Forwarding to Improve HEC-Based Data Forwarding in Opportunistic Networks
	Introduction
	Related Work and Overview of the H-EC Scheme
	Related Work
	H-EC: An Overview

	HEC-PF: H-EC with Probabilistic Forwarding
	Delivery Probability
	Probabilistic Forwarding

	Evaluation
	Evaluation I: Two-Hop Scenario
	Evaluation II: Variable H Scenarios
	Evaluation III: Variable k Scenarios

	Conclusion

	Employment of Wireless Sensor Networks for Full-Scale Ship Application
	Introduction
	Characteristics of Ships and of the WSN Technologies
	Full-Scale Ship Tests Using the WSN
	Data Delivery Ratio for Zigbee
	WSN Tests in Main Engine-Room

	Investigation of the WSN Characteristics at the Test Bed
	Battery Consumption Tests

	Conclusion
	References

	Improving the Performance of the Wireless Data Broadcast by the Cyclic Indexing Schemes
	Introduction
	The System Architecture
	The Proposed Alphabetic Huffman Algorithms
	The Numerical Analysis
	Conclusions
	References

	Revisiting Fixed Priority Techniques
	Introduction
	Discrete Scheduling by Empty-Slot Method
	 Empty-Slot Method
	 Discrete Static-Priority Schedulability Analysis
	Discrete Static-Priority Schedulability Test
	 Comparisons with Classical Continuous Schedulability Tests

	 Enhanced Deasibility Analysis
	Previous Results on Exact Test
	Deadline Monotonic Analysis Improved
	Experimental Results

	Conclusions and Future Work

	A Server-Side Pre-linking Mechanism for Updating Embedded Clients Dynamically
	Introduction
	LyraOS
	Related Work
	Design and Implementation
	Server-Side Pre-linking
	Client-Side Loading
	Component Relocation
	Component Protection

	Performance
	Comparison of Space Overheads
	Component Loading/Pre-linking Time
	Component Invocation Time

	Conclusion
	References

	Real-Time Scheduling Under Time-Interval Constraints
	 Introduction
	 Time-Interval Model
	 QoS Metric

	 Scheduling Approach
	 Offline Feasibility Test

	 Experimental Evaluation
	 Conclusions and Future Work

	Towards a Software Framework for Building Highly Flexible Component- ased Embedded Operating Systems
	Introduction
	Related Work
	An overview of our Software Framework
	The overall structure
	Supports for Black-Box Software Reuse
	Supports for Runtime Structure Evolution
	Construction Process and Supporting Tools

	Experimental tudy
	Reorganize uC/OS-II into a Component-Based One
	TICK, a Component-Based EOS

	Conclusion and Future Works
	References

	A Study on Asymmetric Operating Systems on Symmetric Multiprocessors
	Introduction
	Related Work - Virtualization
	Full-Virtualization
	Para-virtualization
	Pre-virtualization

	Design and Implementation
	Approach and Overview
	Boot Sequence of SIGMA Linux
	Memory Management
	InterOS Communication
	Device Management

	Performance Evaluation
	LMbench
	Memory Access Collision
	Engineering Cost

	Discussion
	Limited Memory Protection
	Estimated Use Cases

	Conclusion

	An Efficient Code Generation Algorithm for Code Size Reduction Using 1-Offset P-Code Queue Computation Model
	Introduction
	1-Offset P-Code Queue Computation Model
	Code Generation Algorithm
	Augmented LDAG Construction
	{\tt dup} Instruction Assignment and Ghost Nodes Elimination
	Increase in Number of Instructions

	Experiments
	Discussion
	Conclusion

	Interconnection Synthesis of MPSoC Architecture for Gamma Cameras
	Introduction
	Background
	MPSoC System Design
	Architecture Overview
	Interconnection Synthesis

	Experimental Results and Discussions
	Conclusion

	Integrated Global and Local Quality-of-Service Adaptation in Distributed, Heterogeneous Systems
	Introduction
	Related Work
	Resource Management Framework
	Matrix Framework
	QoS Levels
	Application Adapter

	Integrated QoS Adaptation Approach
	Local Adaptation Mechanism
	Global Adaptation Mechanism
	Pseudo-Code for Integrated Approach
	Example

	Implementation and Evaluation
	Implemented Modules
	Evaluation

	Conclusions and Future Work

	Toward to Utilize the Heterogeneous Multiple Processors of the Chip Multiprocessor Architecture
	Introduction
	The Processor-in-Memory Architecture
	The Octans System
	Statement Splitting and WPG Construction
	Weight Evaluation

	Experimental Results
	Conclusions
	References

	Consensus-Driven Distributable Thread Scheduling in Networked Embedded Systems
	Introduction
	Dynamic Distributed Real-Time Systems
	Contributions and Related Work

	The DUA-CLA Algorithm
	Models
	Rationale and Design
	Algorithm Description
	Constructing Section Schedules

	Algorithm Properties
	Implementation Experience
	Conclusions and Future Work

	Novel Radio Resource Management Scheme with Low Complexity for Multiple Antenna Wireless Network System
	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	Proposed Radio Resource Management Scheme
	Subcarrier Allocation by Avoiding Using Ill-Conditioned Subcarrier
	Power Allocation among Users and Subcarriers

	Simulation Results and Analysis
	Conclusions
	References

	Modelling Protocols for Multiagent Interaction by F-logic
	Introduction
	F-Logic
	The AUML
	Introduction to the AUML
	Notations the Agent UML

	Transformation Rules and Deductive Rules
	Introduction to the E-Commerce Example of a Multiagent System
	Transformation Rules of the AUML/F-Logic
	The Deductive Rules of the AUML/F-Logic

	Related Work
	Conclusion
	References

	Adding Adaptability to Mailbox-Based Mobile IP
	Introduction
	A Mailbox-Based Scheme
	An Adaptive Algorithm
	Performance Evaluation
	Conclusion
	References

	Palpability Support Demonstrated
	Introduction
	Active Surfaces
	The Prototype
	Games

	Implementation
	PalCom Runtime System
	Simulation Framework
	Services
	Assemblies
	The Puzzle Game

	Evaluation
	Conclusions and Future Work

	GPS-Based Location Extraction and Presence Management for Mobile Instant Messenger
	Introduction
	Location Extraction and Place Annotation
	Context-Aware Presence Management
	The MIM System Design
	Implementation and Evaluation
	MIM Client and Map Display
	Evaluation of ${i-Cluster}$ Algorithm
	Presence Reasoning Logic

	Conclusion and Future Work

	Bilateration: An Attack-Resistant Localization Algorithm of Wireless Sensor Network
	Introduction and Related Work
	Problem Formulation
	LS, LMS and LLMS
	Least Square
	Least Median Square
	Linear LMS

	Bilateration
	Simulation
	Influence of Average Number of Anchors
	Influence of Percentage of Compromised Nodes
	Influence of Distance Measurement Error
	Tradeoff Between Performance and Communication Complexity
	Computation Complexity Analysis

	Conclusion and Future Work

	ID-Based Key Agreement with Anonymity for Ad Hoc Networks
	Introduction
	Preliminaries
	Bilinear Pairing
	Parameters for ID-Based Cryptosystems from Pairing

	Anonymous Key Agreement Schemes
	Static Pair-Wise Key Agreement
	Dynamic Pair-Wise Key Agreement
	Tripartite Key Agreement with Anonymity
	Group Key Management

	Conclusions and Future Work
	References

	Buffer Cache Level Encryption for Embedded Secure Operating System
	Introduction
	Related Work
	Buffer Cache Level Support
	Performance Evaluation
	Conclusions and Future Work

	SOM-Based Anomaly Intrusion Detection System
	Introduction
	Self-organizing Maps (SOMs)
	About SOM Algorithm
	The Steps of the Learning Algorithm of SOM

	Data Sampling, Preprocess, Standardization and Training
	Data Sampling and Preprocess
	Standardization
	Data Training

	Experiment Result and Its Analysis
	Conclusions
	References

	TCP-Taichung: A RTT-Based Predictive Bandwidth Based with Optimal Shrink Factor for TCP Congestion Control in Heterogeneous Wired and Wireless Networks
	Introduction
	Network Model
	Adaptive Network Bandwidth Approach
	In the Increasing $cwnd$ Phase While the Expected Network Bandwidth Is Enough
	In the Decreasing $cwnd$ Phase While the Expected Network Bandwidth Is Insufficient

	Numerical Results
	Scenario 1: N TCP Connections in a Wired Network
	Scenario 2: N TCP Connections in a Wired Network with a Single Wireless Link

	Conclusions
	References

	Dynamic Rate Adjustment (DRA) Algorithm for WiMAX Systems Supporting Multicast Video Services
	Introduction
	System Model
	DRA
	Simulation Results
	Conclusion
	References

	Efficient and Load-Balance Overlay Multicast Scheme with Path Diversity for Video Streaming
	Introduction
	Background and Related Work
	Multi-path Streaming
	Multiple Description Coding (MDC)
	Topology-Aware Hierarchical Arrangement Graph (THAG)

	Topology-Aware Load-Balance Hierarchical Independent Tree (TLHIT)
	Independent Multicast Trees in Virtual Graph
	Extending Virtual Graph to Hierarchical Structure
	Member Joining to Virtual Graph

	Simulation Results
	Average Received Descriptions and Stretch
	Stress and Delay Distribution

	Conclusions and Future Work
	References

	A Cross Layer Time Slot Reservation Protocol for Wireless Networks
	Introduction
	Description of the Proposed CLTSR
	Theoretical Analysis
	Simulation Results
	Conclusions
	References

	An Efficient Handoff Strategy for Mobile Computing Checkpoint System
	Introduction
	Preliminaries
	The Recovery Scheme
	The Data Structure and Denotations
	The Checkpointing and Logging
	The Handoff Strategy
	Independent Recovery
	Garbage Collection

	Correctness of the Algorithm
	Performance Study
	Conclusion
	References

	A Lightweight RFID Protocol Using Substring
	Introduction
	Review of Li et al.’s Scheme
	Vulnerabilities of Li et al. Scheme
	The Replay Attack
	Disclosing the Secret Value SID

	A New Lightweight RFID Authentication Protocol
	Analysis
	Security Analysis
	Performance Analysis

	Conclusion and Future Work
	References

	The Reliability of Detection in Wireless Sensor Networks: Modeling and Analyzing
	Introduction
	Detection Models
	Model Construction
	Fault Probability of Detection
	Probability of Detection Reliability
	Probability Estimation

	Theoretical Analysis
	Sensing Improvements
	Probability Analysis

	Illustrative Example
	Intrusion Detection System
	Impact of Sensing Improvements

	Related Work
	Conclusions and Future Work

	Fast and Simple On-Line Sensor Fault Detection Scheme for Wireless Sensor Networks
	Introduction
	System Model and Problem Formulation
	Network Operation
	Sensor Fault Types

	Sensor Fault Detection Scheme
	Record Table
	Proposed Scheme

	Simulation Results
	Error Rate of Fault Detection
	Simulation Setup
	Results and Analysis

	Conclusions
	References

	An Activity-Centered Wearable Computing Infrastructure for Intelligent Environment Applications
	Introduction
	Challenges Involved in Designing Intelligent Environments
	Activity Recognition
	Situative and Multi-modal Interaction Design
	Maintaining a Model of the Environment
	Privacy and Personalization

	An Activity-Centered Wearable Computing Infrastructure
	Experimental Set-Up and Evaluation
	Conclusions
	References

	Finding and Extracting Data Records from Web Pages
	Introduction
	Basic Observations and Properties
	Finding the Dominant List of Records in a Page
	Dividing the List into Records
	Edit-Distance Similarity Measure
	Generating the Candidate Record Lists
	Choosing the Best Candidate Record List

	Extracting the Attributes of the Data Records
	Experience
	Related Work
	References

	Towards Transparent Personal Content Storage in Multi-service Access Networks
	Introduction
	Related Work
	Use Cases
	Model Description
	Storage Server Placement Algorithm (SSPA)
	Implementation and Evaluation
	Striping and Resilience
	Conclusion

	Extraction and Classification of User Behavior
	Introduction
	Related Work
	The Model
	Experiments and Results
	Conclusion
	Future Work

	A Floorplan-Based Power Network Analysis Methodology for System-on-Chip Designs
	Introduction
	Preliminaries
	The Modeling Technique for Reused Blocks
	The Motivation
	The Proposed Method

	The Full-Chip Analysis Methodology
	Full-Chip Equivalent Resistive Circuit
	The Analysis Procedures

	Experimental Results
	Studies on the New Modeling Technique
	Studies on the Resolution of Grids

	Conclusions

	A Multi Variable Optimization Approach for the Design of Integrated Dependable Real-Time Embedded Systems
	Introduction and Paper Objectives
	Related Work
	System Model and Problem Statement
	The MVO Approach
	Quantification of Design Variables
	Interactions
	Scheduling Length
	Bandwidth Utilization

	The Algorithm - Employing MVO
	The MVO Function
	Application of SA
	The Transformation Operator Γ

	Evaluation of the MVO Framework
	Experimental Settings
	Experimental Results

	Conclusions

	SystemC-Based Design Space Exploration of a 3D Graphics Acceleration SoC for Consumer Electronics
	Introduction
	Preliminary
	3D Graphics Rendering Pipeline
	3D Graphics Acceleration SoC
	Platform Building

	System Configurations
	Simulation Environment
	Hardware/Software Configurations

	Design Space Explorations
	Cache Size Optimization Without Hardware Acceleration
	Performance of Hardware Acceleration
	Efficiency of Bus Transfer Mode
	Performance Bottleneck on Clear Buffer
	Performance of Geometry Processing
	Characteristics of 3D Graphics Benchmarks

	Conclusions
	References

	Optimal Allocation of I/O Device Parameters in Hardware and Software Codesign Methodology
	Introduction
	Cost Models
	Formulation of Exact Minimization
	Design Methodology
	Experimental Results
	Conclusion
	References

	A Semantic P2P Framework for Building Context-Aware Applications in Multiple Smart Spaces
	Introduction
	System Architecture
	Overview
	Data Model
	Sensor Wrapper
	Local Context Storage
	Data Mapping
	Query Routing
	Subscription

	Application Development
	Prototype Measurements
	Bootstrapping
	Dynamic Characteristic
	Response Time Analysis
	Query Processing Capability

	Related Work
	Conclusion
	References

	Usage-Aware Search in Peer-to-Peer Systems
	Introduction
	Literature Overview
	Problem Description
	Solution
	Locality of Reference Properties
	Active Networks Distributed Computing
	Usage-Aware Search Mechanisms

	Simulation Results
	Test Case 1: Temporal Locality
	Test Case 2: Geographical Locality
	Test Case 3: Spatial Locality

	Conclusions
	References

	A Service Query Dissemination Algorithm for Accommodating Sophisticated QoS Requirements in a Service Discovery System
	Introduction
	QoS Requirement Classification
	A General Algorithm
	Performance Analysis
	Conclusion
	References

	User Preference Based Service Discovery
	Introduction
	Related Work
	Design Considerations
	Decentralized Architecture
	Qualifying Service Selection
	Network Implosion Avoidance

	Architecture
	Quality of Service Discovery Query
	Service Conformance Score Calculation
	Multicast Response and Service Selection

	Implementation
	Performance Evaluation
	Conclusion
	References

	An Optimal Distribution of Data Reduction in Sensor Networks with Hierarchical Caching
	Introduction
	Cost Model
	Optimal Distribution of Data Reduction
	Solution of the Optimization Problem
	Sample Problem with Two Levels
	Sample Problem with Four Levels

	Related Work
	Conclusion

	MOFBAN: A Lightweight Modular Framework for Body Area Networks
	Introduction
	Related Work
	Properties of a WBAN
	Modular Framework
	Modules
	Controller Module
	Required Modules
	Optional Modules

	Communication
	Future Work
	Conclusion

	Performance Analysis for Distributed Classification Fusion Using Soft-Decision Decoding in Wireless Sensor Networks
	Introduction
	Fault-Tolerant Distributed Detection and DCSD Fusion Rule
	Performance Analysis
	Numerical and Simulation Results
	Conclusions and Future Works

	Hard Constrained Vertex-Cover Communication Algorithm for WSN
	Introduction
	Related Work
	Communication Problem Formulation
	Evolutionary Approach for Solving the Communication Problem
	Chromosome Representation

	Experimental Results
	Conclusion and Future Directions
	References

	A Selective Push Algorithm for Cooperative Cache Consistency Maintenance over MANETs
	Introduction
	Greedy Walk-Based Selective Push
	Providing Delta Consistency by Pull with TTR
	Selective Push
	Greedy Walk-Based Data Update Propagation
	Analysis of the Greedy Walk Strategy

	Experimental Evaluation
	Experimental Methodology and Configurations
	Evaluating the Greedy Walk Strategy
	Effects of Tuning the Number of Caching Nodes
	Effects of Tuning the Cache Query Rate

	Conclusion and Future Work
	References

	A Constrained Multipath Routing Protocol for Wireless Sensor Networks
	Introduction
	Related Work
	Protocol Design Details
	Route Discovery Phase
	Data Relay Phase
	Failure Recovery Phase
	SOS Double Path - {SOS_d}

	Simulation
	Performance Metrics
	Non-ideal Conditions

	Conclusions
	References

	PerSON: A Framework for Service Overlay Network in Pervasive Environments
	Introduction and Motivation
	Related Work and Limitations
	Architecture of PerSON
	PerSON Stack
	Physical Network Connections
	Overlay Network

	Prototype Implementation
	PICO Implementation Using PerSON
	Emergency Response System

	Features of PerSON
	Light-Weight Framework
	Heterogeneous Network Connectivity
	Dynamic Service Discovery and Routing

	Conclusion
	References

	Universal Adaptor: A Novel Approach to Supporting Multi-protocol Service Discovery in Pervasive Computing
	Introduction
	Related Work
	System Model and Architecture
	Universal Adaptor Primitives (UAP)
	Universal Adaptor Mapping (UAM)
	Prototype Implementation and Experience
	Conclusion
	References

	U-Interactive: A Middleware for Ubiquitous Fashionable Computer to Interact with the Ubiquitous Environment by Gestures
	Introduction
	Related Works
	U-Interactive System Architecture
	U-Interactive Infrastructures on the U-TOPIA
	Internal Architecture of U-Interactive
	Coordination of Location Service

	Management of Interactive Object
	Interactive Object Registration
	Interactive Object Discovery
	Target Selection in a Virtual Map

	Interaction Methods
	UbiSpace

	Implementation and Experiment
	Conclusions

	Towards Context-Awareness in Ubiquitous Computing
	Introduction
	Definitions of Context
	Acquiring Contexts
	Acquiring Physical Contexts
	Acquiring Computing Contexts
	Acquiring User Contexts

	Modeling Context
	Data Structure
	Integrity
	Manipulation

	Adapting to Contexts
	What to Adapt
	How to Adapt
	When to Adapt

	Challenges for Context-Awareness in Ubiquitous Computing

	Real-Time Embedded Software Design for Mobile and Ubiquitous Systems
	Introduction
	Previous Work
	Design and Verification Flow in VERTAF
	UML Modeling
	Real-Time Embedded Software Scheduling
	Formal Verification
	Component Mapping
	Code Generation

	Analysis and Evaluation
	Conclusions and Future Work

	Schedulable Online Testing Framework for Real-Time Embedded Applications in VM
	Introduction
	Related Works
	Target Application Model
	Online Testing Service
	Online Testing Framework
	An Isolated Testing Environment
	Preemptible Checkpointing and Recovery
	Logging and Reconstructing

	Experiments
	Cost Analysis for Testing Sequence
	Scheduling Online Testing and Space Overhead

	Conclusion

	Scalable Lossless High Definition Image Coding on Multicore Platforms
	Introduction
	Motivation for the Multicore Approach
	Studying Digital Cinema Solutions
	Scaling State-of-the-Art Software Solution

	Traditional Parallelization Approach in JPEG2000
	JPEG2000 Flow
	Traditional Approach in Parallelizing JPEG2000 Coding

	Oblivious Parallelization Paradigm
	Illustration and Rationale
	Modeling the Computation Power of Platform

	Experimental Results
	Conclusion and Future Work
	References

	Self-stabilizing Structure Forming Algorithms for Distributed Multi-robot Systems
	Introduction
	System Model and Problem Specification
	Mobile Robot Model
	Basic Definitions
	Problem Specification and Analysis

	Self-stabilizing Structure Forming Algorithms
	Shape Mapping
	First Algorithm
	Second Algorithm

	Experimental Study
	Conclusion
	References

	Author Index

